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Statement, without technicality

@ f, a family of functions parameterized by h (e.g. linear networks)
@ /, X matrix containing input-output pairs

Informal statement
Under a certain condition on the family f (e.g. on the topology of the network):
There exists C such that for n small and for any

h.h* € {h[ [[f(/) - X|| <n}

we have

d(h,h") <Cn
@ If the condition is satisfied we have stably defined features
= interpretable learning

@ If the data are known to be generated by a network
= control of the risk
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Deep structured linear networks

Problem formulation

Let K e N*, my...mgyq1 € N, write my = m, mg1 = n. We assume that we know the
matrix X € R™*"™ which is (approximatively) the product of factors Xj € R™k*Mk+1:

X=X Xg.

We investigate models/constraints imposed on the factors Xi for which we can (up to
obvious scale rearrangement) stably recover the factors Xj from X.
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Deep structured linear networks

Structure of the factors
@ Fork=1...K, we know

My RS — ROkt
h +—  My(h)

@ We know models
M =(MYen  with, ML RES L.
@ Assume there exists L, L* and (hx)k=1.x € ML and (N )k=1.x € ML such that
[Mi(h1)-- Mk (hk) — X]|| <8,

(M (h3) - - Mic(hic) — X[ <m,

Is (hk)k=1.k close to (hj)k=1.x ?
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Examples

@ K =1: Compressed sensing problem: Recovering hy from M; (h4) is linear
inverse problem.
e K=2:
> Dictionary learning: M (hy) is a dictionary of atoms, M (hy) is sparse
» Non-negative matrix factorization: M;(h1) > 0 and M>(hz) >0
> Low rank approximation: M (h1) is rectangular "vertical” (my > my), Ma(hy) is
rectangular "horizontal” (ms < mg).
> Phase recovery: M;(h1) = diag(Fh1), Mz(h2) = (Fhz)*, with F the Fourier matrix
and hy = ho.
» Blind deconvolution: M (hy) is circulant, M (hy) is a signal
» Blind-demixing, self-calibration, Internet of things. ..
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@ Klarge:

Fast Fourier, Discrete Cosine, Discrete Wavelet, Jacobi eigenvalue Algorithm

Tsiligkaridis, Hero, Zhou: Kronecker graphical lasso (IEEE SP 2013)

Lyu, Wang: Multi-layer NMF (NIPS’13)

Kondor, Tevena, Garg: Multiresolution Matrix fatorization (ICML 2014)

Chabiron, Malgouyres, Wendt, Tourneret: Fast Transform Learning (IJCV, 2015)

Le Magoarou, Gribonval: Faust (IEEE STSP, 2016)

Rusu, Thomson: Transforms based on Householder reflectors (IEEE SP 2016)

and Givens rotations (IEEE SP 2017)

» Sulam, Papyan, Romano, Elad : Multi-layer Convolutional Sparse Coding (IEEE
SP 2018)

Y Y VY VY VvV VY
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Link with Deep learning
edge of depth 3 2 1

= >
—=
Figure: Deep network

A(h, 1) = UiM;(hy) UsMj(hg)!
e M, (hg) : is a linear operator, depending linearly on hy

hz1 hzz O 0
i . A — ) 9
» Feed-forward : M}(hg) ( 0 0 hes hos )
. Ci(hz) Ca(h3) O 0 )
» Convolutional : Mj(h3) =
(ha) ( 0 0 Cs(hs)  Ca(hs)
where C;(.) convolution+sampling matrices.
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Link with Deep learning

@ With ReLU : Uy : R™*L — R™*L (where ny is the size of the layer k) is such

that :
(UkM) s = ak(h)n Mny , with ax(h) € {0,135,
and
1 if (I\/I’ hy - UM, (hy x) >0
ak(h)n,I: k( ) K( ) n,/
0 , otherwise

The function

ax :RK*S  — {o,1}mxt

h — ak(h)

is piecewise constant.

As a function of h, the neural network is a piecewise structured linear
network
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Statement, without technicality
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Notations

] Nk:{17’k}
@ h e RK*S hy e RS hy, €R



Notations

.Nk:{17"‘?k}
o h GRKXS, hk ERS, hk,ik eR
- Ri{xS: {h GRKXS,VKENKyllth # 0}



Notations

o Ny={1,....k}

@ heR¥*S hy € RS, hyy, €R

@ RKXS — fh € RK*S vk € Ny, ||hg]| # 0}

@ Forhand g € RK*S h ~ gif and only if there exists (Ax)ken, € R¥ such that

H?\.k =1 and hx = AkQk, Vk € Ni.
We say g € [h].

Remark
Since for any g € [h]

Mi(hy)...Mk(hk) = Mi(g1) ... Mk(gk)

Recovering [h] is the best we can hope for.
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K times

K
@ Tensors T€ RS X -+ XS _RS
@ Tensorvalue T;, _j or T, fori=(it,...,ix) € N&

o T e RS isof rank 1 if and only if there exists h € RK*S s t.:
Ti=hyj...hg; ,VieN§

Wesay T € 4.
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K times

K
@ Tensors T€ RS X -+ XS _RS
@ Tensorvalue T;, _j or T, fori=(it,...,ix) € N&

o T e RS isof rank 1 if and only if there exists h € RK*S s t.:
Ti=hyj...hg; ,VieN§

Wesay T € 4.
@ We call rk(T) the smallest r € N, there exists Ty,..., T, € 4, s. t.

T=Ti+..+T.

We denote ¥, = {T € RS"|rk(T) < r}.
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Facts on Segre embedding and tensors

@ Y1, is asmooth (i.e. C*) manifold of dimension K(S—1)+1

@ Geometry of 2»: There exists a closed set C C ¥, whose Haudorff measure of
dimension 2K(S—1) +2 (resp. 4(S—1)) is 0, such that > \ C is a smooth
manifold of dimension 2K(S — 1) +2 when K > 3 (resp. 4(S—1), when K = 2).
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Facts on Segre embedding and tensors

@ Y1, is asmooth (i.e. C*) manifold of dimension K(S—1)+1

@ Geometry of 2»: There exists a closed set C C ¥, whose Haudorff measure of
dimension 2K(S—1) +2 (resp. 4(S—1)) is 0, such that > \ C is a smooth
manifold of dimension 2K(S — 1) +2 when K > 3 (resp. 4(S—1), when K = 2).

@ Segre embedding: Parameterize ¥ C RS by the map

P -RKxS __ Z1CRSK
h — (h1,i1h2’,-2...hK,iK)ieNg
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Facts on Segre embedding and tensors

@ Y. isasmooth (i.e. C*) manifold of dimension K(S—1) + 1

@ Geometry of 2»: There exists a closed set C C ¥, whose Haudorff measure of
dimension 2K(S—1) +2 (resp. 4(S—1)) is 0, such that > \ C is a smooth
manifold of dimension 2K(S — 1) +2 when K > 3 (resp. 4(S—1), when K = 2).

@ Segre embedding: Parameterize ¥ C RS by the map

P:RK*S — 3, cRS"
h — (h17i1 h2.,/'2"'hKJK)ieN§

Remark
Since for any g € [h] B
P(h) = P(g)

Recovering [h] from P(h) is the best we can hope for.
Recovering [h] from P(h) is easy. (By extracting lines in P(h).)
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Theorem: Stability of [h] from P(h)
Let h and g € RX*S be such that

1P(9) = P(h)[leo < = max (|| P(h)[|ee, [ P(g)]|=) -

N —

We have for p and g € [1, 9],
os([h. [g]) < 7(KS)? min <|P(h)||o%“,||f=(g)|£‘1) 1P() — P(@)]la

In the theorem, we use the metric

dp([h],[0]) =  inf inf_ |0 —g'l[, ,Vh,geR®
h’e[h|NRE*S g/ e[g|nRE*S

where p > 1 and

RE*S = {h € RK*S, vk € N, gl = I .
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Proposition : Sharpness of the bound
There exists h and g € RX*S such that ||P(@) || < ||P(h)]|,
1P(g) — P(h)l| < 5 [|P(h)[| and

1_q

7(KS)?||P(h)[1E " [|P(h) — P(8)lq < Cq dp([h. [a]),
where

il .
C,— 1 2B(KS)T itq< e,
28 , if q = —|—oo
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We have for any g € [1,%0] and any h and g € RX*S,

1P(h) — P(@)llq < S“T K"~ J7max(||P<h>||lJ

||P(g)||l:)dq([h1 @), ()

The upper bounds in the theorem is tight up to at most a factor K.



The Tensorial Lifting

When K = 2: M;(hy)Ma(h2) has the form

pi1(h1)  pia(hy) - prm(he) gi.1(h2) -+ gia(he)
pz1(h1)  poa(hy) - pom,(hy) G21(h2) -+ gan(h2)
Pri(h1) pma(h) - Prma(t1)) \Gmar(h2) - Gmga(ho)

so forj and j

q1,j(h2)

(h
(M1 (hy)Ma(hz))ij = (pi1(h1)  pia(hi) - pimy(hy)) Q2.1F 2)

qsz(hZ)

is a polynomial whose monomial are of the form hy , ho ;,
Ex: (2h1 3+ 4h4 7)(h2 1+ 5h24) = 2h 3hy 1 + 10hq 3hp 4 +4hy 7hy 1 +20h 7hp 4
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The Tensorial Lifting

Theorem
There exists a unique linear map
K
4:R% — R™",
such that for allh € RK*S

My (h1)Ma(hg) - - Mk(hk) = AP(h).

@ Changing My, Mo, ..., Mk only modifies 4
@ The properties of

> My (hi)Ma(hz)--- Mk (hk)
> h— |[Ms(h1)Ma(hg) - Mk (hk) — X|[?

relate to the geometry of 4 and X1 (or ¥5,).
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@ When K =1 and X is vectorized, we simply have 4 = M;.
@ In most reasonable cases, A4 is sparse.
@ We can compute AP(h), whatever h € RX*S, using

AP(h) = My (hy)Ma(hy) ... Mk (h).

Proposition

If we consider R independent random collections of vectors h”, with r =1...R,
according to the normal distribution in RX*S, we have (with probability 1)

dim(Spa”((ﬂp(hr))r—tﬂ)):{ ﬁ((ﬂl) :gtlljeflv?s(é.ﬂ) )

This can be used to compute rk ().
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Identifiability — noise free case
We assume there is h € ML and

X =M (hy)...Mk(hg).
There is h* € ML

X = My (h3)... Mic(hi). 3)
Definition

[h] is identifiable iif the elements of [h] are the only solutions of (3).

Theorem : Necessary and sufficient conditions of identifiability
@ Forany L and h € ML: [h] is identifiable if and only if for any L € N

(P(h) +Ker(2)) N P(M") C {P(h)}.
Q M is identifiable if and only if for any L and L’ € N
Ker ()N (P(M*Y) — P(*)) c {0}. (4)
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Definition: dim,,, (M)

Let dim,;,, (M) € N be the largest dimension of the sub-vector spaces V of RS" such
that there exists a neighborhood O of the origin, L € N and L’ € N such that

(VN o) c (P(ME) - P(MYY).

Example : When K > 1 and M = RX*S, we have dim,,, (M) =25 —1.
We always have dim,,, (M) <25 —1.

Theorem : Necessary condition of identifiability
If rk(A2) < dim,,, (M), then M is not identifiable.
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We assume P(M) is Zariski closed and invariant under rescaling.

Definition: dim,,, (M)

z
dim,, (M) = maxdim{sx+ty | x € P(M"L), y € P(ML), s,t € R} .
LU

We have : dim,,, (M) < 2max, (dim P(M")).
Example : dim,,, (R¥*®) < 2dim(Z;) =2K(S—1) +2

Theorem : Almost surely sufficient condition for Identifiability
For almost every A4 such that

rk(A4) > dim,,, (M)

every h € RK*S is identifiable.
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Stable recovery — Interpretability

Deep-Null Space Property

Let y> 0 and p > 0, we say that Ker (2) satisfies the deep-Null Space
Property (deep-NSP ) with respect to the collection of models M with constants (,p)
ifforany Land L' € N, any T € P(ML) — P(M") satisfying || AT]|| < p and any

T’ € Ker(4), we have

ITI<yIT—T.
Ker(4) Ker(A4)
0
0
P(M*') — P(M") P(M*) — P(M")
NO (deep-NSP ) NO (deep-NSP )

F. Malgouyres & J. Landsberg Multilinear compressive sensing

5)

Ker(A4)

P(ML) — P(M™)
(deep-NSP )

November 2018 24/32




[M(hy)--- Mk (hk) — X|| <3,

and
[[Mi(h3) - Mk(hj) — X|| <m,

for 6 and 1 small.

Theorem : Sufficient condition for interpretability

Assume Ker () satisfies the deep-NSP with respect to the collection of models M
and with the constant (7, p). If +mn < p, we have

o = Y
IP(h*) — P(R)| < —

min

(8+m),

where G min IS the smallest non-zero singular value of 4. Moreover, if h € RX*S and
(8+m) < 3 max (|[P(h)]l«, [|P(h*)]|) then

c7177/n

1=

(L) < "5 i (1 P00 ) (6,
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Theorem : Necessary condition for interpretability

Assume the interpretability holds: There exists ¢ and 8 > 0 such that for any L € N, h € M7, any
X = 4P(h) + e, with ||e|| < §, any L* € N and any h* € HL" such that

[2P(h*) = X||* < [|ell

we have . .
az([h"], [h]) < C min (HP(F)HEA: HF’(h*)H54> llell-

Then, Ker (4) satisfies the deep-NSP  with respect to the collection of models M with
constants

(1,0) = (CS"Z' VK Gpmax, )

where 6,4 is the spectral radius of 4.
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Plan

e Application to convolutional network



Edges of depth 3
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Figure: Example of the convolutional linear network. To every edge is attached a convolution
kernel. The network does not involve non-linearities or sampling.

X = My (hy)Ma(ha)Ms(hg) = [X; Xo X3 X4] € RVNI7]

Xi, ..., X4 are convolution matrix
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Proposition : Necessary condition of identifiability of a network

If some of the entries of M;(1)...Mk(1) do not belong to {0,1} :

RK*S is not identifiable.

The condition "all the entries of M;(1)... Mx(1) belong to {0,1}” can be computed by
applying the network | F | times to a dirac delta function.

Proposition

If the network is a branch and all the entries of My (1) - -- Mk (1) belong to {0,1}, then
Ker(A4) = {0} and Ker () satisfies the deep-NSP with respect to any model
collection M with constant (y,p) = (1, +c0). Moreover, we have G i = \/N.
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Edges of depth 2 1

X2

xi0.25
x4

h and g € RX*S are equivalent if and only if

Vp € P,I(Ae)ecp € RP, such that [ [Ae = 1 and Ve € p, 7o(g) = AeZe(h).

ecp

The equivalence class of h € R¥*S is denoted by {h}. For any p € [1,+], we define

1

5,({h}. {a}) = (Z op(10P]. [6P])° )

pe?P

where hP (resp gP) is the restriction of h (resp g) to the path p.
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M1 (hy) - Mic(hk) — X|| <8,
and

My (h3)- - Mk (hi) — X|| <,
for & and 1 small.

Theorem : Sufficient condition of interpretability

If all the entries of M;(1)--- Mk(1) belong to {0, 1}, if there exists € > 0 such that for
all e € , || Ze(R)||. > €, and if §+1 < Y then
3+

8p({h*},{h}) < 7(KS')pe' ¥ Sy

where S’ = maxeez |Sel-

Rks :

@ The condition "M; (1) --- Mk(1) belong to {0,1}” is not satisfied by most network
structure encountered in practice.

@ The action of the activation function favors interpretability.

F. Malgouyres & J. Landsberg Multilinear compressive sensing November 2018 31/32



F. Malgouyres & J. Landsberg

Thank you for your attention !

paper available on
www.math.univ-toulouse.fr/~fmalgouy/
or
google: F. Malgouyres
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