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Multivariate time series structured in a network

A simple example: recording electric consumption

A simple sensor recording the
overall electrivity consumption
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[Harlé et al. IEEE Trans. Sig. Proc. 2016]
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Multivariate time series structured in a network

Multiple sensors in different
places of the house

kitchen living-room

stairs
bathroom

Observed multivariate time series
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[Harlé et al. IEEE Trans. Sig. Proc. 2016]
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Multivariate time series structured in a network

Multiple sensors in different
places of the house with pos-
sible links

kitchen living-room

stairs
bathroom

Observed multivariate time series with multiple change point detection
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[Harlé et al. IEEE Trans. Sig. Proc. 2016]
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Multivariate time series structured in a network

Definition of the network (or
graph):

nodes: X1, X2, X3 and X4

edges: X2-> X1, X3-> X1, X4-> X1

adjacency matrix: 
0 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0


[Harlé et al. IEEE Trans. Sig. Proc. 2016]
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The brain as a network

1011 neurons

Connected via axons and dendrites
(1014 connections)

Transmission of nerve signals
(segregated and distributed
information)
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Exploring the brain using networks analysis

Functional Magnetic Resonance Imaging – fMRI:
[Ogawa 1990, Kwong 1991]

Measure of the haemodynamic response related to neural activity in the
brain.
BOLD(Blood-oxygen-level dependent)= MRI contrast of blood
deoxyhemoglobin

Copyright Hunter G Hoffman. IRMaGe, GIN, UGA
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Exploring the brain using networks analysis

Hundreds of time series corresponding to brain regions

10   neurons
11

10  voxels
0.3 Hz

5

Parcellation

Time series

fMRI data
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Exploring the brain using networks analysis

[De Vico Fallani et al. Phil. Trans. Roy. B 2014]
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Part I: Inference of networks
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Long memory property of the brain time series
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Long memory property of the brain time series
X87 X66
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autocorrelations not summable

ρ(λ) = Corr(X (t + λ),X (t)) ∼ λ2d−1

Note: For an ARMA process,

|ρ(λ)| 6 b|a|λ, 0 < b <∞, 0 < a < 1
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Long memory property of the brain time series
X87 X66
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A simple example, X (1), . . . ,X (N), random variables,

X̂ := N−1
N∑
i=1

X (i), V(X̂ ) =
σ2

N2

N∑
i ,j=1

Corr(X (i),X (j))
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Wavelets and long memory time series

An example of ψ, Daubechies 8
Let (φ, ψ) define a father and
a mother wavelets

For any scale j > 0 and location
k ∈ Z we consider the wavelet
coefficient of the signals X`(·),
for ` = 1, . . . , p,

Wj ,k(`) ≈
∫

X`(t)ψj ,k(t)dt
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An example of wavelet decomposition

Example with a signal X (t) = cos(t/5) + cos(t/10) +N (0, 0.4):
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X (t) = cos(t/5) + cos(t/10) +N (0, 0.4)

d1

d2

d3

d4

d5

d6

s6
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Wavelets and correlation

X = {X(k), k ∈ Z} long memory process, 1 6 `,m 6 p,

Wavelet variance Wavelet covariance

σ2
` (j) = V(Wj ,k(`)) θ`,m(j) = Cov(Wj ,k(`),Wj ,k(m))

σ̂2(j) := 1
nj

∑nj
k=0 W

2
j ,k θ̂`,m(j) := 1

nj

∑nj
k=0(Wj ,k(`)Wj ,k(m))

[Percival et al. 2000]
[Whitcher et al. 2000]

Wavelet correlation

ρ`,m(j) =
θ`,m(j)

σ`(j)σm(j)
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Wavelets and correlation

Example of the non consistency of the classical estimator of
correlation:

X Y

Correlation(X,Y) = 0.597

Wavelet correlation :

Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 Scale 6 Remainder
0.059 0.053 0.029 0.08 0.115 0.041 1
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Wavelets and correlation

Proposition

X = {X(k), k ∈ Z} long memory process, ρ̂`,m(j) := θ̂`,m/(σ̂`(j)σ̂m(j))√
(nj − 3)(z(ρ̂`,m(j))− z(ρ`,m(j)))

L−−→ N (0, 1)

where z in the Fisher transform.

X66, X87 X66, X67
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[Achard and Gannaz J. Time Series Analysis 2015] [Achard et al. J. Neurosci. 2006] [Whitcher et al. 2000]
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Part II: Comparison of networks, assessing reliability
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Construction of the adjacency matrices

→ pair-wise inter-regional
correlations

Wavelets MODWT

Connectivity = Correlation

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

scale 1 scale 3 scale 5

scale 2 scale 4 scale 6

→ adjacency matrix
Threshold ?

Threshold

R=0.3 R=0.4 R=0.5

→ Undirected graphs :
small-world properties

[Achard et al. J. Neurosci. 2006]
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Individual graphs: representation of networks for a given
threshold

90 regions in the brain – 40 minutes scanning – 400 mostly connected pairs
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An example with fMRI data

90 regions in the brain – 5 minutes scanning – 400 mostly connected pairs
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An example with fMRI data

An example using a patient with craniectomy on the left part of the brain.
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Construction of the adjacency matrices

Hypothesis tests: for all i , j , 1 6 i , j 6 p, i 6= j

H0 : ρi ,j = 0 H1 : ρi ,j 6= 0

Problems :

Multiple hypotheses tests : 4005 tests
→ Need to compare graphs with same number of edges
→ Maximise interesting properties

The tests are dependent, classical approaches are not working

[Achard et al. J. Neurosci. 2006]
[Hero et al. 2013]

[Drton et al. 2004]
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Multiple hypotheses tests

Number of errors committed when testing 4005 null hypothesis
n0 = number of true null hypotheses

Not rejected Rejected Total

True null hypotheses U V n0

Non-true null hypotheses T S 4005− n0

4005−W W 4005

PCER = E (V/4005) < α if each tests control at level α.
→ do not take into account the multiple test.

FWER = P(V > 1) < α if each tests control at level α/4005.
→ Problem when the number of hypotheses is large, too conservative.

FDR = P(W > 0)E (V/W|W > 0), i.e. control of the proportion of
rejected null hypotheses which are erronously rejected.
→ less stringent, and a gain in power.

Marine Roux PhD
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A clinical example: brain connectivity for coma patients

fMRI data acquisition parameters

90 and 417 anatomical regions: space average of the fMRI time
series over all voxels in 90 (AAL) and 417 regions

SPM preprocessing: correction for geometrical displacements

Resting state: lying quietly with eyes closed during 20 minutes

Group comparison:
20 young healthy volunteers, 17 patients in coma

[Achard et al. PNAS 2012]
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Brain connectivity of coma patients

[Achard et al. PNAS 2012]
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Graph features: degree
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Degree = number of connections that node makes to other nodes.
G = [Gij ]16i ,j6N is the adjacency matrix 1 6 i , j 6 N, Gij = 0 or 1.

Di =
∑
j∈G

Gij .
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Graph features: global efficiency
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Efficiency = inverse of the harmonic mean of the minimum path length
Lij between a node i and all the other nodes j in the graphs.

Eglobi =
1

N − 1

∑
j∈G

1

Lij

[Latora et al. 2002]
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Graph features: clustering
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Clustering, also called “local efficiency” = measure of information
transfer in the immediate neighbourhood of each node.

Clusti =
1

NGi
(NGi

− 1)

∑
j ,k∈Gi

1

Ljk
,

[Latora et al. 2002]
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Results: global connectivity and network topology

No significant difference on global measure of functional
connectivity
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Examples of connectivity graphs
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Results: nodal connectivity
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Results: hub disruption index
One index to discriminate the coma and healthy volunteers
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Hub disruption index on epilepsy

Same results on epilepsy patients

[Ridley et al. Neuroimage 2015]
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Assessing reliability of graph analysis

Test-retest datasets

Freely available data from Human Connectome Project

90 and 417 anatomical regions: space average of the fMRI time
series over all voxels in 90 (AAL) and 417 regions

SPM preprocessing: correction for geometrical displacements

Resting state: lying quietly with eyes closed during 20 minutes

Group comparison:
100 healthy controls scanned twice

[Termenon et al. Neuroimage 2012]
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Assessing reliability of graph analysis

Taking global efficiency as the metric studied and computed with the
whole 1200 time points

ICC =
sb − sw

sb + (k − 1)sw
(1)

where sb is the variance between subjects, sw is the variance within
subjects and k is the number of sessions per subject.

[Fisher et al. 1925] [Donner et al. 1986]
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Assessing reliability of graph analysis

Taking global efficiency as the metric studied and computed with the
whole 1200 time points
For the 100 healthy volunteers scanned twice
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Assessing reliability of graph analysis
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Assessing reliability: p-values of ICC

Permutation tests to compute p-values
For 20 subjects, 1200 time points, global efficiency
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Choice of number of subjects and scan duration

Comparisons for global efficiency for a cost equal to 20%
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Significant regions versus number of subjects

At the regional level, global efficiency of each region separately
#
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Localisation of significant regions
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Conclusions and future works

Graphs are providing a complete representation of brain connectivity

New graph metrics are needed

Assessing reliability is worthwhile for any new approaches

Feel free to use the test-retest datasets
(email: sophie.achard@gipsa-lab.fr)
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