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Structural connectome

Brain tractography by DTI (Filler 2009)

Inter-areal anatomical 
connections (SC)



Functional connectome

Multi-areal activity 
correlation patterns (FC)

Resting state fluctuations (Fox & Greicius 2010)
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• Effects on cognitive performance and 
behavior… 

➡ Selective attention, attention switching 

➡ Working memory content manipulation 

➡ Salthouse’s theory of information processing 
slowing down 

• but also, structural alterations 

➡ e.g., decreased path-efficiency, 
“disconnection” 

• Resting state functional connectivity 
alterations 

➡ Within and between RSNs 
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(Kopell et al. 2014)
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Time-varying FC

!
Functional Connectivity Dynamics, FCD

adapted from (Hutchison et al. 2013)

of FC have also been reported (Jones et al., 2012; Sakoglu et al., 2010),
further suggesting a neural origin and raising the intriguing possibil-
ity that temporal features of FC could serve as a disease biomarker.
Thus, while limitations of current analysis strategies and uncertainty
surrounding the origins of dynamic FC advise caution when
interpreting past and current findings, the existing results raise a se-
ries of important and exciting questions concerning network dynam-
ics that may significantly expand our understanding of brain function.

Analysis strategies and findings

Below, we review analysis strategies that have been applied to char-
acterize temporal variations in the spatiotemporal structure of BOLD
signal fluctuations. Among these approaches, some are designed to cap-
ture pairwise variations in inter-regional synchrony (Sliding-window
analysis and Time–frequency coherence analysis sections), while others
focus on identifying changing patterns of synchrony at a multivariate
level (Single-volume co-activation patterns, Repeating sequences of
BOLD activity, and Independent component analysis sections). Pairwise
approaches have been combined with clustering methods to identify,
for instance, repeating configurations of correlations across multiple

ROIs (Reproducible patterns of sliding-window correlations section).
It should be noted that these analysis strategies are of an exploratory
nature, and are not solidly grounded in neurobiological principles
or models. Presently, it is not clear which classes of techniques will
prove to be the most fruitful in characterizing functionally relevant
dynamics. It should also be emphasized that temporal variation in FC
metrics cannot be interpreteddirectly as non-stationarity2 of the under-
lying interactions between regions. In much of the literature exploring
dynamic FC, the term ‘non-stationarity’ has been invoked in a techni-
cally incorrect sense, referring merely to the observed variability over
time in the value of a given FC metric. Methods such as correlation
and coherence, in fact, lack a proper model for resolving the underlying
structure of network interactions (Smith et al., 2011), and moreover
cannot distinguish between true variability in network interactions or
variability due to stochastic noise (Handwerker et al., 2012; see also
Issues concerning sliding-window analysis section below). Such issues
must be considered when interpreting the results reviewed below,
and the development of appropriate modeling techniques for dynamic
FC will be an important future direction.

Fig. 1. Time-varying changes in functional connectivity (FC). The schematic graph repre-
sentation illustrates possible changes in connectivity properties (row 1). The FC strength
between two nodes can change in magnitude (row 2), sign (row 3), or be lost/gained as
the strength changes above or below a threshold, such that the nodemembership changes
(row 3). Red edges, positive connections; blue edges, negative connections.

Table 1
Abbreviations used in the text.

AI Anterior insula
BLP Band-limited power
BOLD Blood–oxygen-level-dependent
CAP Co-activation patterns
CBV Cerebral blood volume
CNR Contrast-to-noise ratio
dACC Dorsal anterior cingulate cortex
DAN Dorsal attention network
DMN Default-mode network
EEG Electroencephalography
FC Functional connectivity
FEF Frontal eye fields
fMRI Functional MRI
GSR Galvanic skin response
HRV Heart-rate variability
ICA Independent component analysis
ICN Intrinsic connectivity network
InI Inverse imaging
LAN Language network
LFPs Local field potentials
LGN Lateral geniculate nucleus
LIP Lateral intraparietal cortex
MCW Maximal correlation windows
MDD Major depressive disorder
MEG Magnetoencephalography
MIP Medial intraparietal cortex
MOT Somatomotor network
mPFC Medial PFC
MREG Magnetic resonance encephalography
MRI Magnetic resonance imaging
PCA Principal component analysis
PET Positron emission tomography
PFC Prefrontal cortex
PPI Psycho-physiological interactions
ROI Region of interest
RS-fMRI Resting-state fMRI
SC Structural connectivity
sICA Spatial ICA
SNR Signal-to-noise ratio
TFM Temporal functional modes
tICA Temporal ICA
TPN Task-positive network
TR Repetition time
vACC Ventral anterior cingulate cortex
VAN Ventral attention network
VIS Visual network
vlPFC Ventral lateral PFC
VTA Ventral tegmental area
WTC Wavelet transform coherence

2 Formally, a non-stationary time series is one whose mean and covariance (or, in
the strictest sense, all higher-order moments) are not constant over time.
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Detecting meaningful structure in neural activity and connectiv-
ity data is challenging in the presence of hidden nonlinearities,
where traditional eigenvalue-based methods may be misleading.
We introduce a novel approach to matrix analysis, called clique
topology, that extracts features of the data invariant under non-
linear monotone transformations. These features can be used to
detect both random and geometric structure, and depend only on
the relative ordering of matrix entries. We then analyzed the ac-
tivity of pyramidal neurons in rat hippocampus, recorded while
the animal was exploring a 2D environment, and confirmed that
our method is able to detect geometric organization using only the
intrinsic pattern of neural correlations. Remarkably, we found sim-
ilar results during nonspatial behaviors such as wheel running and
rapid eye movement (REM) sleep. This suggests that the geometric
structure of correlations is shaped by the underlying hippocam-
pal circuits and is not merely a consequence of position coding.
We propose that clique topology is a powerful new tool for ma-
trix analysis in biological settings, where the relationship of ob-
served quantities to more meaningful variables is often nonlinear
and unknown.

structure of neural correlation | neural coding | Betti curves |
clique topology | topological data analysis

Neural activity and connectivity data are often presented in the
form of a matrix whose entries, Cij, indicate the strength of

correlation or connectivity between pairs of neurons, cell types, or
imaging voxels. Detecting structure in such a matrix is a critical
step toward understanding the organization and function of the
underlying neural circuits. In this work, we focus on neural activity,
whose structure may reflect the coding properties of neurons,
rather than their physical locations within the brain. For ex-
ample, place cells in rodent hippocampus act as position sen-
sors, exhibiting a high firing rate when the animal’s position lies
inside the neuron’s “place field,” its preferred region of the
spatial environment (1). Without knowledge of the coding prop-
erties, however, it is unclear whether such a geometric organi-
zation could be detected purely from the pattern of neural
correlations. Alternatively, a correlation or connectivity matrix
could be truly unstructured, such as the connectivity pattern ob-
served in the fly olfactory system (2), indicating random network
organization.
Can we distinguish these possibilities, using only the intrinsic

features of the matrix Cij? The most common approach is to use
standard tools from matrix analysis that rely on quantities, such
as eigenvalues, that are invariant under linear change of basis.
This strategy is natural in physics, where meaningful quantities
should be preserved by linear coordinate transformations. In
contrast, measurements in biological settings are often obtained
as nonlinear transformations of the underlying “real” variables,
whereas the choice of basis is meaningful and fixed. For example,
basis elements might represent particular neurons or genes, and
measurements (matrix elements) could consist of pairwise cor-
relations in neural activity, or the coexpression of pairs of genes.
Instead of change of basis, the relevant structure in these data

should be invariant under matrix transformations of the following
form:

Cij = f
!
Aij

"
, [1]

where f is a nonlinear monotonic function (Fig. 1A). In the case of
hippocampal place cells, f captures the manner in which pairwise
correlations Cij decrease with distance between place field centers
(3). In less studied contexts, the represented stimuli—and the
function f—may be completely unknown.
Unfortunately, eigenvalues are not invariant under transforma-

tions of the form (Eq. 1) (Fig. 1B and SI Appendix, Fig. S1).
Although large random matrices have a reliable eigenvalue spec-
trum [e.g., Wigner’s semicircle law (4)], it is possible that a random
matrix with independent and identically distributed (i.i.d.) entries
could be mistaken as structured, purely as an artifact of a monotonic
nonlinearity (Fig. 1B).* The results of eigenvalue-based analyses can
thus be difficult to interpret, and potentially misleading.
Here, we introduce a new tool to reliably detect signatures of

structure and randomness that are invariant under nonlinear
monotone transformations of the form (Eq. 1). Using pairwise
correlations of hippocampal place cells recorded during both spa-
tial and nonspatial behaviors, we demonstrate that our method is
capable of detecting geometric structure from neural activity
alone. To our knowledge, this is the first example of a method

Significance

Detecting structure in neural activity is critical for understanding
the function of neural circuits. The coding properties of neurons
are typically investigated by correlating their responses to ex-
ternal stimuli. It is not clear, however, if the structure of neural
activity can be inferred intrinsically, without a priori knowledge
of the relevant stimuli. We introduce a novel method, called
clique topology, that detects intrinsic structure in neural activity
that is invariant under nonlinear monotone transformations.
Using pairwise correlations of neurons in the hippocampus, we
demonstrate that our method is capable of detecting geometric
structure from neural activity alone, without appealing to ex-
ternal stimuli or receptive fields.
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Homological scaffolds of brain functional
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Networks, as efficient representations of complex systems, have appealed to
scientists for a long time and now permeate many areas of science, including
neuroimaging (Bullmore and Sporns 2009 Nat. Rev. Neurosci. 10, 186–198.
(doi:10.1038/nrn2618)). Traditionally, the structure of complex networks has
been studied through their statistical properties and metrics concerned with
node and link properties, e.g. degree-distribution, node centrality and modular-
ity. Here, we study the characteristics of functional brain networks at the
mesoscopic level from a novel perspective that highlights the role of inhomo-
geneities in the fabric of functional connections. This can be done by focusing
on the features of a set of topological objects—homological cycles—associated
with the weighted functional network. We leverage the detected topological
information to define the homological scaffolds, a new set of objects designed to
represent compactly the homological features of the correlation network and
simultaneously make their homological properties amenable to networks theor-
etical methods. As a proof of principle, we apply these tools to compare resting-
state functional brain activity in 15 healthy volunteers after intravenous infusion
of placebo and psilocybin—the main psychoactive component of magic mush-
rooms. The results show that the homological structure of the brain’s functional
patterns undergoes a dramatic change post-psilocybin, characterized by the
appearance of many transient structures of low stability and of a small
number of persistent ones that are not observed in the case of placebo.

1. Motivation
The understanding of global brain organization and its large-scale integration
remains a challenge for modern neurosciences. Network theory is an elegant frame-
work to approach these questions, thanks to its simplicity and versatility [1]. Indeed,
in recent years, networks have become a prominent tool to analyse and understand
neuroimaging data coming from very diverse sources, such as functional magnetic
resonance imaging (fMRI), electroencephalography and magnetoencephalography
[2,3], also showing potential for clinical applications [4,5].

A natural way of approaching these datasets is to devise a measure of dynami-
cal similarity between the microscopic constituents and interpret it as the strength
of the link between those elements. In the case of brain functional activity, this often
implies the use of similarity measures such as (partial) correlations or coherence
[6–8], which generally yield fully connected, weighted and possibly signed adja-
cency matrices. Despite the fact that most network metrics can be extended to
the weighted case [9–13], the combined effect of complete connectedness and
edge weights makes the interpretation of functional networks significantly
harder and motivates the widespread use of ad hoc thresholding methods
[7,14–18]. However, neglecting weak links incurs the dangers of a trade-off

& 2014 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
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In recent years, the application of network analysis to neuroimaging data has provided

useful insights about the brain’s functional and structural organization in both health

and disease. This has proven a significant paradigm shift from the study of individual

brain regions in isolation. Graph-based models of the brain consist of vertices, which

represent distinct brain areas, and edges which encode the presence (or absence) of

a structural or functional relationship between each pair of vertices. By definition, any

graph metric will be defined upon this dyadic representation of the brain activity. It

is however unclear to what extent these dyadic relationships can capture the brain’s

complex functional architecture and the encoding of information in distributed networks.

Moreover, because network representations of global brain activity are derived from

measures that have a continuous response (i.e., interregional BOLD signals), it is

methodologically complex to characterize the architecture of functional networks using

traditional graph-based approaches. In the present study, we investigate the relationship

between standard network metrics computed from dyadic interactions in a functional

network, and a metric defined on the persistence homological scaffold of the network,

which is a summary of the persistent homology structure of resting-state fMRI data.

The persistence homological scaffold is a summary network that differs in important

ways from the standard network representations of functional neuroimaging data: (i) it is

constructed using the information from all edge weights comprised in the original network

without applying an ad hoc threshold and (ii) as a summary of persistent homology, it

considers the contributions of simplicial structures to the network organization rather

than dyadic edge-vertices interactions. We investigated the information domain captured

by the persistence homological scaffold by computing the strength of each node in the

scaffold and comparing it to local graph metrics traditionally employed in neuroimaging

studies. We conclude that the persistence scaffold enables the identification of network

elements that may support the functional integration of information across distributed

brain networks.

Keywords: functional connectivity, fMRI, persistent homology, homological scaffold, integration and segregation
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Let’s quantify the reconfiguration of 
FC over time beyond visualization…



Steps in Functional 
Connectivity space!



Step length distributions 
show a marked peak 

and (possibly) a 
“power-law” tail

TYPICAL 
STEP LENGTH

SINGLE-SUBJECT 
DISTRIBUTIONS

JUMP LENGTH DISTRIBUTION 
(for different age groups)

Typical step lengths 
anti-correlate with age

Age groups!
(τ = 30 s)



SLOWER…



Conclusion 1 
!

FCD slows down  
with aging



SINGLE-SUBJECT 
DISTRIBUTIONS

FC observations 
preserved, but 

destroyed sequential 
correlations!
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Detrended Fluctuation 
analysis



Detrended Fluctuation 
analysis

“Black death” 
in middle age

Contemporary 
epidemics

“Classic” gaussian 
random walk 

Levy-type walk 
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within Sector Santa Rosa, Area de Conservacion, Guanacaste (ACG), of northwest Costa
Rica27. In 1976, all stems !3 cm dbh were mapped within a continuous 680 m " 240 m
(16.32 Ha) area of forest20 by S. P. Hubbell. Using an identical mapping protocol, a second
remap of the San Emilio forest was completed between 1995 and 1996. In total, 46,833
individuals have been surveyed, 26,960 in 1976 and 19,873 in 1996. Together, the two
surveys document 20 yr of growth and population change for about 150 species. The plot
is composed of secondary growth forest and is heterogeneous with respect to age,
topography and degree of deciduousness.

Calculation of individual tree growth
In 1976, most trees greater than 10 cm dbh were tagged with aluminum tree markers and
given a unique identification number. Because few smaller individuals were given
aluminum tags in 1976, tree growth was usually followed only for those trees greater than
10 cm dbh. Growth was calculated by monitoring changes in dbh for each individual. To
ensure an accurate estimate of growth, a species was included only if a minimum
representation of seven individuals had initial stem diameters !10 cm, and the diameter
range of all individuals !20 cm. As the minimum diameter cut off for individuals was
10 cm, this imposed a minimum size range of 30 cm. Only individuals experiencing
positive growth in the 20-year period were used for the calculation of allometric equations.
In some cases, individuals experienced no change or even a decrease in diameter over time.
This was usually due to partial death, loss of the main trunk or measuring errors. The 45
species meeting the above criteria are listed in Table 1. Production equations for each
species were generated by plotting D2/3(0) versus D2/3(20) on linear axes. Because dbh was
measured identically in 1976 and 1996, measurement error is likely to be equally
distributed across the x and y axes. For these reasons, allometric slopes were determined
using Model II RMA regression1,28,29. Equations and statistics for each species are also
reported in Table 1.

Species-specific wood density
The specific wood density, r, is a simple measure of the total dry mass per unit volume of
wood (g cm−3). The specific density of wood is closely related to mechanical properties of
strength, such as elastic moduli, which describe resistance to static and impact bending,
compression and tension28. For 29 of the 45 species reported in this study, values of specific
wood density, r, in g cm−3, were taken from the literature24,26,30. If more than one study
reported a different value for a species, then the average value was used (Table 1).
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We address the general question of what is the best statistical
strategy to adapt in order to search efficiently for randomly
located objects (‘target sites’). It is often assumed in foraging
theory that the flight lengths of a forager have a characteristic
scale: from this assumption gaussian, Rayleigh and other classical
distributions with well-defined variances have arisen. However,
such theories cannot explain the long-tailed power-law
distributions1,2 of flight lengths or flight times3–6 that are observed
experimentally. Here we study how the search efficiency depends
on the probability distribution of flight lengths taken by a forager
that can detect target sites only in its limited vicinity. We show
that, when the target sites are sparse and can be visited any
number of times, an inverse square power-law distribution of
flight lengths, corresponding to Lévy flight motion, is an optimal
strategy. We test the theory by analysing experimental foraging
data on selected insect, mammal and bird species, and find that
they are consistent with the predicted inverse square power-law
distributions.

Lévy flights are characterized by a distribution function

PðljÞ!l # m
j ð1Þ

with 1 $ m % 3, where lj is the flight length. The gaussian is the
stable distribution for the special case m ! 3 owing to the central-
limit theorem, while values m % 1 do not correspond to probability
distributions that can be normalized2. This generalization, equation
(1), introduces a natural parameter m such that we essentially have a



DFA of FCD and aging
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Conclusion 1b 
!

FCD become “less 
brownian” and “more 

Levy” with aging



Let’s now introduce  
an alternative description of FCD…
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Persistent homology

PERSISTENT TOPOLOGY OF DATA 7

Theorem 2.3 ([22]). For a finite persistence module C with field F coefficients,

(2.3) H∗(C; F ) ∼=
⊕

i

xti · F [x] ⊕

⎛

⎝

⊕

j

xrj · (F [x]/(xsj · F [x]))

⎞

⎠ .

This classification theorem has a natural interpretation. The free portions of
Equation (2.3) are in bijective correspondence with those homology generators
which come into existence at parameter ti and which persist for all future parame-
ter values. The torsional elements correspond to those homology generators which
appear at parameter rj and disappear at parameter rj + sj . At the chain level,
the Structure Theorem provides a birth-death pairing of generators of C (excepting
those that persist to infinity).

2.3. Barcodes. The parameter intervals arising from the basis for H∗(C; F ) in
Equation (2.3) inspire a visual snapshot of Hk(C; F ) in the form of a barcode. A
barcode is a graphical representation of Hk(C; F ) as a collection of horizontal line
segments in a plane whose horizontal axis corresponds to the parameter and whose
vertical axis represents an (arbitrary) ordering of homology generators. Figure 4
gives an example of barcode representations of the homology of the sampling of
points in an annulus from Figure 3 (illustrated in the case of a large number of
parameter values ϵi).

H0

H1

H2

ϵ

ϵ

ϵ

Figure 4. [bottom] An example of the barcodes for H∗(R) in the
example of Figure 3. [top] The rank of Hk(Rϵi

) equals the number
of intervals in the barcode for Hk(R) intersecting the (dashed) line
ϵ = ϵi.

Conn. 
comps.

Cycles

3D holes

Ghrist, R. (2008). Barcodes: The persistent topology of data.  
Bulletin-American Mathematical Society, 45(1), 61.

Persistent homology in two slides.. and a donut!
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Cycles and “cavities”

Figure 4: Tracking clique patterns through a network filtration reveals cycles. (a) Example
filtration of a network on 15 nodes shown in the brain across edge density (⇢). Blue line on the axis indicates
the density of the green cycle birth (⇢

birth

). As edges are added, 3-cliques (cyan) form and shrink the green
cycle to four nodes. Finally, the orange line marks the time of cycle death (⇢

death

) when the cycle is now a
boundary of 3-cliques. (b) Persistence diagram for the green cycle from panel (a). (c) Persistence diagrams
for the group-averaged DSI (teal) and minimally wired null (gray) networks in dimensions one (left) and
two (right). Cycles in the group-averaged DSI network with long lifetime or high death-to-birth ratio are
shown in individual colors and will be studied in more detail. (d) Box plots of the death-to-birth ratio ⇡
for cycles of one and two dimensions in the group-averagd DSI and minimally wired null networks. Colored
cycles indicate those in panel (d). (e) Minimal representatives of each persistent cycle noted in panels (c),
(d) shown in the brain (top) and as a schematic (bottom).

and the late-developing subcortical-frontal cycle (Fig. 4e, red) exists in seven of the eight individuals in at
least one of three scans (Fig. 17b,f). The earlier arriving subcortical-frontal cycle (Fig. 4e, green) exists
at least once in all individuals (Fig. 17d). Finally, we observe that the octahedral connection pattern in
posterior parietal and occipital cortex (Fig. 4e, purple) is present at least once in six of eight individuals
(Fig. 17h). Uncovered cyclic connection patterns of 1-cycles often appear in the opposite hemisphere as
well, though not as regularly (Fig. 18). In summary we find cycles observed in the group-averaged DSI
network appear consistently across individuals, suggesting their potential role as conserved wiring motifs in
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Persistence homology 
scaffold
choose a representative for each class, we use the representa-
tive that is returned by the javaplex implementation [46] of the
persistent homology algorithm [47]. For the sake of simplicity
in the following, we use the same symbol gk

i to refer to a
generator and its representative cycle.

We exploit this to define two new objects, the persistence and
the frequency homological scaffolds Hp

G and H
f
G of a graph G. The

persistence homological scaffold is the network composed of all
the cycle paths corresponding to generators weighted by their
persistence. If an edge e belongs to multiple cycles g0,g1, . . . ,gs,
its weight is defined as the sum of the generators’ persistence:

vp
e ¼

X

gi je[gi

pgi : (4:1)

Similarly, we define the frequency homological scaffold H
f
G as

the network composed of all the cycle paths corresponding
to generators, where this time, an edge e is weighted by the
number of different cycles it belongs to

vf
e ¼

X

gi

1e[gi , (4:2)

where 1e[gi is the indicator function for the set of edges com-
posing gi. By definition, the two scaffolds have the same edge
set, although differently weighted.

The construction of these two scaffolds therefore high-
lights the role of links which are part of many and/or long
persistence cycles, isolating the different roles of edges
within the functional connectivity network. The persistence
scaffolds encodes the overall persistence of a link through
the filtration process: the weight in the persistence scaffold
of a link belonging to a certain set of generators is equal to
the sum of the persistence of those cycles. The frequency scaf-
fold instead highlights the number of cycles to which a link
belongs, thus giving another measure of the importance of
that edge during the filtration. The combined information
given by the two scaffolds then enables us to decipher the
nature of the role different links have regarding the homolo-
gical properties of the system. A large total persistence for a
link in the persistence scaffold implies that the local structure
around that link is very weak when compared with the
weight of the link, highlighting the link as a locally strong
bridge. We remark that the definition of scaffolds we gave
depends on the choice of a specific basis of the homology
group, and the choice of a consistent basis is an open problem
in itself, therefore the scaffolds are not topological invariants.
Moreover, it is possible for an edge to be added to a cycle
shortly after the cycle’s birth in such a way that it creates a
triangle with the two edges composing the cycle. In this
way, the new edge would be part of the shortest cycle, but
the scaffold persistence value would be misattributed to the
two other edges. This can be checked, for example, by moni-
toring the clustering coefficient of the cycle’s subgraph as
edges are added to it. We checked for this effect and found
that in over 80% of the cases the edges do not create triangles
that would imply the error, but instead new cycles are cre-
ated, whose contribution to the scaffold is then accounted
for by the new cycle. Finally, we note also that, when a
new triangle inside the cycle is created, the two choices of
generator differ for a path through a third strongly connected
node, owing to the properties of boundary operators. Despite
this ambiguity, we show in the following that they can be
useful to gain an understanding of what the topological

differences detected by the persistent homology actually
mean in terms of the system under study.

5. Results from fMRI networks
We start from the processed fMRI time series (see Methods for
details). The linear correlations between regional time series
were calculated after covarying out the variance owing to all
other regions and the residual motion variance represented
by the 24 rigid motion parameters obtained from the pre-
processing, yielding a partial-correlation matrix xa for each
subject. The matrices xa were then analysed with the algorithm
described in the previous sections. We calculated the generators
g1

i of the first homological group H1 along the filtration. As
mentioned before, each of these generators identifies a lack of
mesoscopic connectivity in the form of a one-dimensional
cycle and can be represented in a persistence diagram. We aggre-
gate together the persistence diagrams of subjects belonging to
each group and compute an associated persistence probability
density (figure 3). These probability density functions constitute
the statistical signature of the groups’ H1 features.

We find that, although the number of cycles in the groups
are comparable, the two probability densities strongly differ
(Kolmogorov–Smirnov statistics: 0.22, p-value less than 10210).

The placebo group displays generators appearing and per-
sisting over a limited interval of the filtration. On the contrary,
most of the generators for the psilocybin group are situated in
a well-defined peak at small birth indices, indicating a shorter
average cycle persistence. However, the psilocybin distribution
is also endowed with a longer tail implying the existence of
a few cycles that are longer-lived compared with the placebo
condition and that influences the weight distribution of the psi-
locybin persistence scaffold. The difference in behaviour of the
two groups is made explicit when looking at the probability dis-
tribution functions for the persistence and the birth of
generators (figure 4), which are both found to be significantly
different (Kolmogorov–Smirnov statistics: 0.13, p-value ,

10230 for persistence and Kolmogorov–Smirnov statistics:
0.14, p-value , 10235 for births). In order to better interpret
and understand the differences between the two groups,
we use the two secondary networks described in §4, Hf

Pla and
H

p
Pla for the placebo group andH

f
Psi andH

p
Psi for the psilocybin

group. The weight of the edges in these secondary networks is
proportional to the total number of cycles an edge is part of, and
the total persistence of those cycles, respectively. They comp-
lement the information given by the persistence density
distribution, where the focus is on the entire cycle’s behaviour,
with information on single links. In fact, individual edges
belonging to many and long persistence cycles represent func-
tionally stable ‘hub’ links. As with the persistence density
distribution, the scaffolds are obtained at a group level by
aggregating the information about all subjects in each group.
These networks are slightly sparser than the original complete
xa networks

r(H f ,p
pla ) ¼

2m(Hp
pla)

n(n" 1)
¼ 0:92 (5:1)

and

r(H f ,p
Psi ) ¼

2m(Hp
Psi)

n(n" 1)
¼ 0:91 (5:2)

and have comparable densities. A first difference between the
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Networks, as efficient representations of complex systems, have appealed to
scientists for a long time and now permeate many areas of science, including
neuroimaging (Bullmore and Sporns 2009 Nat. Rev. Neurosci. 10, 186–198.
(doi:10.1038/nrn2618)). Traditionally, the structure of complex networks has
been studied through their statistical properties and metrics concerned with
node and link properties, e.g. degree-distribution, node centrality and modular-
ity. Here, we study the characteristics of functional brain networks at the
mesoscopic level from a novel perspective that highlights the role of inhomo-
geneities in the fabric of functional connections. This can be done by focusing
on the features of a set of topological objects—homological cycles—associated
with the weighted functional network. We leverage the detected topological
information to define the homological scaffolds, a new set of objects designed to
represent compactly the homological features of the correlation network and
simultaneously make their homological properties amenable to networks theor-
etical methods. As a proof of principle, we apply these tools to compare resting-
state functional brain activity in 15 healthy volunteers after intravenous infusion
of placebo and psilocybin—the main psychoactive component of magic mush-
rooms. The results show that the homological structure of the brain’s functional
patterns undergoes a dramatic change post-psilocybin, characterized by the
appearance of many transient structures of low stability and of a small
number of persistent ones that are not observed in the case of placebo.

1. Motivation
The understanding of global brain organization and its large-scale integration
remains a challenge for modern neurosciences. Network theory is an elegant frame-
work to approach these questions, thanks to its simplicity and versatility [1]. Indeed,
in recent years, networks have become a prominent tool to analyse and understand
neuroimaging data coming from very diverse sources, such as functional magnetic
resonance imaging (fMRI), electroencephalography and magnetoencephalography
[2,3], also showing potential for clinical applications [4,5].

A natural way of approaching these datasets is to devise a measure of dynami-
cal similarity between the microscopic constituents and interpret it as the strength
of the link between those elements. In the case of brain functional activity, this often
implies the use of similarity measures such as (partial) correlations or coherence
[6–8], which generally yield fully connected, weighted and possibly signed adja-
cency matrices. Despite the fact that most network metrics can be extended to
the weighted case [9–13], the combined effect of complete connectedness and
edge weights makes the interpretation of functional networks significantly
harder and motivates the widespread use of ad hoc thresholding methods
[7,14–18]. However, neglecting weak links incurs the dangers of a trade-off

& 2014 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
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choose a representative for each class, we use the representa-
tive that is returned by the javaplex implementation [46] of the
persistent homology algorithm [47]. For the sake of simplicity
in the following, we use the same symbol gk

i to refer to a
generator and its representative cycle.

We exploit this to define two new objects, the persistence and
the frequency homological scaffolds Hp

G and H
f
G of a graph G. The

persistence homological scaffold is the network composed of all
the cycle paths corresponding to generators weighted by their
persistence. If an edge e belongs to multiple cycles g0,g1, . . . ,gs,
its weight is defined as the sum of the generators’ persistence:

vp
e ¼

X

gi je[gi

pgi : (4:1)

Similarly, we define the frequency homological scaffold H
f
G as

the network composed of all the cycle paths corresponding
to generators, where this time, an edge e is weighted by the
number of different cycles it belongs to

vf
e ¼

X

gi

1e[gi , (4:2)

where 1e[gi is the indicator function for the set of edges com-
posing gi. By definition, the two scaffolds have the same edge
set, although differently weighted.

The construction of these two scaffolds therefore high-
lights the role of links which are part of many and/or long
persistence cycles, isolating the different roles of edges
within the functional connectivity network. The persistence
scaffolds encodes the overall persistence of a link through
the filtration process: the weight in the persistence scaffold
of a link belonging to a certain set of generators is equal to
the sum of the persistence of those cycles. The frequency scaf-
fold instead highlights the number of cycles to which a link
belongs, thus giving another measure of the importance of
that edge during the filtration. The combined information
given by the two scaffolds then enables us to decipher the
nature of the role different links have regarding the homolo-
gical properties of the system. A large total persistence for a
link in the persistence scaffold implies that the local structure
around that link is very weak when compared with the
weight of the link, highlighting the link as a locally strong
bridge. We remark that the definition of scaffolds we gave
depends on the choice of a specific basis of the homology
group, and the choice of a consistent basis is an open problem
in itself, therefore the scaffolds are not topological invariants.
Moreover, it is possible for an edge to be added to a cycle
shortly after the cycle’s birth in such a way that it creates a
triangle with the two edges composing the cycle. In this
way, the new edge would be part of the shortest cycle, but
the scaffold persistence value would be misattributed to the
two other edges. This can be checked, for example, by moni-
toring the clustering coefficient of the cycle’s subgraph as
edges are added to it. We checked for this effect and found
that in over 80% of the cases the edges do not create triangles
that would imply the error, but instead new cycles are cre-
ated, whose contribution to the scaffold is then accounted
for by the new cycle. Finally, we note also that, when a
new triangle inside the cycle is created, the two choices of
generator differ for a path through a third strongly connected
node, owing to the properties of boundary operators. Despite
this ambiguity, we show in the following that they can be
useful to gain an understanding of what the topological

differences detected by the persistent homology actually
mean in terms of the system under study.

5. Results from fMRI networks
We start from the processed fMRI time series (see Methods for
details). The linear correlations between regional time series
were calculated after covarying out the variance owing to all
other regions and the residual motion variance represented
by the 24 rigid motion parameters obtained from the pre-
processing, yielding a partial-correlation matrix xa for each
subject. The matrices xa were then analysed with the algorithm
described in the previous sections. We calculated the generators
g1

i of the first homological group H1 along the filtration. As
mentioned before, each of these generators identifies a lack of
mesoscopic connectivity in the form of a one-dimensional
cycle and can be represented in a persistence diagram. We aggre-
gate together the persistence diagrams of subjects belonging to
each group and compute an associated persistence probability
density (figure 3). These probability density functions constitute
the statistical signature of the groups’ H1 features.

We find that, although the number of cycles in the groups
are comparable, the two probability densities strongly differ
(Kolmogorov–Smirnov statistics: 0.22, p-value less than 10210).

The placebo group displays generators appearing and per-
sisting over a limited interval of the filtration. On the contrary,
most of the generators for the psilocybin group are situated in
a well-defined peak at small birth indices, indicating a shorter
average cycle persistence. However, the psilocybin distribution
is also endowed with a longer tail implying the existence of
a few cycles that are longer-lived compared with the placebo
condition and that influences the weight distribution of the psi-
locybin persistence scaffold. The difference in behaviour of the
two groups is made explicit when looking at the probability dis-
tribution functions for the persistence and the birth of
generators (figure 4), which are both found to be significantly
different (Kolmogorov–Smirnov statistics: 0.13, p-value ,

10230 for persistence and Kolmogorov–Smirnov statistics:
0.14, p-value , 10235 for births). In order to better interpret
and understand the differences between the two groups,
we use the two secondary networks described in §4, Hf

Pla and
H

p
Pla for the placebo group andH

f
Psi andH

p
Psi for the psilocybin

group. The weight of the edges in these secondary networks is
proportional to the total number of cycles an edge is part of, and
the total persistence of those cycles, respectively. They comp-
lement the information given by the persistence density
distribution, where the focus is on the entire cycle’s behaviour,
with information on single links. In fact, individual edges
belonging to many and long persistence cycles represent func-
tionally stable ‘hub’ links. As with the persistence density
distribution, the scaffolds are obtained at a group level by
aggregating the information about all subjects in each group.
These networks are slightly sparser than the original complete
xa networks

r(H f ,p
pla ) ¼

2m(Hp
pla)

n(n" 1)
¼ 0:92 (5:1)

and

r(H f ,p
Psi ) ¼

2m(Hp
Psi)

n(n" 1)
¼ 0:91 (5:2)

and have comparable densities. A first difference between the
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Theorem 2.3 ([22]). For a finite persistence module C with field F coefficients,

(2.3) H∗(C; F ) ∼=
⊕

i

xti · F [x] ⊕

⎛

⎝

⊕

j

xrj · (F [x]/(xsj · F [x]))

⎞

⎠ .

This classification theorem has a natural interpretation. The free portions of
Equation (2.3) are in bijective correspondence with those homology generators
which come into existence at parameter ti and which persist for all future parame-
ter values. The torsional elements correspond to those homology generators which
appear at parameter rj and disappear at parameter rj + sj . At the chain level,
the Structure Theorem provides a birth-death pairing of generators of C (excepting
those that persist to infinity).

2.3. Barcodes. The parameter intervals arising from the basis for H∗(C; F ) in
Equation (2.3) inspire a visual snapshot of Hk(C; F ) in the form of a barcode. A
barcode is a graphical representation of Hk(C; F ) as a collection of horizontal line
segments in a plane whose horizontal axis corresponds to the parameter and whose
vertical axis represents an (arbitrary) ordering of homology generators. Figure 4
gives an example of barcode representations of the homology of the sampling of
points in an annulus from Figure 3 (illustrated in the case of a large number of
parameter values ϵi).

H0

H1

H2

ϵ

ϵ

ϵ

Figure 4. [bottom] An example of the barcodes for H∗(R) in the
example of Figure 3. [top] The rank of Hk(Rϵi

) equals the number
of intervals in the barcode for Hk(R) intersecting the (dashed) line
ϵ = ϵi.

Conn. 
comps.

Cycles

3D holes

Ghrist, R. (2008). Barcodes: The persistent topology of data.  
Bulletin-American Mathematical Society, 45(1), 61.

Persistent homology in two slides.. and a donut!

The more cycles (weighed by persistence) 
pass through an edge, the stronger this edge 

will be in the scaffold
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YOUNG group
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Scaffolds are diluted!

SC scaffold 
looks so nicely simpler 

than SC itself… 
!

It contains just 
280 undirected edges, 

against ~2100 
!
!

Could we make 
here nice circular drawings 
of the whole scaffold as in 

your interface?

YOUNG OLD

Full SC graph

SC scaffold graph



Some results
• Structural connectome: 

- Average persistence maintained 

- cycle length increases (“drying sponge”) 

• Functional connectome: 

- Average persistence and length maintained! 

• In other words: nothing changes too much! ➠ 
Homology is conserved through aging



Some results
• Comparison with null models 

- We generate surrogate SC and FC by fitting trends with age of the strength of each 
link… 

- … but each link is independently decreasing (or increasing)! 

• Data vs model 

- There is matching for structural connectome: “drying sponge effect” can be simply 
explained by the individual disconnection rates 

- There is NOT matching for functional connectome: in the model the Betti number 
is exploding, the persistence is dropping, the length is reducing… nothing works! 

• ➠ Homology conservation in FC is a non trivial result!



Some results
• The actual scaffolds are changing… 

• … in ways compatible with known hypotheses 
(“HAROLD”, “PASA”…) 

• So holes and cycles relocate… but to build an object 
with the same homology! 

• ➠ Compensatory effects? 

• Go to pathological cohorts… in the future





Better ?



On the meaning of 
“better”…



Or better say different! 
!

“Better” we don’t know yet…



• Closer to the dynamic nature of the brain! 

- What is altered may be the dynamics, not the networks! 

• Avoids misinterpreting temporal variability as inter-
subject variability!

Functional Connectivity 
Dynamics (FCD) as biomarker



• Closer to the dynamic nature of the brain! 

- What is altered may be the dynamics, not the networks! 

• Avoids misinterpreting temporal variability as inter-
subject variability!

Big 
Mistake!



Predicting age

SYNERGY!

Crappy linear prediction
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Let’s go 
beyond graphs!



Thanks!


