Multilinear compressive sensing and an application to convolutional linear networks

François Malgouyres¹ and Joseph Landsberg²

¹Institut de Mathématiques de Toulouse, Université Paul Sabatier and ²Department of Mathematics, Texas A& M University

November 2018

Plan

Multilinear compressed sensing

- Introduction
- Notations
- Facts on Segre embedding and tensors
- The Tensorial Lifting
- Identifiability error free case
- Stable features Interpretability

Application to convolutional network

Statement, without technicality

- f_h a family of functions parameterized by h (e.g. linear networks)
- *I*, *X* matrix containing input-output pairs

Informal statement

Under a certain **condition** on the family *f* (e.g. on the topology of the network): There exists *C* such that for η small and for any

$$\overline{\mathbf{h}}, \mathbf{h}^* \in \{\mathbf{h} | \| f_{\mathbf{h}}(I) - X \| \leq \eta \}$$

we have

$$d(\overline{\mathbf{h}},\mathbf{h}^*) \leq C \eta$$

• If the condition is satisfied we have stably defined features

\Rightarrow interpretable learning

If the data are known to be generated by a network

 \Rightarrow control of the risk

Statement, without technicality

- f_h a family of functions parameterized by h (e.g. linear networks)
- *I*, *X* matrix containing input-output pairs

Informal statement

Under a certain **condition** on the family *f* (e.g. on the topology of the network): There exists *C* such that for η small and for any

$$\overline{\mathbf{h}}, \mathbf{h}^* \in \{\mathbf{h} | \| f_{\mathbf{h}}(I) - X \| \leq \eta \}$$

we have

$$d(\overline{\mathbf{h}},\mathbf{h}^*) \leq C \eta$$

• If the condition is satisfied we have stably defined features

\Rightarrow interpretable learning

If the data are known to be generated by a network

 \Rightarrow control of the risk

Deep structured linear networks

Problem formulation

Let $K \in \mathbb{N}^*$, $m_1 \dots m_{K+1} \in \mathbb{N}$, write $m_1 = m$, $m_{K+1} = n$. We assume that we know the matrix $X \in \mathbb{R}^{m \times n}$ which is (approximatively) the product of factors $X_k \in \mathbb{R}^{m_k \times m_{k+1}}$:

$$X = X_1 \cdots X_K$$
.

We investigate models/constraints imposed on the factors X_k for which we can (up to obvious scale rearrangement) stably recover the factors X_k from X.

Deep structured linear networks

Structure of the factors

• For $k = 1 \dots K$, we know

$$\begin{array}{cccc} M_k: \mathbb{R}^{\mathcal{S}} & \longrightarrow & \mathbb{R}^{m_k \times m_{k+1}}, \\ & h & \longmapsto & M_k(h) \end{array}$$

We know models

$$\mathcal{M} = (\mathcal{M}^L)_{L \in \mathbb{N}}$$
 with , $\mathcal{M}^L \subset \mathbb{R}^{K imes \mathcal{S}}, orall L.$

• Assume there exists \overline{L} , L^* and $(\overline{\mathbf{h}}_k)_{k=1..K} \in \mathcal{M}^{\overline{L}}$ and $(\mathbf{h}_k^*)_{k=1..K} \in \mathcal{M}^{L^*}$ such that

$$\|M_1(\overline{\mathbf{h}}_1)\cdots M_K(\overline{\mathbf{h}}_K)-X\| \leq \delta,$$

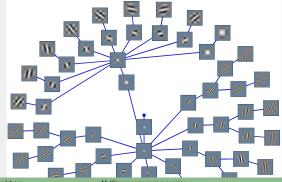
$$\|M_1(\mathbf{h}_1^*)\cdots M_K(\mathbf{h}_K^*)-X\| \leq \eta,$$

Is
$$(\overline{\mathbf{h}}_k)_{k=1..K}$$
 close to $(\mathbf{h}_k^*)_{k=1..K}$?

Examples

- K = 1: Compressed sensing problem: Recovering h₁ from M₁(h₁) is linear inverse problem.
- *K* = 2:
 - Dictionary learning: $M_1(\mathbf{h}_1)$ is a dictionary of atoms, $M_2(\mathbf{h}_2)$ is sparse
 - ▶ Non-negative matrix factorization: $M_1(\mathbf{h}_1) \ge 0$ and $M_2(\mathbf{h}_2) \ge 0$
 - ▶ Low rank approximation: $M_1(\mathbf{h}_1)$ is rectangular "vertical" $(m_1 \gg m_2)$, $M_2(\mathbf{h}_2)$ is rectangular "horizontal" $(m_2 \ll m_3)$.
 - ▶ Phase recovery: $M_1(\mathbf{h}_1) = diag(F\mathbf{h}_1)$, $M_2(\mathbf{h}_2) = (F\mathbf{h}_2)^*$, with *F* the Fourier matrix and $\mathbf{h}_1 = \mathbf{h}_2$.
 - Blind deconvolution: $M_1(\mathbf{h}_1)$ is circulant, $M_2(\mathbf{h}_2)$ is a signal
 - Blind-demixing, self-calibration, Internet of things...

- K large :
 - Fast Fourier, Discrete Cosine, Discrete Wavelet, Jacobi eigenvalue Algorithm
 - ► Tsiligkaridis, Hero, Zhou: Kronecker graphical lasso (IEEE SP 2013)
 - Lyu, Wang: Multi-layer NMF (NIPS'13)
 - Kondor, Tevena, Garg: Multiresolution Matrix fatorization (ICML 2014)
 - Chabiron, Malgouyres, Wendt, Tourneret: Fast Transform Learning (IJCV, 2015)
 - Le Magoarou, Gribonval: Faust (IEEE STSP, 2016)
 - Rusu, Thomson: Transforms based on Householder reflectors (IEEE SP 2016) and Givens rotations (IEEE SP 2017)
 - Sulam, Papyan, Romano, Elad : Multi-layer Convolutional Sparse Coding (IEEE SP 2018)



Link with Deep learning

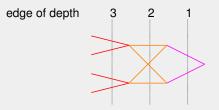


Figure: Deep network

 $\mathcal{N}(\mathbf{h}, I) = U_1 M_1'(\mathbf{h}_1) U_2 M_2'(\mathbf{h}_2) U_3 M_3'(\mathbf{h}_3) I$

- $M'_{k}(\mathbf{h}_{k})$: is a linear operator, depending linearly on \mathbf{h}_{k}
 - ► Feed-forward : $M'_3(\mathbf{h}_3) = \begin{pmatrix} \mathbf{h}_{3,1} & \mathbf{h}_{3,2} & 0 & 0\\ 0 & 0 & \mathbf{h}_{3,3} & \mathbf{h}_{3,4} \end{pmatrix}$ ► Convolutional : $M'_3(\mathbf{h}_3) = \begin{pmatrix} C_1(\mathbf{h}_3) & C_2(\mathbf{h}_3) & 0 & 0\\ 0 & 0 & C_3(\mathbf{h}_3) & C_4(\mathbf{h}_3) \end{pmatrix}$
 - where $C_i(.)$ convolution+sampling matrices.

Link with Deep learning

With ReLU : U_k : ℝ<sup>n_k×L → ℝ^{n_k×L} (where n_k is the size of the layer k) is such that :
</sup>

$$(U_k M)_{n,l} = a_k(\mathbf{h})_{n,l} M_{n,l}$$
 , with $a_k(\mathbf{h}) \in \{0,1\}^{n_k imes L}$

and

$$a_{k}(\mathbf{h})_{n,l} = \begin{cases} 1 & \text{, if } \left(M_{k}'(\mathbf{h}_{k}) U_{k+1} M_{k+1}'(\mathbf{h}_{k+1}) \cdots U_{k} M_{k}'(\mathbf{h}_{k}) X \right)_{n,l} \ge 0 \\ 0 & \text{, otherwise} \end{cases}$$

The function

$$\begin{array}{rcl} a_k : \mathbb{R}^{K \times S} & \longrightarrow & \{0,1\}^{n_k \times L} \\ \mathbf{h} & \longmapsto & a_k(\mathbf{h}) \end{array}$$

is piecewise constant.

As a function of h, the neural network is a piecewise structured linear network

Statement, without technicality

- f_h a family of functions parameterized by h (e.g. linear networks)
- *I*, *X* matrix containing input-output pairs

Informal statement

Under a certain **condition** on the family *f* (e.g. on the topology of the network): There exists *C* such that for η small and for any

$$\overline{\mathbf{h}}, \mathbf{h}^* \in \{\mathbf{h} | \| f_{\mathbf{h}}(I) - X \| \leq \eta \}$$

we have

$$d(\overline{\mathbf{h}},\mathbf{h}^*) \leq C \eta$$

• If the condition is satisfied we have stably defined features

\Rightarrow interpretable learning

If the data are known to be generated by a network

 \Rightarrow control of the risk

Notations

- $\mathbb{N}_k = \{1, \ldots, k\}$
- $\mathbf{h} \in \mathbb{R}^{K \times S}$, $\mathbf{h}_k \in \mathbb{R}^S$, $\mathbf{h}_{k, \mathbf{i}_k} \in \mathbb{R}$

Notations

- $\mathbb{N}_k = \{1, \ldots, k\}$
- $\mathbf{h} \in \mathbb{R}^{K \times S}$, $\mathbf{h}_k \in \mathbb{R}^S$, $\mathbf{h}_{k,\mathbf{i}_k} \in \mathbb{R}$
- $\mathbb{R}^{K \times S}_* = \{ \mathbf{h} \in \mathbb{R}^{K \times S}, \forall k \in \mathbb{N}_K, \|\mathbf{h}_k\| \neq 0 \}$

Notations

- $\mathbb{N}_k = \{1, \ldots, k\}$
- $\mathbf{h} \in \mathbb{R}^{K \times S}, \, \mathbf{h}_k \in \mathbb{R}^S, \, \mathbf{h}_{k, \mathbf{i}_k} \in \mathbb{R}$
- $\mathbb{R}_*^{K \times S} = \{ \mathbf{h} \in \mathbb{R}^{K \times S}, \forall k \in \mathbb{N}_K, \|\mathbf{h}_k\| \neq 0 \}$
- For **h** and $\mathbf{g} \in \mathbb{R}_*^{K \times S}$, $\mathbf{h} \sim \mathbf{g}$ if and only if there exists $(\lambda_k)_{k \in \mathbb{N}_K} \in \mathbb{R}^K$ such that

$$\prod_{k=1}^{K} \lambda_k = 1 \qquad \text{and} \qquad \mathbf{h}_k = \lambda_k \mathbf{g}_k, \forall k \in \mathbb{N}_{\mathcal{K}}.$$

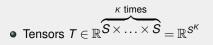
We say $\mathbf{g} \in [\mathbf{h}]$.

Remark

Since for any $\mathbf{g} \in [\overline{\mathbf{h}}]$

$$M_1(\overline{\mathbf{h}}_1) \dots M_K(\overline{\mathbf{h}}_K) = M_1(\mathbf{g}_1) \dots M_K(\mathbf{g}_K)$$

Recovering $[\overline{h}]$ is the best we can hope for.



• Tensors
$$\mathcal{T} \in \mathbb{R}^{\overset{\kappa \text{ times}}{\overbrace{S \times \ldots \times S}}} = \mathbb{R}^{S^{\kappa}}$$

• Tensor value
$$T_{i_1,...,i_K}$$
 or T_i , for $i = (i_1,...,i_K) \in \mathbb{N}_S^K$

• Tensors
$$T \in \mathbb{R}^{\overset{\kappa \text{ times}}{\overbrace{S \times \ldots \times S}}} = \mathbb{R}^{S^{\kappa}}$$

- Tensor value $T_{i_1,...,i_K}$ or $T_{\mathbf{i}}$, for $\mathbf{i} = (i_1,...,i_K) \in \mathbb{N}_S^K$
- $T \in \mathbb{R}^{S^{K}}$ is of rank 1 if and only if there exists $\mathbf{h} \in \mathbb{R}^{K \times S}$ s.t.:

$$T_{\mathbf{i}} = \mathbf{h}_{1,i_1} \dots \mathbf{h}_{K,i_K} \qquad , \forall \mathbf{i} \in \mathbb{N}_{\mathcal{S}}^K.$$

We say $T \in \Sigma_1$.

• Tensors
$$T \in \mathbb{R}^{\overset{\kappa \text{ times}}{\overbrace{S \times \ldots \times S}}} = \mathbb{R}^{S^{\kappa}}$$

- Tensor value $T_{i_1,...,i_K}$ or $T_{\mathbf{i}}$, for $\mathbf{i} = (i_1,...,i_K) \in \mathbb{N}_S^K$
- $T \in \mathbb{R}^{S^{K}}$ is of rank 1 if and only if there exists $\mathbf{h} \in \mathbb{R}^{K \times S}$ s.t.:

$$T_{\mathbf{i}} = \mathbf{h}_{1,i_1} \dots \mathbf{h}_{K,i_K} \qquad , \forall \mathbf{i} \in \mathbb{N}_{\mathcal{S}}^K.$$

We say $T \in \Sigma_1$.

• We call rk(T) the smallest $r \in \mathbb{N}$, there exists $T_1, \ldots, T_r \in \Sigma_1$, s. t.

$$T=T_1+\ldots+T_r.$$

We denote $\Sigma_r = \{T \in \mathbb{R}^{S^{\kappa}} | \operatorname{rk}(T) \leq r\}.$

• $\Sigma_{1,*}$ is a smooth (i.e. C^{∞}) manifold of dimension K(S-1)+1

- $\Sigma_{1,*}$ is a smooth (i.e. C^{∞}) manifold of dimension K(S-1)+1
- Geometry of Σ₂: There exists a closed set C ⊂ Σ₂, whose Haudorff measure of dimension 2K(S-1)+2 (resp. 4(S-1)) is 0, such that Σ₂ \ C is a smooth manifold of dimension 2K(S-1)+2 when K ≥ 3 (resp. 4(S-1), when K = 2).

- $\Sigma_{1,*}$ is a smooth (i.e. C^{∞}) manifold of dimension K(S-1)+1
- Geometry of Σ₂: There exists a closed set C ⊂ Σ₂, whose Haudorff measure of dimension 2K(S-1)+2 (resp. 4(S-1)) is 0, such that Σ₂ \ C is a smooth manifold of dimension 2K(S-1)+2 when K ≥ 3 (resp. 4(S-1), when K = 2).
- $\bullet\,$ Segre embedding: Parameterize $\Sigma_1 \subset \mathbb{R}^{\mathcal{S}^{\mathcal{K}}}$ by the map

$$\begin{array}{rcl} P: \mathbb{R}^{K \times S} & \longrightarrow & \Sigma_1 \subset \mathbb{R}^{S^K} \\ \mathbf{h} & \longmapsto & (\mathbf{h}_{1,i_1} \mathbf{h}_{2,i_2} \dots \mathbf{h}_{K,i_K})_{\mathbf{i} \in \mathbb{N}_S^K} \end{array}$$

- $\Sigma_{1,*}$ is a smooth (i.e. C^{∞}) manifold of dimension K(S-1)+1
- Geometry of Σ₂: There exists a closed set C ⊂ Σ₂, whose Haudorff measure of dimension 2K(S-1)+2 (resp. 4(S-1)) is 0, such that Σ₂ \ C is a smooth manifold of dimension 2K(S-1)+2 when K ≥ 3 (resp. 4(S-1), when K = 2).
- $\bullet\,$ Segre embedding: Parameterize $\Sigma_1 \subset \mathbb{R}^{\mathcal{S}^{\mathcal{K}}}$ by the map

$$\begin{array}{rcl} P: \mathbb{R}^{K \times S} & \longrightarrow & \Sigma_1 \subset \mathbb{R}^{S^K} \\ \mathbf{h} & \longmapsto & (\mathbf{h}_{1,i_1} \mathbf{h}_{2,i_2} \dots \mathbf{h}_{K,i_K})_{\mathbf{i} \in \mathbb{N}_c^K} \end{array}$$

Remark

Since for any $\mathbf{g} \in [\overline{\mathbf{h}}]$

$$P(\overline{\mathbf{h}}) = P(\mathbf{g})$$

Recovering $[\overline{\mathbf{h}}]$ from $P(\overline{\mathbf{h}})$ is the best we can hope for. Recovering $[\overline{\mathbf{h}}]$ from $P(\overline{\mathbf{h}})$ is easy. (By extracting lines in $P(\overline{\mathbf{h}})$.)

Theorem: Stability of [h] from *P*(h)

Let \boldsymbol{h} and $\boldsymbol{g} \in \mathbb{R}_*^{{{K}} \times {\mathcal{S}}}$ be such that

$$\|P(\mathbf{g}) - P(\mathbf{h})\|_{\infty} \leq \frac{1}{2} \max(\|P(\mathbf{h})\|_{\infty}, \|P(\mathbf{g})\|_{\infty}).$$

We have for p and $q \in [1, \infty]$,

$$d_{p}([\mathbf{h}],[\mathbf{g}]) \leq 7(\mathcal{KS})^{\frac{1}{p}} \min\left(\|P(\mathbf{h})\|_{\infty}^{\frac{1}{K}-1}, \|P(\mathbf{g})\|_{\infty}^{\frac{1}{K}-1}\right) \|P(\mathbf{h}) - P(\mathbf{g})\|_{q}.$$

In the theorem, we use the metric

$$d_{\rho}([\mathbf{h}], [\mathbf{g}]) = \inf_{\mathbf{h}' \in [\mathbf{h}] \cap \mathbb{R}_{=}^{K \times S} \mathbf{g}' \in [\mathbf{g}] \cap \mathbb{R}_{=}^{K \times S}} \|\mathbf{h}' - \mathbf{g}'\|_{\rho} \qquad , \forall \mathbf{h}, \mathbf{g} \in \mathbb{R}_{*}^{K \times S}$$

where p > 1 and

$$\mathbb{R}_{=}^{K \times S} = \{ \mathbf{h} \in \mathbb{R}_{*}^{K \times S}, \forall k \in \mathbb{N}_{K}, \|\mathbf{h}_{k}\|_{\infty} = \|\mathbf{h}_{1}\|_{\infty} \}.$$

Proposition : Sharpness of the bound

There exists \mathbf{h} and $\mathbf{g} \in \mathbb{R}_*^{K \times S}$ such that $\|P(\mathbf{g})\|_{\infty} \le \|P(\mathbf{h})\|_{\infty}$, $\|P(\mathbf{g}) - P(\mathbf{h})\|_{\infty} \le \frac{1}{2} \|P(\mathbf{h})\|_{\infty}$ and

$$T(\mathcal{KS})^{rac{1}{p}} \| \mathcal{P}(\mathbf{h}) \|_{\infty}^{rac{1}{K}-1} \| \mathcal{P}(\mathbf{h}) - \mathcal{P}(\mathbf{g}) \|_q \leq C_q \; d_p([\mathbf{h}], [\mathbf{g}])^{-1}$$

where

$$\mathcal{C}_q = \left\{egin{array}{c} 28 (\mathcal{KS})^{rac{1}{q}} & ext{, if } q < +\infty, \ 28 & ext{, if } q = +\infty. \end{array}
ight.$$

Theorem: Lipschitz continuity of P

We have for any $q \in [1,\infty]$ and any **h** and $\mathbf{g} \in \mathbb{R}_*^{K \times S}$,

$$\|P(\mathbf{h}) - P(\mathbf{g})\|_q \le S^{\frac{K-1}{q}} K^{1-\frac{1}{q}} \max\left(\|P(\mathbf{h})\|_{\infty}^{1-\frac{1}{K}}, \|P(\mathbf{g})\|_{\infty}^{1-\frac{1}{K}}\right) d_q([\mathbf{h}], [\mathbf{g}]).$$
(1)

The upper bounds in the theorem is tight up to at most a factor K.

The Tensorial Lifting

When
$$K = 2$$
: $M_1(\mathbf{h}_1)M_2(\mathbf{h}_2)$ has the form

$$\begin{pmatrix} p_{1,1}(\mathbf{h}_1) & p_{1,2}(\mathbf{h}_1) & \cdots & p_{1,m_2}(\mathbf{h}_1) \\ p_{2,1}(\mathbf{h}_1) & p_{2,2}(\mathbf{h}_1) & \cdots & p_{2,m_2}(\mathbf{h}_1) \\ \vdots & \vdots & \ddots & \vdots \\ p_{m,1}(\mathbf{h}_1) & p_{m,2}(\mathbf{h}_1) & \cdots & p_{m,m_2}(\mathbf{h}_1) \end{pmatrix} \begin{pmatrix} q_{1,1}(\mathbf{h}_2) & \cdots & q_{1,n}(\mathbf{h}_2) \\ q_{2,1}(\mathbf{h}_2) & \cdots & q_{2,n}(\mathbf{h}_2) \\ \vdots & \ddots & \vdots \\ q_{m_2,1}(\mathbf{h}_2) & \cdots & q_{m_2,n}(\mathbf{h}_2) \end{pmatrix}$$
so for *i* and *i*

$$(M_{1}(\mathbf{h}_{1})M_{2}(\mathbf{h}_{2}))_{i,j} = \begin{pmatrix} p_{i,1}(\mathbf{h}_{1}) & p_{i,2}(\mathbf{h}_{1}) & \cdots & p_{i,m_{2}}(\mathbf{h}_{1}) \end{pmatrix} \begin{pmatrix} q_{1,j}(\mathbf{h}_{2}) \\ q_{2,j}(\mathbf{h}_{2}) \\ \vdots \\ q_{m_{2},j}(\mathbf{h}_{2}) \end{pmatrix}$$

is a polynomial whose monomial are of the form $h_{1,i_1}h_{2,i_2}$ Ex: $(2h_{1,3} + 4h_{1,7})(h_{2,1} + 5h_{2,4}) = 2h_{1,3}h_{2,1} + 10h_{1,3}h_{2,4} + 4h_{1,7}h_{2,1} + 20h_{1,7}h_{2,4}$

The Tensorial Lifting

Theorem

There exists a unique linear map

$$\mathcal{A}:\mathbb{R}^{\mathcal{S}^{\mathcal{K}}}\longrightarrow\mathbb{R}^{m\times n},$$

such that for all $\mathbf{h} \in \mathbb{R}^{K \times S}$

$$M_1(\mathbf{h}_1)M_2(\mathbf{h}_2)\cdots M_{\mathcal{K}}(\mathbf{h}_{\mathcal{K}})=\mathcal{A}P(\mathbf{h}).$$

- Changing M_1, M_2, \ldots, M_K only modifies \mathcal{A}
- The properties of
 - $M_1(\mathbf{h}_1)M_2(\mathbf{h}_2)\cdots M_K(\mathbf{h}_K)$
 - $\mathbf{h} \longmapsto \|M_1(\mathbf{h}_1)M_2(\mathbf{h}_2)\cdots M_K(\mathbf{h}_K) X\|^2$

relate to the geometry of \mathcal{A} and Σ_1 (or Σ_2).

- When K = 1 and X is vectorized, we simply have $\mathcal{A} = M_1$.
- In most reasonable cases, \mathcal{A} is sparse.
- We can compute $\mathcal{AP}(\mathbf{h})$, whatever $\mathbf{h} \in \mathbb{R}^{K \times S}$, using

$$\mathcal{A}P(\mathbf{h}) = M_1(\mathbf{h}_1)M_2(\mathbf{h}_2)\dots M_{\mathcal{K}}(\mathbf{h}_{\mathcal{K}}).$$

Proposition

If we consider *R* independent random collections of vectors \mathbf{h}^r , with r = 1...R, according to the normal distribution in $\mathbb{R}^{K \times S}$, we have (with probability 1)

$$\mathsf{dim}(\mathsf{Span}((\mathcal{A}P(\mathbf{h}'))_{r=1..R})) = \begin{cases} R & \text{, if } R \leq \mathsf{rk}(\mathcal{A}) \\ \mathsf{rk}(\mathcal{A}) & \text{, otherwise.} \end{cases}$$

This can be used to compute $rk(\mathcal{A})$.

(2)

Identifiability – noise free case We assume there is $\overline{\mathbf{h}} \in \mathcal{M}^{\overline{L}}$ and

 $X = M_1(\overline{\mathbf{h}}_1) \dots M_K(\overline{\mathbf{h}}_K).$

There is $\mathbf{h}^* \in \mathcal{M}^{L^*}$

$$X = M_1(\mathbf{h}_1^*) \dots M_K(\mathbf{h}_K^*).$$
(3)

Definition

 $[\mathbf{h}]$ is identifiable if the elements of $[\mathbf{h}]$ are the only solutions of (3).

Theorem : Necessary and sufficient conditions of identifiability

• For any \overline{L} and $\overline{\mathbf{h}} \in \mathcal{M}^{\overline{L}}$: $[\overline{\mathbf{h}}]$ is identifiable if and only if for any $L \in \mathbb{N}$

$$(P(\overline{\mathbf{h}}) + \operatorname{Ker}(\mathcal{A})) \cap P(\mathcal{M}^{L}) \subset \{P(\overline{\mathbf{h}})\}.$$

② \mathcal{M} is identifiable if and only if for any *L* and $L' \in \mathbb{N}$

$$\operatorname{Ker}(\mathcal{A}) \cap \left(P(\mathcal{M}^{\mathcal{L}}) - P(\mathcal{M}^{\mathcal{L}'}) \right) \subset \{0\}.$$
(4)

F. Malgouyres & J. Landsberg

Definition: dim_{min} (\mathcal{M})

Let dim_{min} $(\mathcal{M}) \in \mathbb{N}$ be the largest dimension of the sub-vector spaces V of $\mathbb{R}^{S^{K}}$ such that there exists a neighborhood O of the origin, $L \in \mathbb{N}$ and $L' \in \mathbb{N}$ such that

$$(V \cap O) \subset (P(\mathcal{M}^{L}) - P(\mathcal{M}^{L'})).$$

Example : When K > 1 and $\mathcal{M} = \mathbb{R}^{K \times S}$, we have $\dim_{\min} (\mathcal{M}) = 2S - 1$. We always have $\dim_{\min} (\mathcal{M}) \leq 2S - 1$.

Theorem : Necessary condition of identifiability

If $\mathsf{rk}(\mathcal{A}) < \mathsf{dim}_{\min}(\mathcal{M})$, then \mathcal{M} is not identifiable.

We assume $P(\mathcal{M})$ is Zariski closed and invariant under rescaling.

Definition: dim_{max} (\mathcal{M})

$$\mathsf{dim}_{_{\mathsf{max}}}(\mathcal{M}) = \max_{\mathcal{L},\mathcal{L}'} \mathsf{dim} \overline{\{sx + ty \mid x \in \mathcal{P}(\mathcal{M}^{\mathcal{L}'}), \ y \in \mathcal{P}(\mathcal{M}^{\mathcal{L}}), \ s, t \in \mathbb{R}\}}^{Zar}$$

We have : $\dim_{\max}(\mathcal{M}) \leq 2\max_{L}(\dim P(\mathcal{M}^{L}))$. Example : $\dim_{\max}(\mathbb{R}^{K \times S}) \leq 2\dim(\Sigma_{1}) = 2K(S-1)+2$

Theorem : Almost surely sufficient condition for Identifiability

For almost every $\mathcal A$ such that

 $\mathsf{rk}(\mathcal{A}) \geq \mathsf{dim}_{\scriptscriptstyle\mathsf{max}}(\mathcal{M})$

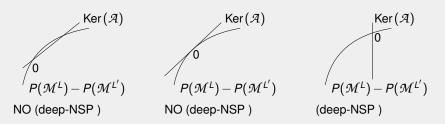
every $\overline{\mathbf{h}} \in \mathbb{R}^{K \times S}$ is identifiable.

Stable recovery - Interpretability

Deep-Null Space Property

Let $\gamma > 0$ and $\rho > 0$, we say that Ker (\mathcal{A}) satisfies the *deep-Null Space Property (deep-NSP*) with respect to the collection of models \mathcal{M} with constants (γ, ρ) if for any L and $L' \in \mathbb{N}$, any $T \in P(\mathcal{M}^L) - P(\mathcal{M}^{L'})$ satisfying $||\mathcal{A}T|| \leq \rho$ and any $T' \in \text{Ker}(\mathcal{A})$, we have

$$|T|| \le \gamma ||T - T'||. \tag{5}$$



$$\|M_1(\overline{\mathbf{h}}_1)\cdots M_{\mathcal{K}}(\overline{\mathbf{h}}_{\mathcal{K}})-X\|\leq \delta,$$

and

$$\|M_1(\mathbf{h}_1^*)\cdots M_{\mathcal{K}}(\mathbf{h}_{\mathcal{K}}^*)-X\|\leq \eta,$$

for δ and η small.

Theorem : Sufficient condition for interpretability

Assume Ker (\mathcal{A}) satisfies the deep-NSP with respect to the collection of models \mathcal{M} and with the constant (γ , ρ). If $\delta + \eta \leq \rho$, we have

$$\|P(\mathbf{h}^*) - P(\overline{\mathbf{h}})\| \leq \frac{\gamma}{\sigma_{min}} \ (\delta + \eta),$$

where $\sigma_{\textit{min}}$ is the smallest non-zero singular value of \mathcal{A} . Moreover, if $\overline{\mathbf{h}} \in \mathbb{R}_*^{K \times S}$ and $\frac{\gamma}{\sigma_{\textit{min}}} (\delta + \eta) \leq \frac{1}{2} \max \left(\| P(\overline{\mathbf{h}}) \|_{\infty}, \| P(\mathbf{h}^*) \|_{\infty} \right)$ then

$$d_{p}([\mathbf{h}^{*}], [\overline{\mathbf{h}}]) \leq \frac{7(KS)^{\frac{1}{p}}\gamma}{\sigma_{min}} \min\left(\|P(\overline{\mathbf{h}})\|_{\infty}^{\frac{1}{K}-1}, \|P(\mathbf{h}^{*})\|_{\infty}^{\frac{1}{K}-1}\right) (\delta + \eta).$$
(6)

Theorem : Necessary condition for interpretability

Assume the interpretability holds: There exists C and $\delta > 0$ such that for any $\overline{L} \in \mathbb{N}$, $\overline{\mathbf{h}} \in \mathcal{M}^{\overline{L}}$, any $X = \mathcal{A}P(\overline{\mathbf{h}}) + e$, with $||e|| \leq \delta$, any $L^* \in \mathbb{N}$ and any $\mathbf{h}^* \in \mathcal{M}^{L^*}$ such that

$$\|\mathcal{A}P(\mathbf{h}^*) - X\|^2 \le \|\boldsymbol{e}\|$$

we have

$$d_2([\mathbf{h}^*], [\overline{\mathbf{h}}]) \leq C \min\left(\|P(\overline{\mathbf{h}})\|_{\infty}^{\frac{1}{K}-1}, \|P(\mathbf{h}^*)\|_{\infty}^{\frac{1}{K}-1} \right) \|e\|.$$

Then, $\operatorname{Ker}(\mathcal{A})$ satisfies the deep-NSP with respect to the collection of models \mathcal{M} with constants

$$(\gamma, \rho) = (CS^{\frac{K-1}{2}}\sqrt{K} \sigma_{max}, \delta)$$

where σ_{max} is the spectral radius of \mathcal{A} .

Plan

2 Application to convolutional network

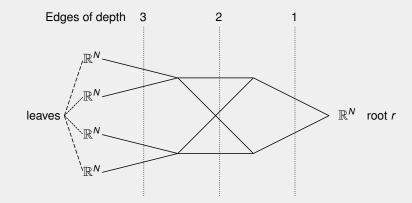


Figure: Example of the **convolutional linear network**. To every edge is attached a convolution kernel. The network does not involve non-linearities or sampling.

$$X = M_1(\mathbf{h}_1)M_2(\mathbf{h}_2)M_3(\mathbf{h}_3) = [X_1X_2X_3X_4] \in \mathbb{R}^{N \times N|\mathcal{F}|}$$

 $X_1, ..., X_4$ are convolution matrix

Proposition : Necessary condition of identifiability of a network

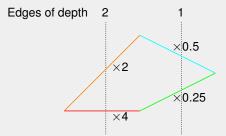
If some of the entries of $M_1(1) \dots M_K(1)$ do not belong to $\{0,1\}$:

 $\mathbb{R}^{K \times S}$ is not identifiable.

The condition "all the entries of $M_1(1) \dots M_K(1)$ belong to $\{0,1\}$ " can be computed by applying the network $|\mathcal{F}|$ times to a dirac delta function.

Proposition

If the network is a branch and all the entries of $M_1(1) \cdots M_K(1)$ belong to $\{0,1\}$, then $\text{Ker}(\mathcal{A}) = \{0\}$ and $\text{Ker}(\mathcal{A})$ satisfies the deep-NSP with respect to any model collection \mathcal{M} with constant $(\gamma, \rho) = (1, +\infty)$. Moreover, we have $\sigma_{\min} = \sqrt{N}$.



 \boldsymbol{h} and $\boldsymbol{g} \in \mathbb{R}^{\mathcal{K} \times \mathcal{S}}$ are equivalent if and only if

$$\forall \mathbf{p} \in \mathscr{P}, \exists (\lambda_e)_{e \in \mathbf{p}} \in \mathbb{R}^{\mathbf{p}}, \text{ such that } \prod_{e \in \mathbf{p}} \lambda_e = 1 \text{ and } \forall e \in \mathbf{p}, \mathscr{T}_e(\mathbf{g}) = \lambda_e \mathscr{T}_e(\mathbf{h}).$$

The equivalence class of $\mathbf{h} \in \mathbb{R}^{K \times S}$ is denoted by $\{\mathbf{h}\}$. For any $p \in [1, +\infty]$, we define

$$\delta_{\rho}(\{\mathbf{h}\},\{\mathbf{g}\}) = \left(\sum_{\mathbf{p}\in\mathscr{P}} d_{\rho}([\mathbf{h}^{\mathbf{p}}],[\mathbf{g}^{\mathbf{p}}])^{\rho}\right)^{\frac{1}{\rho}},$$

where h^p (resp g^p) is the restriction of h (resp g) to the path p.

$$\|M_1(\overline{\mathbf{h}}_1)\cdots M_{\mathcal{K}}(\overline{\mathbf{h}}_{\mathcal{K}})-X\|\leq \delta,$$

and

$$\|M_1(\mathbf{h}_1^*)\cdots M_{\mathcal{K}}(\mathbf{h}_{\mathcal{K}}^*)-X\| \leq \eta,$$

for δ and η small.

Theorem : Sufficient condition of interpretability

If all the entries of $M_1(1) \cdots M_{\mathcal{K}}(1)$ belong to $\{0,1\}$, if there exists $\varepsilon > 0$ such that for all $e \in \mathcal{E}$, $\|\mathcal{T}_e(\bar{\mathbf{h}})\|_{\infty} \ge \varepsilon$, and if $\delta + \eta \le \frac{\sqrt{N\varepsilon^{\mathcal{K}}}}{2}$ then

$$\delta_{\rho}(\{\mathbf{h}^*\},\{\overline{\mathbf{h}}\}) \leq 7(\mathcal{KS}')^{\frac{1}{p}} \varepsilon^{1-\mathcal{K}} \ \frac{\delta+\eta}{\sqrt{N}}$$

where $S' = \max_{e \in \mathcal{E}} |S_e|$.

Rks :

- The condition "M₁(1) ··· M_K(1) belong to {0,1}" is not satisfied by most network structure encountered in practice.
- The action of the activation function favors interpretability.

Thank you for your attention !

paper available on

www.math.univ-toulouse.fr/~fmalgouy/

or google: F. Malgouyres