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O. Lézoray (University of Caen) Graph Signal Processing and Applications 3 / 73



The data deluge - Graphs everywhere

With the data deluge, graphs are everywhere: we are witnessing the rise of
graphs in Big Data.

Graphs occur as a the most natural of representing arbitrary data by modeling the
neighborhood properties between these data.
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The data deluge - Graphs everywhere

With the data deluge, graphs are everywhere: we are witnessing the rise of
graphs in Big Data.

Graphs occur as a the most natural of representing arbitrary data by modeling the
neighborhood properties between these data.

Images (grid graphs), Image partitions (superpixels graphs)
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The data deluge - Graphs everywhere

With the data deluge, graphs are everywhere: we are witnessing the rise of
graphs in Big Data.

Graphs occur as a the most natural of representing arbitrary data by modeling the
neighborhood properties between these data.

Meshes, 3D colored point clouds
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The data deluge - Graphs everywhere

With the data deluge, graphs are everywhere: we are witnessing the rise of
graphs in Big Data.

Graphs occur as a the most natural of representing arbitrary data by modeling the
neighborhood properties between these data.

Social Networks: Facebook, LinkedIn
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The data deluge - Graphs everywhere

With the data deluge, graphs are everywhere: we are witnessing the rise of
graphs in Big Data.

Graphs occur as a the most natural of representing arbitrary data by modeling the
neighborhood properties between these data.

Internet, Biological Networks, Brain Graphs

O. Lézoray (University of Caen) Graph Signal Processing and Applications 4 / 73



3D Point Clouds ?
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Processing signals on specific Graphs

Usual ways to perform operations on graphs

Graph theory, spectral analysis (for data processing: similarity graphs)

Continuous variational methods (for image/signal processing: grid
graphs)

Actual trends
Emergence of a new research field called Graph Signal Processing

Aim: development of algorithms that enable to process data that reside on
the vertices or edges of a graph: graph signals

Problem: how to process general (non Euclidean) graphs with image/signal
processing techniques ?

There are a lot of recent works that aim at extending image and signal
processing tools for the processing of graph signals
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Graph Signal processing

David I. Shuman, Sunil K. Narang, Pascal Frossard, Antonio Ortega, Pierre
Vandergheynst, The Emerging Field of Signal Processing on Graphs:
Extending High-Dimensional Data Analysis to Networks and Other
Irregular Domains. IEEE Signal Process. Mag. 30(3): 83-98 (2013)

Processing graph signals - some examples

Signal processing side: graph wavelets

Diffusion wavelets (Coifman & Maggioni)
Spectral graph wavelets (Hammond, Vandergheynst & Gribonval)
Lifting Transforms on graphs (Narang & Ortega, Jansen & al.)
Multiscale Wavelets on Trees, Graphs (Gavish, Nadler & Coifman)

Image processing side: graph PDEs

Mumford-Shah on graphs (Grady & Alvino)
Ginzburg-Landau graph functionals (Van Gennip & Bertozzi)
Nonlinear elliptic PDEs on graphs (Manfredi, Oberman)
Partial difference Equations (our works)
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Partial difference Equations on graphs

Our line of research
Our goal is to provide methods that adapt on graphs well-known PDE
variational formulations under a functional analysis point of view.

To do this we use Partial difference Equations (PdE) that mimic PDEs in
domains having a graph structure.

Motivations

Problems involving PDEs can be reduced to ones of a very much simpler structure
by replacing the differentials by difference equations on graphs.
R. Courant, K. Friedrichs, H. Lewy, On the partial difference equations of
mathematical physics, Math. Ann. 100 (1928) 32-74.

Instead of discretizing, we want equivalents on graphs of differential operators

The analogue of PDEs on graphs is obtained by simply replacing the continuous
operators by their discrete equivalent

PdEs mimic PDEs in domains having a graph structure.
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Partial difference Equations on graphs

Interest of our proposals:

To dispose of discrete analogues of differential geometry operators (integral,
derivation, gradient, divergence, p-Laplacian, etc.)

To use the framework of PdEs to transcribe PDEs on graphs,

Provides a natural extension of variational methods on graphs,

Can be used with arbitrary graphs,

Provides a unification of local and nonlocal processing on images,

Using weighted graphs provides Adaptive PDEs according to data geometry,

Recovers exactly the discretization of PDEs on Euclidean domains.
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PdEs on graphs - Adaptation examples

p-Laplacian (isotropic, anisotropic) regularization on graphs,

A. Elmoataz, O. Lezoray, S. Bougleux, Nonlocal Discrete Regularization on Weighted Graphs: a framework for Image and Manifold Processing, IEEE

transactions on Image Processing, Vol. 17(7), pp. 1047-1060, 2008.

Mathematical morphology on graphs,

V.-T. Ta, A. Elmoataz and O. Lezoray, Nonlocal PDEs-based Morphology on Weighted Graphs for Image and Data Processing. IEEE transactions on

Image Processing, 20(6) : pp. 1504-1516. 2011.

Front Propagation on graphs,

X. Desquesnes, A. Elmoataz, O. Lezoray, Eikonal equation adaptation on weighted graphs: fast geometric diffusion process for local and non-local image

and data processing, Journal of Mathematical Imaging and Vision, Vol. 46(2), pp. 238-257, 2013.

Hierarchical decomposition of graph signals,

M. Hidane, O. Lezoray, A. Elmoataz, Nonlinear Multilayered Representation of Graph-Signals, Journal of Mathematical Imaging and Vision, Vol. 45(2), pp.

114-137, 2013.

Active contours on graph signals,

O. Lezoray, A. Elmoataz, V.-T. Ta, Nonlocal PdEs on graphs for active contours models with applications to image segmentation and data clustering,

International Conference on Acoustics, Speech, and Signal Processing (IEEE), pp. 873-876, 2012.
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Weighted graphs Basics

A weighted graph G = (V,E,w) consists in a finite
set V = {v1, . . . , vN} of N vertices

and a finite set E = {e1, . . . , eN′} ⊂ V× V of N ′

weighted edges.

eij = (vi , vj) is the edge of E that connects vertices vi
and vj of V. Its weight, denoted by wij = w(vi , vj),
represents the similarity between its vertices.

Similarities are usually computed by using a positive
symmetric function w : V× V→ R+ satisfying
w(vi , vj) = 0 if (vi , vj) /∈ E.

The notation vi ∼ vj is used to denote two adjacent
vertices.
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Space of functions on Graphs

H(V) and H(E) are the Hilbert spaces of graph signals: real-valued functions
defined on the vertices or the edges of a graph G.

A function f : V→ R of H(V) assigns a real value xi = f (vi ) to vi ∈ V.

By analogy with functional analysis on continuous spaces, the integral of a
function f ∈ H(V), over the set of vertices V, is defined as∫

V

f =
∑
V

f

Both spaces H(V) and H(E) are endowed with the usual inner products:

〈f , h〉H(V) =
∑
vi∈V

f (vi )h(vi ), where f , h : V→ R

〈F ,H〉H(E) =
∑
vi∈V

∑
vj∼vi

F (vi , vj)H(vi , vj) where F ,H : E→ R

O. Lézoray (University of Caen) Graph Signal Processing and Applications 14 / 73



Difference operators on weighted graphs

ò Discrete analogue on graphs of classical continuous differential geometry.

The difference operator of f , dw : H(V)→ H(E), is defined on an edge
eij = (vi , vj) ∈ E by:

(dw f )(eij) = (dw f )(vi , vj) = w(vi , vj)
1/2(f (vj)− f (vi )) . (1)

The adjoint of the difference operator, d∗w : H(E)→ H(V), is a linear operator
defined by

〈dw f ,H〉H(E) = 〈f , d∗wH〉H(V)

and expressed by

(d∗wH)(vi ) = −divw (H)(vi ) =
∑
vj∼vi

w(vi , vj)
1/2(H(vj , vi )− H(vi , vj)) . (2)

M. Hein, J.-Y. Audibert, U. Von Luxburg, From Graphs to Manifolds - Weak and Strong Pointwise Consistency of Graph Laplacians. COLT 2005: 470-485

D. Zhou, J. Huang, B. Schlkopf, Learning from labeled and unlabeled data on a directed graph. ICML 2005: 1036-1043
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Weighted gradient operator

The weighted gradient operator of a function f ∈ H(V), at a vertex vi ∈ V, is
the vector operator defined by

(∇wf)(vi) = [(dw f )(vi , vj) : vj ∈ V]T . (3)

ò The gradient considers all vertices vj ∈ V and not only vj ∼ vi .

The Lp norm of this vector represents the local variation of the function f at a
vertex of the graph (It is a semi-norm for p ≥ 1):

‖(∇wf)(vi)‖p =
[∑
vj∼vi

w
p/2
ij

∣∣f (vj)−f (vi )
∣∣p]1/p

. (4)

A. Elmoataz, O. Lezoray, S. Bougleux, Nonlocal Discrete Regularization on Weighted Graphs: a framework for Image and Manifold Processing, IEEE
transactions on Image Processing, Vol. 17(7), pp. 1047-1060, 2008.
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Isotropic p-Laplacian

The weighted p-Laplace isotropic operator of a function f ∈ H(V), noted
∆i

w ,p : H(V)→ H(V), is defined by:

(∆i
w ,pf )(vi ) = 1

2d
∗
w (‖(∇wf)(vi)‖p−2

2 (dw f )(vi , vj)) . (5)

The isotropic p-Laplace operator of f ∈ H(V), at a vertex vi ∈ V, can be
computed by:

(∆i
w ,pf )(vi ) = 1

2

∑
vj∼vi

(γ iw ,pf )(vi , vj)(f (vi )− f (vj)) , (6)

with
(γ iw ,pf )(vi , vj) = wij

(
‖(∇wf)(vj)‖p−2

2 + ‖(∇wf)(vi)‖p−2
2

)
. (7)

The p-Laplace isotropic operator is nonlinear, except for p = 2 (corresponds to
the combinatorial Laplacian). For p = 1, it corresponds to the weighted curvature
of the function f on the graph.

A. Elmoataz, O. Lezoray, S. Bougleux, Nonlocal Discrete Regularization on Weighted Graphs: a framework for

Image and Manifold Processing, IEEE transactions on Image Processing, Vol. 17(7), pp. 1047-1060, 2008.
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Anisotropic p-Laplacian

The weighted p-Laplace anisotropic operator of a function f ∈ H(V), noted
∆a

w ,p : H(V)→ H(V), is defined by:

(∆a
w ,pf )(vi ) = 1

2d
∗
w (|(dw f )(vi , vj)|p−2(dw f )(vi , vj)) . (8)

The anisotropic p-Laplace operator of f ∈ H(V), at a vertex vi ∈ V, can be
computed by:

(∆a
w ,pf )(vi ) =

∑
vj∼vi

(γaw ,pf )(vi , vj)(f (vi )− f (vj)) . (9)

with
(γaw ,pf )(vi , vj) = w

p/2
ij |f (vi )− f (vj)|p−2 . (10)

O. Lezoray, V.T. Ta, A. Elmoataz, Partial differences as tools for filtering data on graphs, Pattern Recognition

Letters, Vol. 31(14), pp. 2201-2213, 2010.
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Constructing graphs

Any discrete domain can be modeled by a weighted graph where each data point
is represented by a vertex vi ∈ V.

Unorganized data

An unorganized set of points V ⊂ Rn

can be seen as a function f 0 : V→ Rm.
The set of edges is defined by in
modeling the neighborhood of each
vertex based on similarity relationships
between feature vectors.
Typical graphs: k-nearest neighbors
graphs and ε-neighborhood graphs.

Organized data

Typical cases of organized data are
signals, gray-scale or color images (in 2D
or 3D).
The set of edges is defined by spatial
relationships.
Such data can be seen as functions
f 0 : V ⊂ Zn → Rm.
Typical graphs: pixel or region graphs.

O. Lézoray (University of Caen) Graph Signal Processing and Applications 20 / 73



Weighting graphs

For an initial function f 0 : V→ Rm, similarity relationship between data can be
incorporated within edges weights according to a measure of similarity
g : E→ [0, 1] with w(eij) = g(eij), ∀eij ∈ E.

Each vertex vi is associated with a feature vector Ff0

τ : V→ Rm×q where q
corresponds to this vector size:

Ff0

τ (vi ) =
(
f 0(vj) : vj ∈ Nτ (vi ) ∪ {vi}

)T
(11)

with Nτ (vi ) =
{
vj ∈ V \ {vi} : µ(vi , vj) ≤ τ

}
.

For an edge eij and a distance measure ρ : Rm×q×Rm×q → R associated to Ff0

τ ,
we can have:

g1(eij) =1 (unweighted case) ,

g2(eij) = exp
(
−ρ
(
Ff0

τ (vi ),F
f0

τ (vj)
)2
/σ2
)

with σ > 0 ,

g3(eij) =1/
(
1 + ρ

(
Ff0

τ (vi ),F
f0

τ (vj)
)) (12)
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Graph topology

Digital Image

8-neighborhood : 3× 3

24-neighborhood : 5× 5

Local: a value is associ-
ated to vertices

Nonlocal: a patch (vector
of values in a given neigh-
borhood) is associated to
vertices.
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With Graphs

With Graphs

Nonlocal behavior is directly expressed by the graph topology.

Patches are used to measure similarity between vertices.

Consequences

Nonlocal processing of images becomes local processing on similarity graphs.

Our difference operators on graphs naturally enable local and nonlocal
configurations (with the weight function and the graph topology)

with specific graph topologies and weights, the discretization of continuous
formulations can be recovered
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p-Laplacian nonlocal regularization on graphs

Let f 0 : V→ R be the noisy version of a clean graph signal g : V→ R defined on
the vertices of a weighted graph G = (V,E,w).
To recover g , seek for a function f : V→ R regular enough on G, and close
enough to f 0, with the following variational problem:

g ≈ min
f :V→R

{
E∗w ,p(f , f 0, λ) = R∗w ,p(f ) + λ

2 ‖f − f 0‖2
2

}
, (13)

where the regularization functional R∗w ,p : H(V)→ R can correspond to an

isotropic R i
w ,p or an anisotropic Ra

w ,p functionnal.

A. Elmoataz, O. Lezoray, S. Bougleux, Nonlocal Discrete Regularization on Weighted Graphs: a framework for
Image and Manifold Processing, IEEE transactions on Image Processing, Vol. 17(7), pp. 1047-1060, 2008.
A. Elmoataz, O. Lezoray, V.-T. Ta, S. Bougleux, Partial difference equations on graphs for local and nonlocal
image processing, In Image Processing and Analysing With Graphs: Theory and Practice, Editors: O. Lezoray
and L. Grady, Publisher: CRC Press / Taylor and Francis, Series: Digital Imaging and Computer Vision, pp.
175-206, 2012.

O. Lézoray (University of Caen) Graph Signal Processing and Applications 25 / 73



Isotropic and anisotropic regularization terms

The isotropic regularization functionnal R i
w ,p is defined by the L2 norm of the

gradient and is the discrete p-Dirichlet form of the function f ∈ H(V):

R i
w ,p(f ) = 1

p

∑
vi∈V

‖(∇wf)(vi)‖p2 = 1
p 〈f ,∆i

w ,pf 〉H(V)

= 1
p

∑
vi∈V

∑
vj∼vi

wij(f (vj)− f (vi ))2


p
2

.

(14)

The anisotropic regularization functionnal Ra
w ,p is defined by the Lp norm of the

gradient:

Ra
w ,p(f ) = 1

p

∑
vi∈V

‖(∇wf)(vi)‖pp = 1
p 〈f ,∆a

w ,pf 〉H(V)

= 1
p

∑
vi∈V

∑
vj∼vi

w
p/2
ij |f (vj)− f (vi )|p .

(15)

When p ≥ 1, the energy E∗w ,p is a convex functional of functions of H(V).
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Isotropic/Anisotropic diffusion processes

To get the solution of the minimizer, we consider the following system of
equations:

∂E∗w ,p(f , f 0, λ)

∂f (vi )
= 0,∀vi ∈ V (16)

which is rewritten as:

∂R∗w ,p(f )

∂f (vi )
+ λ(f (vi )− f 0(vi )) = 0, ∀vi ∈ V. (17)

Moreover, we can prove that

∂R i
w ,p(f )

∂f (vi )
= 2(∆i

w ,pf )(vi ) and
∂Ra

w ,p(f )

∂f (vi )
= (∆a

w ,pf )(vi ) . (18)

The system of equations is then rewritten as which is equivalent to the following
system of equations:λ+

∑
vj∼vi

(γ∗w ,pf )(vi , vj)

 f (vi )−
∑
vj∼vi

(γ∗w ,pf )(vi , vj)f (vj) = λf 0(vi ). (19)
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Isotropic/Anisotropic diffusion processes

We can use the linearized Gauss-Jacobi iterative method to solve the previous
systems. Let n be an iteration step, and let f (n) be the solution at the step n.
Then, the method is given by the following algorithm:

f (0) = f 0

f (n+1)(vi ) =
λf 0(vi ) +

∑
vj∼vi (γ

∗
w ,pf

(n))(vi , vj)f
(n)(vj)

λ+
∑

vj∼vi (γ
∗
w ,pf

(n))(vi , vj)
, ∀vi ∈ V.

(20)

with (γ iw ,pf )(vi , vj) = wij

(
‖(∇wf)(vj)‖p−2

2 + ‖(∇wf)(vi)‖p−2
2

)
, (21)

and (γaw ,pf )(vi , vj) = w
p/2
ij |f (vi )− f (vj)|p−2 . (22)

It describes a family of discrete diffusion processes, which is parameterized by the
structure of the graph (topology and weight function), the parameter p, and the
parameter λ.

λ w Graph p = 1 p = 2 p ∈]0, 1[

0 exp() semi-local Ours Bilateral Our
0 exp() nonlocal Ours NLMeans Our
6= 0 constant local TV Digital L2 Digital Ours
6= 0 any nonlocal Ours Ours Ours
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More efficient minimization

Previous scheme is very slow and introduces a smoothing parameter when p = 1.
Better to use primal-dual algorithms: the Chambolle and Pock that exhibits very
good numerical performance.
To solve the general optimization problem min

x∈H(V)
F (Kx) + G (x), they have

proposed the algorithm:
x0 = x̄0 = f , y0 = 0

yn+1 = proxσF∗(y
n + σKx̄n),

xn+1 = proxτG (xn − τK∗yn+1),

x̄n+1 = xn+1 + θ(xn+1 − xn),

(23)

where F ∗ is the conjugate of F , K∗ is the adjoint operator of K , and prox the
proximal operator.
To apply it to our case, we have to set e.g., for the isotropic case, F = ||.||12,
K = ∇w, K∗ = −divw and G = λ

2 ||.− f ||22.

M. Hidane, O. Lezoray, A. Elmoataz, Nonlinear Multilayered Representation of Graph-Signals, Journal of Mathematical Imaging and Vision, Vol. 45(2), pp.
114-137, 2013.
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Examples: Image denoising

Original image Noisy image (Gaussian noise with σ = 15)
f 0 : V→ R3 PSNR=29.38dB

O. Lézoray (University of Caen) Graph Signal Processing and Applications 30 / 73



Examples: Image denoising

Isotropic G1, Ff0

0 = f 0 Isotropic G7, Ff0

3 Anisotropic G7, Ff0

3

p
=

2

PSNR=28.52db PSNR=31.79dB PSNR=31.79dB

p
=

1

PSNR=31.25dB PSNR=34.74dB PSNR=31.81dB
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Examples: Mesh simplification

Original Mesh Isotropic, p = 2 Isotropic, p = 1, Anisotropic, p = 1
f 0 : V→ R3
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Examples: Colored Mesh simplification

Original Colored Mesh λ = 1 λ = 0.5
f 0 : V→ R3
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Examples: Point cloud denoising

2D Patches on 3D Point clouds
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Examples: Colored Point Cloud denoising

Initial Point cloud Noisy Local Graph Non Local Graph

f 0 : V→ R3 4-NNG 200-NNG, Ff0

9
127039 points

F. Lozes, A. Elmoataz, O. Lezoray, Nonlocal processing of 3D colored point clouds, International Conference on Pattern Recognition (ICPR), pp.
1968-1971, 2012.
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Examples: Image Database denoising

Initial data Noisy data 10-NNG
f 0 : V→ R16×16
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Examples: Image Database denoising

λ = 1 λ = 0.01 λ = 0
Isotropic

p
=

1

PSNR=18.80dB PSNR=13.54dB PSNR=10.52dB
Anisotropic

p
=

1

PSNR=18.96dB PSNR=15.19dB PSNR=14.41dB
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Interpolation of missing data on graphs

Let f 0 : V0 → R be a function with V0 ⊂ V be the subset of vertices from the
whole graph with known values.

The interpolation consists in recovering values of f for the vertices of V \ V0 given
values for vertices of V0 formulated by:

min
f :V→R

R∗w ,p(f ) + λ(vi )‖f (vi )− f 0(vi )‖2
2 . (24)

Since f 0(vi ) is known only for vertices of V0, the Lagrange parameter is defined as
λ : V→ R:

λ(vi ) =

{
λ if vi ∈ V0

0 otherwise.
(25)

This comes to consider ∆∗w ,pf (vi ) = 0 on V \ V0.
Our isotropic and anisotropic diffusion processes can be directly used to perform
the interpolation.
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Examples: Image segmentation

Solve ∆∗w ,pf (vi ) = 0 on V \ V0.

(a) 27 512 pixels (b) Original+Labels (c) t = 50 (11 seconds)

(d) 639 zones (98% of reduc-

tion)

(e) Original+Labels (f) t = 5 (< 1 second)

(g) 639 zones (98% of reduc-

tion)

(h) Original+Labels (i) t = 2 (< 1 second)

Fig. 5. Semi-supervised image segmentation. First row: grid-graph based. Second

row: region adjacency graph based. Third row: fully connected graph based.

(a) original image of size 152 × 181. (d) and (g) reconstructed images from discrete

energy partitions. (b), (e) and (h) initial labels for each case. (c), (f) and (i) origi-

nal image with the obtained regions superimposed: cytoplasm (red), nuclei (green)

and regions boundaries (black); the segmentation is performed with the specified

iteration steps t and the corresponding computation time.

process only needs a minimal number of iterations to reach the algorithm con-

vergence. (ii) A minimal number of labels is needed to obtain correct results

as compared to the case of the grid-graph or of the RAG. In Fig. 5(h), only

one nucleus and one cytoplasm are marked, and there is no separating labels

22
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Examples: Image colorization

Gray level image Color scribbles

Compute Weights from the gray-level image, interpolation is performed in a

chrominance color space from the seeds: fc(vi) =
[
f s1 (vi )
f l (vi )

,
f s2 (vi )
f l (vi )

,
f s3 (vi )
f l (vi )

]T
O. Lezoray, A. Elmoataz, V.T. Ta, Nonlocal graph regularization for image colorization, International

Conference on Pattern Recognition (ICPR), 2008.
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Examples: Image colorization

p = 1, G1, Ff0

0 = f 0 p = 1, G5, Ff0

2
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Examples: 3D Point Cloud colorization

3D coordinates Saliency from Similarity from
height patches saliency patches

Saliency of a vertex is defined as its degree: provides an equivalent of grayscale
values for image colorization.
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Examples: 3D Point Cloud colorization

p = 1, G25, Ff0

9

F. Lozes, A. Elmoataz, O. Lézoray, PDE-based Graph Signal Processing for 3D Color Point Clouds:

Opportunities for Cultural Heritage, IEEE Signal Processing Magazine, Vol. 32, n4, pp. 103-111, 2015.
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1 Introduction

2 Graphs and difference operators

3 Construction of graphs - non locality

4 p-Laplacian nonlocal regularization on graphs

5 Multiscale hierarchical decomposition of graph signals

6 Adaptation of active contours on graphs
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Multiscale hierarchical decomposition of graph signals

MotivationsDécompositions u + v884 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 12, NO. 8, AUGUST 2003

Fig. 2. Basic algorithm proposed in this paper. The original image in the first row, left (a section of Fig. 1) is decomposed into a structure image and a texture
image, [31], second row. Note how the image on the left mainly contains the underlying image structure while the image on the right mainly contains the texture.
These two images are reconstructed via inpainting, [5], and texture synthesis, [10], respectively, third row. The image on the left managed to reconstruct the structure
(see for example the chair vertical leg), while the image on the right managed to reconstruct the basic texture. The resulting two images are added to obtain the
reconstructed result, first row right, where both structure and texture are recovered.

For , as used in this paper, the corresponding Euler-
Lagrange equations are [31]

(5)

(6)

(7)

As can be seen from the examples in [31] and the images in
this paper, the minimization model (4) allows to extract from a
given real textured image the components and , such that
is a sketchy (cartoon) approximation of , and
represents the texture or the noise (note that this is not just a
low/high frequency decomposition). For some theoretical re-
sults and the detailed semi-implicit numerical implementation

Fig. 3. Illustration of the desired image decomposition. The top image is
decomposed in a cartoon type of image (left) plus an oscillations one (right,
texture). Note that both images have high frequencies.

Figure 4.1 – Illustration de l’utilisation de la décomposition structure-texture
pour l’inpaiting simultané des structures et textures dans les images.

dans la figure 4.1 tirée de [BVSO03]. Signalons enfin, que d’autres algorithmes
d’inpaiting ont eu recours à la décomposition structure-texture, notamment
dans [ESQD05].

L’application de la décomposition structure-texture à la détection de
contours a été considérée dans [BLMV10] où les auteurs ont proposé d’e�ectuer
la détection sur la partie u.

En segmentation d’images, les auteurs de [BT06] ont proposés de séparer
les composantes u et v et d’e�ectuer la segmentation sur la partie structure
uniquement. Récemment, les auteurs de [CPGN+12] ont combiné une décompo-
sition structure-texture avec l’algorithme de segmentation basé sur les coupes
normalisées de Shi et Malik [SM00]. Ce dernier est basé sur la décomposition

75
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For images, structure-texture decomposition highly depends on the analysis
scale;

It is more natural to consider several levels of decompositions

We consider the TNV approach that proposes to decompose images into
several layers with an iterative variational approach;

E. Tadmor, S. Nezzar, L. Vese, A multiscale image representation using
hierarchical (BV,L2) decompositions, Multiscale Modeling & Simulation 2 (4)
(2004) 554-579.
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The TNV approach: principles

Let

f be a scalar image;

E an energy of the form E (u; f , λ) = λR(u) + D(u, f ); where R is a
regularity term and D a fidelity term.

λ0 > λ1 > . . . > λn > 0 a sequence of scale parameters;

The application of the following algorithm
v−1 = f ,

ui = argmin
u

E (u; vi−1;λi ), 0 ≤ i ≤ n,

vi = vi−1 − ui , 0 ≤ i ≤ n.

enables to obtain the following multi-scale decomposition

f =
n∑

i=0

ui + vn.
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The TNV approach: remarks and extension

Remarks
The algorithm decomposes the successive residues at finer and finer scales;

The sequence (λi )i≥0 has to be decreasing: the first extracted layers do
represent a coarse representation of the initial signal f ;

In TNV, the authors have chosen a sequence of dyadic scales: λi = λi−1/2;

In TNV, the considered functional is TV-L2;

In TNV, convergence guarantees are provided;

Extension to weighted graphs

We propose to adapt the TNV approach for graph signals with isotropic
p-Laplacian regularization;

For image processing, this enables to integrate a nonlocal behavior into the
decomposition;

The convergence can be studied as well as the parameters;

Innovative applications in detail enhancement for graph signals can be
obtained;
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TNV on graphs

λ0 > λ1 > . . . > λn > 0


v−1 = f,

ui = argmin
u∈H(V)

E i
w ,p(u; vi−1;λi ), 0 ≤ i ≤ n,

vi = vi−1 − ui , 0 ≤ i ≤ n.

f =
n∑

i=0

ui + vn.

Convergence ?

Scale parameters ?

M. Hidane, O. Lezoray, A. Elmoataz, Nonlinear Multilayered Representation of Graph-Signals, Journal of Mathematical Imaging and Vision, Vol. 45(2), pp.
114-137, 2013.
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Characterization of the minimizer of E i
w ,1

First we introduce the analog on graphs of the Meyer G space to represent
oscillating patterns:

Gw = {u ∈ H(V) : ∃f ∈ H(E),u = divw f}

with the following norm, ∀u ∈ Gw :

‖u‖Gw = inf{‖F‖∞,F ∈ H(E), divw (F) = u}

The Moreau identity enables to characterize the solution of E i
w ,1

f = proxλR i
w,1

+ λprox(R i
w,1)∗/λ(f/λ) = û + projBGw (λ)(f)

which gives
û = f − projBGw (λ)(f)

with the projection on BGw (λ), a ball of radius λ for the norm Gw :

BGw (λ) = {divwF,F ∈ H(E), ‖F‖∞ ≤ λ}
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Convergence

From the characterization , we have

f −
n∑

i=0

ui = vn = projBGw (λn)(vn−1)

and

‖f −
n∑

i=0

ui‖Gw ≤ λn

If the sequence (λn) is decreasing, then

lim
n→+∞

λn = 0 =⇒ lim
n→+∞

‖f −
n∑

i=0

ui‖Gw = 0 =⇒ f =
+∞∑
i=0

ui .

M. Hidane, O. Lezoray, A. Elmoataz, Nonlinear Multilayered Representation of Graph-Signals, Journal of Mathematical Imaging and Vision, Vol. 45(2), pp.
114-137, 2013.
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Parameters

If λn is too small, few details are captured and a trivial decomposition is obtained:

f = f + v

One can show that there exist a critical value of λ above which any decomposition
is trivial.
A decomposition is non trivial iff λ ∈]0, ‖f − f‖Gw [
With the parameters following a dyadic progression λi = λi−1/2, we have

1

2
‖f − f‖Gw ≤ λ0 < ‖f − f‖Gw .

We choose to take the midpoint

λ0 =
3‖f − f‖Gw

4
.

The Chambolle-Pock algorithm is used to compute the Gw norm.
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Local Decomposition

Local decomposition with an unweighted 4-grid graph G1, Ff0

0 = f 0 (the classical
TNV approach)
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Nonlocal Decomposition

Nonlocal decomposition with a 10-NNG, Ff0

2 .
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Local versus Nonlocal Decomposition

The layers extracted with the local (top) and nonlocal (approaches).
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Local versus Nonlocal Decomposition

Top: 4-grid, w = 1; Middle: 8-grid, w = exp(); Bottom: 10-NNG, Ff0

5
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Mesh decomposition
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Colored Mesh decomposition
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Manipulating the decomposition

Aim
Attenuate or enhance details in a graph signal by applying coefficients to the
extracted layers.

Original Image BLF WLS Our approach
(weighted 8-grid graph)

O. Lézoray (University of Caen) Graph Signal Processing and Applications 57 / 73



Removing layers

Original Image Removing layers u1 to u3 and u6 to u9

removes acne removes freckles
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Mesh enhancement

Original Mesh Enhanced Mesh

M. Hidane, O. Lezoray, A. Elmoataz, Graph signal decomposition for multi-scale detail manipulation, International Conference on Image Processing

(IEEE), pp. 2041-2045, 2014. Award finalist for the ICIP Best Paper Award.
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Low Quality Colored Mesh enhancement

Original Colored Mesh Enhanced Mesh
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High Quality Colored Mesh enhancement

553053 vertices, 1105611 faces

Original scan Enhanced scan
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3D Selfie enhancement

3D selfie obtained with http://reconstructme.net

Original 3D selfie 3D selfie structure mask Enhanced 3D selfie

O. Lezoray, 3d colored mesh graph signals multi-layer enhancement, ICASSP 2017, submitted.
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Adaptation of active contours on graphs

We consider a recent method proposed by Bresson and Chan to redefine the
active contour model into a model which gives global minimizers

arg min
f (x)∈{0,1}

{∫
Ω

||∇f (x)||1dx + λ

∫
Ω

g(f 0)(x)f (x)dx

}
. (26)

This can be adapted on graphs with PdEs:

f̄ ∈ Arg min
f :V→{0,1}

{∑
vi∈V

‖(∇wf)(vi)‖pp + λ
∑
vi∈V

g(f 0)(vi )f (vi )

}
, (27)

where f is a labeling function and f 0 the signal on the graph.

X. Bresson and T.F. Chan, Non-local unsupervised variational image segmentation models, UCLA CAM

Report 08-67, 2008.
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Convex Relaxation

Previous problem (27) is non-convex and can be reformulated through a convex
relaxation.

f̂ = arg min
f :V→[0,1]

{∑
vi∈V

‖(∇wf)(vi)‖pp + λ
∑
vi∈V

g(f 0)(vi )f (vi )

}
. (28)

Global solution f̄ : V→ {0, 1} is obtained by thresholding f̂ : V→ [0, 1]

One has f̄ (vi ) = χS(vi ), where S = {vi ∈ V : f̂ (vi ) > t} with t ∈ [0, 1]

For a given vertex, if vi ∈ A, then χA(vi ) = 1 and χA(vi ) = 0 otherwise

ò First part of the energy (28) has to verify the co-area formula.

T.Chan, S.Esedoglu, and M.Nikolova,Algorithms for Finding Global Minimizers of Image Segmentation and
Denoising Models, SIAM J. Appl. Math., vol. 66, no. 5, pp. 1632-1648, 2006.
O. Lézoray, A. Elmoataz, V.T. Ta, Nonlocal PdEs on graphs for active contours models with applications to
image segmentation and data clustering, International Conference on Acoustics, Speech, and Signal Processing
(IEEE), 2012.
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Perimeters & Co-area formula on graphs

Co-area

For t ∈ R, let At = {u ∈ V : f (u) > t}.
The co-area formula is verified for p = 1 since

Perw ,1(A) =

∫ ∞
−∞

Perw ,1(At)dt

The proof is direct since |a− b| =
∫ +∞
−∞ |χ{a>t} − χ{b>t}|dt.

We consider only the case of p = 1 since Ra
w ,1 does verify the co-area formulae.

Perimeters
Given a sub-graph A⊂V, we can show that

Ra
w ,p(χA) =

∑
vi∈V

‖(∇wχA)(vi)‖pp = vol(∂A) = Perw ,p(A) = cut(A,Ac)

O. Lézoray, A. Elmoataz, V.T. Ta, Nonlocal PdEs on graphs for active contours models with applications to image segmentation and data clustering,
International Conference on Acoustics, Speech, and Signal Processing (IEEE), 2012.
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Chan-Vese on graphs

We can directly express the discrete analogue on graphs of the CV model (a kind
of regularized k-means), with

g(f 0(vi )) = (c̄1 − f 0(vi ))2 − (c̄2 − f 0(vi ))2

where c̄1 and c̄2 the average values inside and outside the object, then ∀vi ∈ V :

Minimization
We use the Chambolle Pock algorithm with

F = ||.||11
K = ∇w

G = λ〈., g(f 0)〉
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CV on images

Segmentation result on local (4-adjacency graph with Gaussian weights computed
on pixel values) and nonlocal (4-adjacency graph coupled with a 4-Nearest

Neighbor graph selected in a 9× 9 window and Gaussian weights computed on
3× 3 patches) graphs.
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CV on Region Adjacency Graphs

An initial contour, the considered graph (a super-pixel graph obtained from an
over-segmentation with Gaussian weights on region mean values), and the
obtained partition of the super-pixel graph.
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CV on Point clouds (Local)
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CV on Point clouds (Nonlocal)
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CV on Image Database Graphs

An image database with an initial random partition, the considered graph (a 10
nearest neighbors graph weighted with Gaussian weights on 16× 16 vectors
associated to the image of each vertex).
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The End. Thanks.

Publications available at :
http://lezoray.users.greyc.fr

O. Lézoray and Leo Grady
Image Processing and Analysis with Graphs: Theory
and Practice, CRC Press, July 2012.
https://lezoray.users.greyc.fr/IPAG/
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