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;-T The data deluge - Graphs everywhere

With the data deluge, graphs are everywhere: we are witnessing the rise of
graphs in Big Data.
Graphs occur as a the most natural of representing arbitrary data by modeling the
neighborhood properties between these data.
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;;T‘The data deluge - Graphs everywhere

With the data deluge, graphs are everywhere: we are witnessing the rise of
graphs in Big Data.
Graphs occur as a the most natural of representing arbitrary data by modeling the
neighborhood properties between these data.
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"-"‘The data deluge - Graphs everywhere

b

With the data deluge, graphs are everywhere: we are witnessing the rise of
graphs in Big Data.
Graphs occur as a the most natural of representing arbitrary data by modeling the
neighborhood properties between these data.

Meshes, 3D colored point clouds
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"-‘-‘The data deluge - Graphs everywhere

b

With the data deluge, graphs are everywhere: we are witnessing the rise of
graphs in Big Data.
Graphs occur as a the most natural of representing arbitrary data by modeling the
neighborhood properties between these data.

Social Networks: Facebook, LinkedIn
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";"‘The data deluge - Graphs everywhere

b

With the data deluge, graphs are everywhere: we are witnessing the rise of
graphs in Big Data.
Graphs occur as a the most natural of representing arbitrary data by modeling the
neighborhood properties between these data.

Internet, Biological Networks, Brain Graphs

O. Lézoray (University of Caen) Graph Signal Processing and Applications



O. Lézoray (University of Caen) Graph Signal Processing and Applications 5/73



O. Lézoray (University of Caen) Graph Signal Processing and Applications 6 /73



:F‘Processingignals on specific Graphs

Usual ways to perform operations on graphs

o Graph theory, spectral analysis (for data processing: similarity graphs)

e Continuous variational methods (for image/signal processing: grid
graphs)

Actual trends

@ Emergence of a new research field called Graph Signal Processing

@ Aim: development of algorithms that enable to process data that reside on
the vertices or edges of a graph: graph signals

@ Problem: how to process general (non Euclidean) graphs with image/signal
processing techniques ?

@ There are a lot of recent works that aim at extending image and signal
processing tools for the processing of graph signals
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:F‘Graph Signal processing

David I. Shuman, Sunil K. Narang, Pascal Frossard, Antonio Ortega, Pierre
Vandergheynst, The Emerging Field of Signal Processing on Graphs:
Extending High-Dimensional Data Analysis to Networks and Other
Irregular Domains. /EEE Signal Process. Mag. 30(3): 83-98 (2013)

Processing graph signals - some examples

@ Signal processing side: graph wavelets
o Diffusion wavelets (Coifman & Maggioni)
o Spectral graph wavelets (Hammond, Vandergheynst & Gribonval)
o Lifting Transforms on graphs (Narang & Ortega, Jansen & al.)
o Multiscale Wavelets on Trees, Graphs (Gavish, Nadler & Coifman)
@ Image processing side: graph PDEs
Mumford-Shah on graphs (Grady & Alvino)
Ginzburg-Landau graph functionals (Van Gennip & Bertozzi)

Nonlinear elliptic PDEs on graphs (Manfredi, Oberman)

(]
o
(]
o Partial difference Equations (our works)
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;F‘Partial difference Equations on graphs

Our line of research

@ Our goal is to provide methods that adapt on graphs well-known PDE
variational formulations under a functional analysis point of view.

@ To do this we use Partial difference Equations (PdE) that mimic PDEs in
domains having a graph structure.

Motivations

@ Problems involving PDEs can be reduced to ones of a very much simpler structure
by replacing the differentials by difference equations on graphs.
R. Courant, K. Friedrichs, H. Lewy, On the partial difference equations of
mathematical physics, Math. Ann. 100 (1928) 32-74.

@ Instead of discretizing, we want equivalents on graphs of differential operators

@ The analogue of PDEs on graphs is obtained by simply replacing the continuous
operators by their discrete equivalent

@ PdEs mimic PDEs in domains having a graph structure.
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;F‘Partial difference Equations on graphs

Interest of our proposals:
o To dispose of discrete analogues of differential geometry operators (integral,
derivation, gradient, divergence, p-Laplacian, etc.)
To use the framework of PdEs to transcribe PDEs on graphs,
Provides a natural extension of variational methods on graphs,
Can be used with arbitrary graphs,
Provides a unification of local and nonlocal processing on images,
Using weighted graphs provides Adaptive PDEs according to data geometry,

Recovers exactly the discretization of PDEs on Euclidean domains.
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r‘ﬂiEs on graphs - Adaptation examples

@ p-Laplacian (isotropic, anisotropic) regularization on graphs,

A. Elmoataz, O. Lezoray, S. Bougleux, Nonlocal Discrete Regularization on Weighted Graphs: a framework for Image and Manifold Processing, |EEE
transactions on Image Processing, Vol. 17(7), pp. 1047-1060, 2008. J

@ Mathematical morphology on graphs,

V.-T. Ta, A. Elmoataz and O. Lezoray, Nonlocal PDEs-based Morphology on Weighted Graphs for Image and Data Processing. |IEEE transactions on
Image Processing, 20(6) : pp. 1504-1516. 2011. J

@ Front Propagation on graphs,

X. Desquesnes, A. Elmoataz, O. Lezoray, Eikonal equation adaptation on weighted graphs: fast geometric diffusion process for local and non-local image
and data processing, Journal of Mathematical Imaging and Vision, Vol. 46(2), pp. 238-257, 2013. J

@ Hierarchical decomposition of graph signals,

M. Hidane, O. Lezoray, A. Elmoataz, Nonlii Multil. d Repre ion of Graph-Signals, Journal of Mathematical Imaging and Vision, Vol. 45(2), pp.
114-137, 2013. J

@ Active contours on graph signals,

O. Lezoray, A. Elmoataz, V.-T. Ta, Nonlocal PdEs on graphs for active contours models with ications to image ion and data clustering,

International Conference on Acoustics, Speech, and Signal Processing (IEEE), pp. 873-876, 2012.
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r‘PdEs on graphs - Adaptation examples

@ p-Laplacian (isotropic, anisotropic) regularization on graphs,

A. Elmoataz, O. Lezoray, S. Bougleux, Nonlocal Discrete Regularization on Weighted Graphs: a framework for Image and Manifold Processing, |EEE
transactions on Image Processing, Vol. 17(7), pp. 1047-1060, 2008. J

@ Mathematical morphology on graphs,

V.-T. Ta, A. Elmoataz and O. Lezoray, Nonlocal PDEs-based Morphology on Weighted Graphs for Image and Data Processing. |IEEE transactions on
Image Processing, 20(6) : pp. 1504-1516. 2011. J

@ Front Propagation on graphs,

X. Desquesnes, A. Elmoataz, O. Lezoray, Eikonal i ion on weighted graphs: fast geometric diffusion process for local and non-local image J

and data processing, Journal of Mathematical Imaging and Vision, Vol. 46(2), pp. 238-257, 2013.

@ Hierarchical decomposition of graph signals,

M. Hidane, O. Lezoray, A. Elmoataz, Nonlii Multil. d Repre ion of Graph-Signals, Journal of Mathematical Imaging and Vision, Vol. 45(2), pp.
114-137, 2013. J

@ Active contours on graph signals,

O. Lezoray, A. Elmoataz, V.-T. Ta, Nonlocal PdEs on graphs for active contours models with ications to image ion and data clustering,

International Conference on Acoustics, Speech, and Signal Processing (IEEE), pp. 873-876, 2012.
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© Graphs and difference operators
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"-‘-‘Weighted graphs Basics

b

@ A weighted graph § = (V, €, w) consists in a finite
set V= {wvi,...,vn} of N vertices
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"-‘-‘Weighted graphs Basics

b

@ A weighted graph § = (V, €, w) consists in a finite
set V= {wvi,...,vn} of N vertices

@ and a finite set € ={e1,...,en} CV XV of N
weighted edges.
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:-‘-&Veighted graphs Basics

@ A weighted graph § = (V, €, w) consists in a finite
set V= {wvi,...,vn} of N vertices

@ and a finite set € ={e1,...,en} CV XV of N
weighted edges.

@ ¢;j = (v, ;) is the edge of & that connects vertices v;
and v; of V. Its weight, denoted by w; = w(v;, v;),
represents the similarity between its vertices.

@ Similarities are usually computed by using a positive
symmetric function w: V x V — R" satisfying
W(Vl'v VJ) =0if (Viv VJ) ¢ €.
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;-r‘Weighted graphs Basics

A weighted graph § = (V, &, w) consists in a finite
set V= {wvi,...,vn} of N vertices

and a finite set € = {e1,...,en} CV XV of N
weighted edges.

ej = (vi, vj) is the edge of & that connects vertices v;
and v; of V. Its weight, denoted by w; = w(v;, v;),
represents the similarity between its vertices.

Similarities are usually computed by using a positive
symmetric function w: V x V — R" satisfying
W(Vl'v VJ) =0if (Viv VJ) ¢ €.

The notation v; ~ v; is used to denote two adjacent
vertices.
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;F‘Space of functions on Graphs

e H(V) and H(E) are the Hilbert spaces of graph signals: real-valued functions
defined on the vertices or the edges of a graph G.

@ A function f : V — R of #H(V) assigns a real value x; = f(v;) to v; € V.

@ By analogy with functional analysis on continuous spaces, the integral of a
function f € H(V), over the set of vertices V, is defined as

f=»f
=%
@ Both spaces H(V) and H(€) are endowed with the usual inner products:

va, v;), where f h:V — R
v;EV

(F, H)aey = Z Z (vi, vj)H(vi, vj) where F,H: &€ - R

ViEV vjrvvi

O. Lézoray (University of Caen) Graph Signal Processing and Applications



;-r‘DifFerence operators on weighted graphs

2 Discrete analogue on graphs of classical continuous differential geometry.

The difference operator of f, d,, : H(V) — H(E), is defined on an edge
ej = (vi,v;) € € by:
(duf)(e5) = (duf)(vi, vy) = w(vi, ) 2(F(v}) = F(w1)) - (1)
The adjoint of the difference operator, d?, : H(E) — H(V), is a linear operator
defined by
(dwf, H)uey = (f, dyH) )
and expressed by

(diH)(vi) = —divi (H)(vi) = D w(vis ) /(H(y, vi) = H(vi, v)) - (2)

virvi

M. Hein, J.-Y. Audibert, U. Von Luxburg, From Graphs to Manifolds - Weak and Strong Pointwise Consistency of Graph Laplacians. COLT 2005: 470-485

D. Zhou, J. Huang, B. Schlkopf, Learning from labeled and unlabeled data on a directed graph. ICML 2005: 1036-1043
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"ur‘Weighted gradient operator

b

The weighted gradient operator of a function f € H(V), at a vertex v; € V, is
the vector operator defined by

(Vuf) () = [(duf)(vi,vy) = v €V]T. (3)
2 The gradient considers all vertices v; € V and not only v; ~ v;.

The L, norm of this vector represents the local variation of the function f at a
vertex of the graph (It is a semi-norm for p > 1):

WD)l = [ 3 w2l -F ] (4)

virvi

A. Elmoataz, O. Lezoray, S. Bougleux, Nonlocal Discrete Regularization on Weighted Graphs: a framework for Image and Manifold Processing, |IEEE
transactions on Image Processing, Vol. 17(7), pp. 1047-1060, 2008.

)
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;ur‘lsotropic p-Laplacian

The weighted p-Laplace isotropic operator of a function f € H(V), noted
Al H(V) = H(V), is defined by:

(A5, ,))(v) = 35 (I(Vuf) (W) 152(dw F)(vi, v)) - ()

The isotropic p-Laplace operator of f € H(V), at a vertex v; € V, can be
computed by:

(A F)(v) = 3 Z Yo ) Vi ) (F(vi) = (7)) (6)
with
i -2 —2
()i ) = wi (VWD) E + I(TWHWIE?) - (D)
The p-Laplace isotropic operator is nonlinear, except for p = 2 (corresponds to

the combinatorial Laplacian). For p =1, it corresponds to the weighted curvature
of the function f on the graph.

A. Elmoataz, O. Lezoray, S. Bougleux, Nonlocal Discrete Regularization on Weighted Graphs: a framework for

Image and Manifold Processing, |IEEE transactions on Image Processing, Vol. 17(7), pp. 1047-1060, 2008.

)
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;-r‘Anisotropic p-Laplacian

The weighted p-Laplace anisotropic operator of a function f € H(V), noted
A5, H(V) = H(V), is defined by:
(83, 51) (i) = 35 (1(duF)(vi, )P~ (du ) (Vi vy)) - (8)

The anisotropic p-Laplace operator of f € H(V), at a vertex v; € V, can be
computed by:

(A%,000) = D (%8, F) i ) (F(v) = (1)) - (9)

virvi

with )
(V2 o) Viy vi) = w2 (vi) — F(vy)]P72 (10)

O. Lezoray, V.T. Ta, A. Elmoataz, Partial differences as tools for filtering data on graphs, Pattern Recognition
Letters, Vol. 31(14), pp. 2201-2213, 2010.

)
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© Construction of graphs - non locality
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;F‘Constructing_graphs

Any discrete domain can be modeled by a weighted graph where each data point
is represented by a vertex v; € V.

Unorganized data Organized data

An unorganized set of points V C R” Typical cases of organized data are

can be seen as a function O : V — R™. | signals, gray-scale or color images (in 2D
The set of edges is defined by in or 3D).

modeling the neighborhood of each The set of edges is defined by spatial
vertex based on similarity relationships relationships.

between feature vectors. Such data can be seen as functions
Typical graphs: k-nearest neighbors f0.vcz" - R™.

graphs and e-neighborhood graphs. Typical graphs: pixel or region graphs.

O. Lézoray (University of Caen) Graph Signal Processing and Applications



;F‘Weighting_graphs

For an initial function f°:V — R™, similarity relationship between data can be
incorporated within edges weights according to a measure of similarity

g: € —[0,1] with w(e;) = g(ej), Ve € €.

Each vertex v; is associated with a feature vector Ff 1V — R™X9 where g
corresponds to this vector size:

Ff:(v,-) _ (fO(Vj) v € Ny (vi)U {v,-})T (11)

with Vo (vi) = {v; € V\ {vi} : p(vi, vj) < 7}

. 0
For an edge ejj and a distance measure p : R™*9xR™*9 — R associated to Fﬁ_,
we can have:

gi(ej) =1 (unweighted case) ,
g (ejj) :exp(fp(Ff:(v,-), Ff(vj))2/02) with o >0 (12)
gs(es) =1/ (1+ p(F7 (), Fr (1)

O. Lézoray (University of Caen) Graph Signal Processing and Applications
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:-"‘Graph topology

Digital Image




-" Graph topology

a

| g

Digital Image

Local: a value is associ-
ated to vertices




;;T‘Graph topology

Digital Image

Nonlocal: a patch (vector
of values in a given neigh-

borhood) is associated to
vertices.

Graph Signal Processing and Applications
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"-r‘With Graphs

b

@ Nonlocal behavior is directly expressed by the graph topology.
@ Patches are used to measure similarity between vertices.

Consequences
@ Nonlocal processing of images becomes local processing on similarity graphs.

@ Our difference operators on graphs naturally enable local and nonlocal
configurations (with the weight function and the graph topology)

@ with specific graph topologies and weights, the discretization of continuous
formulations can be recovered

O. Lézoray (University of Caen) Graph Signal Processing and Applications



@ p-Laplacian nonlocal regularization on graphs
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;ur‘p—Laplacian nonlocal regularization on graphs

Let f9: V — R be the noisy version of a clean graph signal g : V — R defined on
the vertices of a weighted graph § = (V, &, w).

To recover g, seek for a function f : V — R regular enough on G, and close
enough to f0, with the following variational problem:

g~ min {E,(f,f°\) =Ry () + 3] — I3}, (13)

where the regularization functional Ry, ,: H(V) — R can correspond to an
isotropic R‘f‘hp or an anisotropic Ry, , functionnal.

A. Elmoataz, O. Lezoray, S. Bougleux, Nonlocal Discrete Regularization on Weighted Graphs: a framework for
Image and Manifold Processing, IEEE transactions on Image Processing, Vol. 17(7), pp. 1047-1060, 2008.

A. Elmoataz, O. Lezoray, V.-T. Ta, S. Bougleux, Partial difference equations on graphs for local and nonlocal
image processing, In Image Processing and Analysing With Graphs: Theory and Practice, Editors: O. Lezoray
and L. Grady, Publisher: CRC Press / Taylor and Francis, Series: Digital Imaging and Computer Vision, pp.
175-206, 2012.
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;ur‘lsotropic and anisotropic regularization terms

The isotropic regularization functionnal R;'V,p is defined by the £, norm of the
gradient and is the discrete p-Dirichlet form of the function f € H(V):

DIV W15 = 5(F. AL )

v,eV

Ri p(f) =

T =

5 (14)

Do D wilf(v) — F(w))?

ViEV | vi~vy;

T =

The anisotropic regularization functionnal Ry, , is defined by the £, norm of the
gradient:

Rip(F) =5 D (VWD) W)IIZ = 5 (F. A% o))

v,eV

=15 S wEPf(y) - Fw)lP

v,eV Vi~ Vi

(15)

When p > 1, the energy E, , is a convex functional of functions of H(V).
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;ur‘lsotropic/Anisotropic diffusion processes

To get the solution of the minimizer, we consider the following system of

equations:
* 0
OE,, ,(f, 7, 7)

OF (V) =0,Vv; €V (16)
which is rewritten as:
OR: (f)
w,p Y — FO(v)) — .

F(v) + A(f(v;)) = (v))=0, Vv,eV. (17)

Moreover, we can prove that
ORI, (f) . oRz2 (f)
wp\") _ i ) w,p\' ) _ (pa '
9F(vi) 2(A,, ,f)(vi) and DF(v) (A3, ) (vi) - (18)

The system of equations is then rewritten as which is equivalent to the following
system of equations:

A Y ap Vi) | () = D (o H)vi ) () = AFO(v). (19)

Vi~V Vi~V

O. Lézoray (University of Caen) Graph Signal Processing and Applications



;ur‘lsotropic/Anisotropic diffusion processes

We can use the linearized Gauss-Jacobi iterative method to solve the previous
systems. Let n be an iteration step, and let (") be the solution at the step n.
Then, the method is given by the following algorithm:

fO = £0
AO(v) + .y ;‘Vp Vi, Vj 20
f("+1)(v,-) _ ( ))\—1—22:: ,(Zy ))((V, VJ)) ( ) Vv €V ( )
with (74, ,)(vis ) = wi (I(Vuf) )15+ IVuf) I ) o (21)
and (73,,)(vir vi) = wp 2 F(v) = F(y)P2 . (22)

It describes a family of discrete diffusion processes, which is parameterized by the
structure of the graph (topology and weight function), the parameter p, and the
parameter \.

RN w [ Gaph [ p=1 T p=2 [ p€lo1] ]
0 exp() semi-local Ours Bilateral Our
0 exp() nonlocal Ours NLMeans Our
# 0 | constant local TV Digital L, Digital Ours
#0 any nonlocal Ours Ours Ours
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Previous scheme is very slow and introduces a smoothing parameter when p = 1.
Better to use primal-dual algorithms: the Chambolle and Pock that exhibits very
good numerical performance.
To solve the general optimization problem En;_ti(nv) F(Kx) + G(x), they have

X

More efficient minimization

proposed the algorithm:

X=x0=f y°=0
Y™ = prox, g (y" + oKX"), (23)
x™1 = prox, o (x" — TK*y™1),

g+l — yntl + 9(Xn+1 _ Xn)’

where F* is the conjugate of F, K* is the adjoint operator of K, and prox the
proximal operator.

To apply it to our case, we have to set e.g., for the isotropic case, F = ||.|[3,
K = Vw, K* = —div, and G = 3. - f|[3.

M. Hidane, O. Lezoray, A. Elmoataz, Nonlii Multil. d Repre ion of Graph-Signals, Journal of Mathematical Imaging and Vision, Vol. 45(2), pp.
114-137, 2013. J

O. Lézoray (University of Caen) Graph Signal Processing and Applications
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Examples: Image denoising

£ A\

= ~ \ | ” .

,’d’ ::\\\ ) = i,

Original image Noisy image (Gaussian noise with o = 15)
fO: VRS PSNR=29.38dB

O. Lézoray (University of Caen) Graph Signal Processing and Applications



15 Examples: Image denoising

h.

. . 0
rAISOtrOpIC 7, Fi

. 0
) Isotropic Gz, Ff

Isotropic Gy, FS] = f0

el

p=2

PSNR= 31 25dB PSNR=34.74dB PSNR=31.81dB

Graph Signal Processing and Applications
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“I‘Examples: Mesh simplification

b

Original Mesh Isotropic, p =2  Isotropic, p =1, Anisotropic, p =1
0.V RS

Graph Signal Pr g and Applications



"F‘Examples: Colored Mesh simplification

| 3

Original Colored Mesh
v RS
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"-r. Examples: Point cloud denoising

b

Original point cloud  Noisy point cloud Local denoising Non-local denoising

Surface
denoising

Sinus wave
denoising

2D Patches on 3D Point clouds

O. Lézoray (University of Caen) Graph Signal Processing and Applications



:-rﬁxamples: Colored Point Cloud denoising

Initial Point cloud Noisy Local Graph Non Local Graph
0.V - R3 4-NNG 200-NNG, Ff
127039 points

F. Lozes, A. Elmoataz, O. Lezoray, Nonlocal processing of 3D colored point clouds, International Conference on Pattern Recognition (ICPR), pp.
1968-1971, 2012.
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;I‘Examples: Image Database denoising

Initial data Noisy data
fO: V—)wam

Graph Signal Processing and Applications



;F‘Examples: Image Database denoising

A=1 A=0.01 A=0

Isotropic

PSNR=18.80dB PSNR=13.54dB
Anlsotroplc

PSNR=15.19dB

O. Lézoray (University of Caen) Graph Signal Processing and Applications



;-r‘lnterpolation of missing data on graphs

Let f9: Vo — R be a function with Vo C V be the subset of vertices from the
whole graph with known values.

/

\.‘,F ‘
‘_-._p ~ ofell cRely

The interpolation consists in recovering values of f for the vertices of V \ Vo given
values for vertices of Vg formulated by:

min. R () + AW)F() = ()3 - (24)

Since f%(v;) is known only for vertices of Vg, the Lagrange parameter is defined as

AV R
o A if Vi € Vo
Alvi) = { 0 otherwise. (25)
This comes to consider A}, [f(v;) =0 on V\ Vo.
Our isotropic and anisotropic diffusion processes can be directly used to perform
the interpolation.

O. Lézoray (University of Caen) Graph Signal Processing and Applications



Image segmentation

Solve A}, f(v,-) =0o0n V\ V.

. 00‘
o=

) 27512 pixels (b) Original+Labels = 50 (11 seconds)
(d) 639 zones (98% of reduc- () Original+Labels (f) t=5 (< 1 second)
tion)
(8) 639 zones (98% of reduc- () Original+Labels (i) t =2 (< 1 second)
tion)

O. Lézoray (University of Caen) Graph Signal Processing and Applications



"-r‘ExampIes: Image colorization

| 3

Gray level image Color scribbles

Compute Weights from the gray-level image, interpolation is performed in a

s s s T
chrominance color space from the seeds: f¢(v;) = ';1,5:;, ';2,5:;, %,E:”

O. Lezoray, A. Elmoataz, V.T. Ta, Nonlocal graph regularization for image colorization, International

Conference on Pattern Recognition (ICPR), 2008.

O. Lézoray (University of Caen) Graph Signal Processing and Applications



;I‘Examples: Image colorization

p=1 6, Ff =1° p=10s Fy

O. Lézoray (University of Caen) Graph Signal Processing and Applications



"-r. Examples: 3D Point Cloud colorization

b

H v
i} \\\ Ay

L b oy S
3D coordinates  Saliency from  Similarity from
height patches saliency patches
Saliency of a vertex is defined as its degree: provides an equivalent of grayscale
values for image colorization.

O. Lézoray (University of Caen) Graph Signal Processing and Applications



"-r. Examples: 3D Point Cloud colorization

b

F. Lozes, A. Elmoataz, O. Lézoray, PDE-based Graph Signal Processing for 3D Color Point Clouds:
Opportunities for Cultural Heritage, |IEEE Signal Processing Magazine, Vol. 32, n4, pp. 103-111, 2015. J

O. Lézoray (University of Caen) Graph Signal Processing and Applications



© Multiscale hierarchical decomposition of graph signals
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X : . : . :
® B Multiscale hierarchical decomposition of graph signals

b

o For images, structure-texture decomposition highly depends on the analysis
scale;
@ It is more natural to consider several levels of decompositions

@ We consider the TNV approach that proposes to decompose images into
several layers with an iterative variational approach;

E. Tadmor, S. Nezzar, L. Vese, A multiscale image representation using
hierarchical (BV,L2) decompositions, Multiscale Modeling & Simulation 2 (4)
(2004) 554-579.
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;nr‘The TNV approach: principles

Let
o f be a scalar image;

@ £ an energy of the form E(u; f,\) = AR(u) + D(u, f); where R is a
regularity term and D a fidelity term.

@ N> A1 >...> A, >0 asequence of scale parameters;
The application of the following algorithm

V1 = f,

up  =argmin E(u;vi—1; N\;), 0<i<n,
u

Vi :v,-_l—u,-,0§i§n.

enables to obtain the following multi-scale decomposition

n
f= Zu; + v,.
i=0
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;I‘The TNV approach: remarks and extension

RENEIS

@ The algorithm decomposes the successive residues at finer and finer scales;

@ The sequence (\;)i>o has to be decreasing: the first extracted layers do
represent a coarse representation of the initial signal f;

@ In TNV, the authors have chosen a sequence of dyadic scales: A\; = A\;_1/2;
@ In TNV, the considered functional is TV-Ly;

@ In TNV, convergence guarantees are provided;

Extension to weighted graphs

@ We propose to adapt the TNV approach for graph signals with isotropic
p-Laplacian regularization;

@ For image processing, this enables to integrate a nonlocal behavior into the
decomposition;

@ The convergence can be studied as well as the parameters;

@ Innovative applications in detail enhancement for graph signals can be
obtained;
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:-r‘lNV on graphs

AN>A>...> )\, >0 J
V1 = f,
ui  =argmin £, (u;vi_1; ), 0 < i <n,

ueH(V)
Vi :v,-,l—u,-,Ogign.

f = iu; + v,
i=0

y
e Convergence ?
@ Scale parameters ?
o
M. Hidane, O. Lezoray, A. Elmoataz, Nonlii Multil. d Repi ion of Graph-Signals, Journal of Mathematical Imaging and Vision, Vol. 45(2), pp.
114-137, 2013. J
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b Characterization of the minimizer of E; ,

First we introduce the analog on graphs of the Meyer G space to represent
oscillating patterns:

Gy ={u e H(V): 3 € H(E),u = div,f}
with the following norm, Yu € G,,:
lulle, = inf{|[Flloc, F € #(&), divi,(F) = u}
The Moreau identity enables to characterize the solution of E},
f= ProXygi  + )\PVOX(R;'M)*/,\(f/)\) =0+ projg, ((f)

which gives
=f-— PFOJB,;W(,\)(f)
with the projection on Bg, (), a ball of radius A for the norm G,:

Be, () = {divi,F,F € H(E), [|F|loc <A}
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X,
;- ‘Convergence
From the characterization , we have

n
f— Zu,- =V, = projg, (x,)(Vn-1)
i=0

and
n

If— ZUiHG <A

i=0

If the sequence (\,) is decreasing, then

n —+o00
lim A\,=0 = lim |f— E uillg, =0 = f = E u;.
n—+o0o n—+o0 . .
i=0 =0
M. Hidane, O. Lezoray, A. Elmoataz, Nonlii Multil. d Rep ion of Graph-Signals, Journal of Mathematical Imaging and Vision, Vol. 45(2), pp.
114-137, 2013. J
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"ir ‘ Parameters

b

If A, is too small, few details are captured and a trivial decomposition is obtained:
f=Ff+v

One can show that there exist a critical value of A above which any decomposition
is trivial.

A decomposition is non trivial iff A €]0, ||f — f||¢, [

With the parameters following a dyadic progression A\; = \;_1/2, we have

1 _ _
SlIfF=Flle, <o <|If ~fls,.

We choose to take the midpoint

_3lf—flg,

Ao 7

The Chambolle-Pock algorithm is used to compute the G,, norm.
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I-I‘Local Decomposition

b

Local decomposition with an unweighted 4-grid graph Gy, Ff' = £0 (the classical
TNV approach)
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l-I‘Nonlocal Decomposition

b
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hI-I‘LocaI versus Nonlocal Decomposition

uz +120 us + 120 wr + 120

The layers extracted with the local (top) and nonlocal (approaches).
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Local versus Nonlocal Decomposition

. . . 0
Top: 4-grid, w = 1; Middle: 8-grid, w = exp(); Bottom: 10-NNG, Fg
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Mesh decomposition

Siou




"nr‘Colored Mesh decomposition

b
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"-r. Manipulating the decomposition

b

Attenuate or enhance details in a graph signal by applying coefficients to the
extracted layers.

Original Image BLF WLS Our approach
(weighted 8-grid graph)
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Removing layers
Bt

Original Image Removing layers u; to us and ug to ug
removes acne removes freckles

oray (University of Caen) Graph Signal Processing and Applications
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Mesh enhancement

Original Mesh Enhanced Mesh

M. Hidane, O. Lezoray, A. Elmoataz, Graph signal decomposition for multi-scale detail manipulation, International Conference on Image Processing

(IEEE), pp. 2041-2045, 2014. Award finalist for the ICIP Best Paper Award.
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Low Quality Colored Mesh enhancement

Original Colored Mesh Enhanced Mesh
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-‘_T. High Quality Colored Mesh enhancement

b

553053 vertices, 1105611 faces

Original scan Enhanced scan
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b

3D Selfie enhancement

3D selfie obtained with http://reconstructme.net

Original 3D selfie 3D selfie structure mask

O. Lezoray, 3d colored mesh graph signals multi-layer enhancement, ICASSP 2017, submitted.
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@ Adaptation of active contours on graphs
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;F‘Adaptation of active contours on graphs

We consider a recent method proposed by Bresson and Chan to redefine the
active contour model into a model which gives global minimizers

f?Xr;ger{rz)irl]}{/Q|Vf(x)||1dx—|—)\/Qg(fo)(x)f(x)dx}. (26)

This can be adapted on graphs with PdEs:
fe Argmln Z [(Vuf)(vi)ll5 + A Z (vi) ¢, (27)
f:v—{0,1} vieV viev
where f is a labeling function and f° the signal on the graph.

X. Bresson and T.F. Chan, Non-local unsupervised variational image segmentation models, UCLA CAM
Report 08-67, 2008.
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"F‘Convex Relaxation

b

Previous problem (27) is non-convex and can be reformulated through a convex
relaxation.

~

= argmin < > [(VuF)(W)[5+A Y g(F)(vi)f(vi) - (28)

f:V—[0,1] viev viev

Global solution f : V — {0,1} is obtained by thresholding 7 : V — [0, 1]
One has f(v;) = xs(vi), where S = {v; € V : f(v;) > t} with t € [0,1]
For a given vertex, if v; € A, then x4(v;) =1 and x4(v;) = 0 otherwise

2 First part of the energy (28) has to verify the co-area formula.

T.Chan, S.Esedoglu, and M.Nikolova,Algorithms for Finding Global Minimizers of Image Segmentation and
Denoising Models, SIAM J. Appl. Math., vol. 66, no. 5, pp. 1632-1648, 2006.

O. Lézoray, A. Elmoataz, V.T. Ta, Nonlocal PdEs on graphs for active contours models with applications to
image segmentation and data clustering, International Conference on Acoustics, Speech, and Signal Processing
(IEEE), 2012.
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;I‘Perimeters & Co-area formula on graphs

Co-area
o ForteR, let A, ={ueV:f(u)>t}
@ The co-area formula is verified for p = 1 since

PerW71(A) = / Perw,l(.At)dt

— 00

@ The proof is direct since |a — b| = fj;f IX{a>t} — X{b>e}|dt.

We consider only the case of p = 1 since Ry, ; does verify the co-area formulae.

Perimeters
Given a sub-graph ACYV, we can show that

Rip(xa) = D I1(Vwxa) (w5 = vol(9A) = Pery, p(A) = cut(A, A°)

v,EV

0. Lézoray, A. Elmoataz, V.T. Ta, Nonlocal PdEs on graphs for active contours models with applications to image ion and data clustering,
International Conference on Acoustics, Speech, and Signal Processing (IEEE), 2012.
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"F‘Chan—Vese on graphs

b

We can directly express the discrete analogue on graphs of the CV model (a kind
of regularized k-means), with

g(fo(v)) = (& = ' (v))* = (& — F*(w))?

where ¢; and &, the average values inside and outside the object, then Vv; € V:

Minimization

We use the Chambolle Pock algorithm with
o F=III}
e K=V,
° G =X(,g(f%)

| \

O. Lézoray (University of Caen) Graph Signal Processing and Applications



;F‘CV on images

Initial images Local Non local+patches
and contour Final contour Final f Final contour Final f

Segmentation result on local (4-adjacency graph with Gaussian weights computed
on pixel values) and nonlocal (4-adjacency graph coupled with a 4-Nearest
Neighbor graph selected in a 9 x 9 window and Gaussian weights computed on
3 x 3 patches) graphs.

O. Lézoray (University of Caen) Graph Signal Processing and Applications



:-"‘CV on Region Adjacency Graphs

RAG Final segmentation

An initial contour, the considered graph (a super-pixel graph obtained from an
over-segmentation with Gaussian weights on region mean values), and the
obtained partition of the super-pixel graph.

O. Lézoray (University of Caen) Graph Signal Processing and Applications



"-‘-‘CV on Point clouds (Local)

b
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"-"‘CV on Point clouds (Nonlocal)

b
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CV on Image Database Graphs

Final clustering

g
8=
3
[}
&
g
=y
h=1
g
=

An image database with an initial random partition, the considered graph (a 10

nearest neighbors graph weighted with Gaussian weights on 16 x 16 vectors

associated to the image of each vertex).
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25 2 The End. Thanks.

b

Publications available at :
http://lezoray.users.greyc.fr

Image Processing
and Analysis
with Graphs

WEORY 4

O. Lézoray and Leo Grady

Image Processing and Analysis with Graphs: Theory
and Practice, CRC Press, July 2012.
https://lezoray.users.greyc.fr/IPAG/

OLIVIER LEZORAY = LEO GRADY
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