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Statement, without technicality

fh a family of functions parameterized by h (e.g. linear networks)

I,X matrix containing input-output pairs

Informal statement
Under a certain condition on the family f (e.g. on the topology of the network):
There exists C such that for η small and for any

h,h∗ ∈ {h| ‖fh(I)−X‖ ≤ η}

we have
d(h,h∗)≤ C η

If the condition is satisfied we have stably defined features

⇒ interpretable learning

If the data are known to be generated by a network

⇒ control of the risk
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Deep structured linear networks

Problem formulation
Let K ∈ N∗, m1 . . .mK+1 ∈ N, write m1 = m, mK+1 = n. We assume that we know the
matrix X ∈ Rm×n which is (approximatively) the product of factors Xk ∈ Rmk×mk+1 :

X = X1 · · ·XK .

We investigate models/constraints imposed on the factors Xk for which we can (up to
obvious scale rearrangement) stably recover the factors Xk from X .
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Deep structured linear networks

Structure of the factors
For k = 1 . . .K , we know

Mk : RS −→ Rmk×mk+1 ,

h 7−→ Mk (h)

We know models

M = (M L)L∈N with , M L ⊂ RK×S,∀L.

Assume there exists L, L∗ and (hk )k=1..K ∈M L and (h∗k )k=1..K ∈M L∗ such that

‖M1(h1) · · ·MK (hK )−X‖ ≤ δ,

‖M1(h∗1) · · ·MK (h∗K )−X‖ ≤ η,

Is (hk )k=1..K close to (h∗k )k=1..K ?
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Examples

K = 1: Compressed sensing problem: Recovering h1 from M1(h1) is linear
inverse problem.

K = 2:
I Dictionary learning: M1(h1) is a dictionary of atoms, M2(h2) is sparse
I Non-negative matrix factorization: M1(h1)≥ 0 and M2(h2)≥ 0
I Low rank approximation: M1(h1) is rectangular ”vertical” (m1�m2), M2(h2) is

rectangular ”horizontal” (m2�m3).
I Phase recovery: M1(h1) = diag(Fh1), M2(h2) = (Fh2)

∗, with F the Fourier matrix
and h1 = h2.

I Blind deconvolution: M1(h1) is circulant, M2(h2) is a signal
I Blind-demixing, self-calibration, Internet of things. . .
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K large :
I Fast Fourier, Discrete Cosine, Discrete Wavelet, Jacobi eigenvalue Algorithm
I Tsiligkaridis, Hero, Zhou: Kronecker graphical lasso (IEEE SP 2013)
I Lyu, Wang: Multi-layer NMF (NIPS’13)
I Kondor, Tevena, Garg: Multiresolution Matrix fatorization (ICML 2014)
I Chabiron, Malgouyres, Wendt, Tourneret: Fast Transform Learning (IJCV, 2015)
I Le Magoarou, Gribonval: Faust (IEEE STSP, 2016)
I Rusu, Thomson: Transforms based on Householder reflectors (IEEE SP 2016)

and Givens rotations (IEEE SP 2017)
I Sulam, Papyan, Romano, Elad : Multi-layer Convolutional Sparse Coding (IEEE

SP 2018)

Figure: Atoms in the tree for the 3×3 support.
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Link with Deep learning
edge of depth 3 2 1

Figure: Deep network

N (h, I) = U1M ′1(h1)U2M ′2(h2)U3M ′3(h3)I

M ′k (hk ) : is a linear operator, depending linearly on hk

I Feed-forward : M ′3(h3) =

(
h3,1 h3,2 0 0
0 0 h3,3 h3,4

)
I Convolutional : M ′3(h3) =

(
C1(h3) C2(h3) 0 0
0 0 C3(h3) C4(h3)

)
where Ci(.) convolution+sampling matrices.
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Link with Deep learning

With ReLU : Uk : Rnk×L 7−→ Rnk×L (where nk is the size of the layer k ) is such
that :

(Uk M)n,l = ak (h)n,lMn,l , with ak (h) ∈ {0,1}nk×L.

and

ak (h)n,l =

{
1 , if

(
M ′k (hk )Uk+1M ′k+1(hk+1) · · ·UK M ′K (hK )X

)
n,l
≥ 0

0 , otherwise

The function

ak : RK×S −→ {0,1}nk×L

h 7−→ ak (h)

is piecewise constant.

As a function of h, the neural network is a piecewise structured linear
network
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Notations

Nk = {1, . . . ,k}
h ∈ RK×S , hk ∈ RS , hk ,ik ∈ R

RK×S
∗ = {h ∈ RK×S,∀k ∈ NK ,‖hk‖ 6= 0}

For h and g ∈ RK×S
∗ , h∼ g if and only if there exists (λk )k∈NK ∈ RK such that

K

∏
k=1

λk = 1 and hk = λk gk ,∀k ∈ NK .

We say g ∈ [h].

Remark
Since for any g ∈ [h]

M1(h1) . . .MK (hK ) = M1(g1) . . .MK (gK )

Recovering [h] is the best we can hope for.
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Tensors T ∈ R

K times︷ ︸︸ ︷
S× . . .×S = RSK

Tensor value Ti1,...,iK or Ti, for i = (i1, . . . , iK ) ∈ NK
S

T ∈ RSK
is of rank 1 if and only if there exists h ∈ RK×S s.t.:

Ti = h1,i1 . . .hK ,iK ,∀i ∈ NK
S .

We say T ∈ Σ1.

We call rk(T ) the smallest r ∈ N, there exists T1, . . . ,Tr ∈ Σ1, s. t.

T = T1 + . . .+ Tr .

We denote Σr = {T ∈ RSK | rk(T )≤ r}.
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Facts on Segre embedding and tensors

Σ1,∗ is a smooth (i.e. C∞) manifold of dimension K (S−1) + 1

Geometry of Σ2: There exists a closed set C ⊂ Σ2, whose Haudorff measure of
dimension 2K (S−1) + 2 (resp. 4(S−1)) is 0, such that Σ2 \C is a smooth
manifold of dimension 2K (S−1) + 2 when K ≥ 3 (resp. 4(S−1), when K = 2).

Segre embedding: Parameterize Σ1 ⊂ RSK
by the map

P : RK×S −→ Σ1 ⊂ RSK

h 7−→ (h1,i1h2,i2 . . .hK ,iK )i∈NK
S

Remark
Since for any g ∈ [h]

P(h) = P(g)

Recovering [h] from P(h) is the best we can hope for.
Recovering [h] from P(h) is easy. (By extracting lines in P(h).)
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Theorem: Stability of [h] from P(h)

Let h and g ∈ RK×S
∗ be such that

‖P(g)−P(h)‖∞ ≤
1
2

max(‖P(h)‖∞,‖P(g)‖∞) .

We have for p and q ∈ [1,∞],

dp([h], [g])≤ 7(KS)
1
p min

(
‖P(h)‖

1
K −1
∞ ,‖P(g)‖

1
K −1
∞

)
‖P(h)−P(g)‖q.

In the theorem, we use the metric

dp([h], [g]) = inf
h′∈[h]∩RK×S

=

inf
g′∈[g]∩RK×S

=

‖h′−g′‖p ,∀h,g ∈ RK×S
∗

where p > 1 and

RK×S
= = {h ∈ RK×S

∗ ,∀k ∈ NK ,‖hk‖∞ = ‖h1‖∞}.
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Proposition : Sharpness of the bound

There exists h and g ∈ RK×S
∗ such that ‖P(g)‖∞ ≤ ‖P(h)‖∞,

‖P(g)−P(h)‖∞ ≤ 1
2 ‖P(h)‖∞ and

7(KS)
1
p ‖P(h)‖

1
K −1
∞ ‖P(h)−P(g)‖q ≤ Cq dp([h], [g]),

where

Cq =

{
28(KS)

1
q , if q < +∞,

28 , if q = +∞.
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Theorem: Lipschitz continuity of P

We have for any q ∈ [1,∞] and any h and g ∈ RK×S
∗ ,

‖P(h)−P(g)‖q ≤ S
K−1

q K 1− 1
q max

(
‖P(h)‖1− 1

K
∞ ,‖P(g)‖1− 1

K
∞

)
dq([h], [g]). (1)

The upper bounds in the theorem is tight up to at most a factor K .
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The Tensorial Lifting

When K = 2: M1(h1)M2(h2) has the form
p1,1(h1) p1,2(h1) · · · p1,m2 (h1)
p2,1(h1) p2,2(h1) · · · p2,m2 (h1)

...
...

. . .
...

pm,1(h1) pm,2(h1) · · · pm,m2 (h1)




q1,1(h2) · · · q1,n(h2)
q2,1(h2) · · · q2,n(h2)

...
. . .

...
qm2,1(h2) · · · qm2,n(h2)


so for i and j

(M1(h1)M2(h2))i,j =
(
pi,1(h1) pi,2(h1) · · · pi,m2 (h1)

)


q1,j (h2)
q2,j (h2)

...
qm2,j (h2)


is a polynomial whose monomial are of the form h1,i1h2,i2
Ex: (2h1,3 + 4h1,7)(h2,1 + 5h2,4) = 2h1,3h2,1 + 10h1,3h2,4 + 4h1,7h2,1 + 20h1,7h2,4
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The Tensorial Lifting

Theorem

There exists a unique linear map

A : RSK −→ Rm×n,

such that for all h ∈ RK×S

M1(h1)M2(h2) · · ·MK (hK ) = AP(h).

Changing M1, M2, . . . , MK only modifies A
The properties of

I M1(h1)M2(h2) · · ·MK (hK )
I h 7−→ ‖M1(h1)M2(h2) · · ·MK (hK )−X‖2

relate to the geometry of A and Σ1 (or Σ2).
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When K = 1 and X is vectorized, we simply have A = M1.

In most reasonable cases, A is sparse.

We can compute AP(h), whatever h ∈ RK×S , using

AP(h) = M1(h1)M2(h2) . . .MK (hK ).

Proposition
If we consider R independent random collections of vectors hr , with r = 1...R,
according to the normal distribution in RK×S , we have (with probability 1)

dim(Span((AP(hr ))r=1..R)) =

{
R , if R ≤ rk(A)
rk(A) , otherwise.

(2)

This can be used to compute rk(A).
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Identifiability – noise free case
We assume there is h ∈M L and

X = M1(h1) . . .MK (hK ).

There is h∗ ∈M L∗

X = M1(h∗1) . . .MK (h∗K ). (3)

Definition
[h] is identifiable iif the elements of [h] are the only solutions of (3).

Theorem : Necessary and sufficient conditions of identifiability
1 For any L and h ∈M L: [h] is identifiable if and only if for any L ∈ N(

P(h) + Ker(A)
)
∩P(M L) ⊂ {P(h)}.

2 M is identifiable if and only if for any L and L′ ∈ N

Ker(A)∩
(
P(M L)−P(M L′)

)
⊂ {0}. (4)
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Definition: dimmin (M )

Let dimmin (M ) ∈ N be the largest dimension of the sub-vector spaces V of RSK
such

that there exists a neighborhood O of the origin, L ∈ N and L′ ∈ N such that

(V ∩O)⊂
(
P(M L)−P(M L′)

)
.

Example : When K > 1 and M = RK×S , we have dimmin (M ) = 2S−1.
We always have dimmin (M )≤ 2S−1.

Theorem : Necessary condition of identifiability
If rk(A) < dimmin (M ), then M is not identifiable.
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We assume P(M ) is Zariski closed and invariant under rescaling.

Definition: dimmax (M )

dimmax (M ) = max
L,L′

dim{sx + ty | x ∈ P(M L′), y ∈ P(M L), s, t ∈ R}
Zar

.

We have : dimmax (M )≤ 2maxL
(
dimP(M L)

)
.

Example : dimmax

(
RK×S

)
≤ 2dim(Σ1) = 2K (S−1) + 2

Theorem : Almost surely sufficient condition for Identifiability
For almost every A such that

rk(A)≥ dimmax (M )

every h ∈ RK×S is identifiable.
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Stable recovery – Interpretability

Deep-Null Space Property
Let γ > 0 and ρ > 0, we say that Ker(A) satisfies the deep-Null Space
Property (deep-NSP ) with respect to the collection of models M with constants (γ,ρ)

if for any L and L′ ∈ N, any T ∈ P(M L)−P(M L′) satisfying ‖AT‖ ≤ ρ and any
T ′ ∈ Ker(A), we have

‖T‖ ≤ γ‖T −T ′‖. (5)

P(M L)−P(M L′)

0

Ker(A)

NO (deep-NSP )

P(M L)−P(M L′)

0

Ker(A)

NO (deep-NSP )

P(M L)−P(M L′)

0

Ker(A)

(deep-NSP )
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‖M1(h1) · · ·MK (hK )−X‖ ≤ δ,

and
‖M1(h∗1) · · ·MK (h∗K )−X‖ ≤ η,

for δ and η small.

Theorem : Sufficient condition for interpretability
Assume Ker(A) satisfies the deep-NSP with respect to the collection of models M
and with the constant (γ,ρ). If δ + η≤ ρ, we have

‖P(h∗)−P(h)‖ ≤ γ

σmin
(δ + η),

where σmin is the smallest non-zero singular value of A . Moreover, if h ∈ RK×S
∗ and

γ

σmin
(δ + η)≤ 1

2 max
(
‖P(h)‖∞,‖P(h∗)‖∞

)
then

dp([h∗], [h])≤ 7(KS)
1
p γ

σmin
min

(
‖P(h)‖

1
K −1
∞ ,‖P(h∗)‖

1
K −1
∞

)
(δ + η). (6)
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Theorem : Necessary condition for interpretability
Assume the interpretability holds: There exists C and δ > 0 such that for any L ∈ N, h ∈M L, any
X = AP(h)+e, with ‖e‖ ≤ δ, any L∗ ∈ N and any h∗ ∈M L∗ such that

‖AP(h∗)−X‖2 ≤ ‖e‖

we have

d2([h∗], [h])≤ C min

(
‖P(h)‖

1
K −1
∞ ,‖P(h∗)‖

1
K −1
∞

)
‖e‖.

Then, Ker(A) satisfies the deep-NSP with respect to the collection of models M with
constants

(γ,ρ) = (CS
K−1

2
√

K σmax ,δ)

where σmax is the spectral radius of A .
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1 Multilinear compressed sensing

2 Application to convolutional network
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Edges of depth 3 2 1

leaves

RN

RN

RN

RN

RN root r

Figure: Example of the convolutional linear network. To every edge is attached a convolution
kernel. The network does not involve non-linearities or sampling.

X = M1(h1)M2(h2)M3(h3) = [X1X2X3X4] ∈ RN×N|F |

X1, ...,X4 are convolution matrix
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Proposition : Necessary condition of identifiability of a network

If some of the entries of M1(1) . . .MK (1) do not belong to {0,1} :

RK×S is not identifiable.

The condition ”all the entries of M1(1) . . .MK (1) belong to {0,1}” can be computed by
applying the network |F | times to a dirac delta function.

Proposition

If the network is a branch and all the entries of M1(1) · · ·MK (1) belong to {0,1}, then
Ker(A) = {0} and Ker(A) satisfies the deep-NSP with respect to any model
collection M with constant (γ,ρ) = (1,+∞). Moreover, we have σmin =

√
N.
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Edges of depth 2 1

×2

×0.5

×4

×0.25

h and g ∈ RK×S are equivalent if and only if

∀p ∈ P ,∃(λe)e∈p ∈ Rp, such that ∏
e∈p

λe = 1 and ∀e ∈ p,Te(g) = λeTe(h).

The equivalence class of h ∈ RK×S is denoted by {h}. For any p ∈ [1,+∞], we define

δp({h},{g}) =

(
∑

p∈P
dp([hp], [gp])p

) 1
p

,

where hp (resp gp) is the restriction of h (resp g) to the path p.
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‖M1(h1) · · ·MK (hK )−X‖ ≤ δ,

and
‖M1(h∗1) · · ·MK (h∗K )−X‖ ≤ η,

for δ and η small.

Theorem : Sufficient condition of interpretability

If all the entries of M1(1) · · ·MK (1) belong to {0,1}, if there exists ε > 0 such that for

all e ∈ E , ‖Te(h)‖∞ ≥ ε, and if δ + η≤
√

NεK

2 then

δp({h∗},{h})≤ 7(KS′)
1
p ε

1−K δ + η√
N

where S′ = maxe∈E |Se|.

Rks :
The condition ”M1(1) · · ·MK (1) belong to {0,1}” is not satisfied by most network
structure encountered in practice.
The action of the activation function favors interpretability.
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Thank you for your attention !

paper available on
www.math.univ-toulouse.fr/∼fmalgouy/

or
google: F. Malgouyres
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