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ML on graphs: Graph Neural Networks

Graph Neural Networks (GNN) are “deep architectures” to do ML on graphs.
● Very (very) trendy right now!
● Work quite well, but... 

● Room for improvement! (compared to other “deep learning”)
● No “ImageNet moment” yet for GNNs (see Open Graph Benchmark)
● The theory might be actually useful to design new architectures

This talk: some theoretical properties of Graph Neural Networks on large graphs.
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● Eg: universality of NNs is known since the 90s, for GNNs it is still a very active field.

● Most analyses of GNNs are discrete in nature.
● Can a GNN distinguish two non-isomorphic graphs?
● Can a GNN count triangles? compute the diameter of a graph? etc.

● Large graphs may “look the same”, but are never isomorphic, of different size, etc.

This talk: use random graph models to 
analyze GNN properties on large graphs
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random generative models

Latent position models (W-random graphs, kernel random graphs...)

Node features (opt.)Unknown latent variables

Dense
Relatively sparse

Sparse

Connectivity kernel

Chung and Lu. Complex Graphs and Networks (2004)
Penrose. Random Geometric Graphs (2008)
Lovasz. Large networks and graph limits (2012)
Frieze and Karonski. Introduction to random graphs (2016)

Includes Erdös-Rényi, 
Stochastic Block Models, 
Gaussian kernel, epsilon-
graphs...
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Chung. Spectral Graph Theory. (1999)
Shuman et al. The Emerging Field of Signal Processing on Graphs. (2013)
Defferrard et al. Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering (2016)

(Early-days) GNNs are based on 
graph-convolutions (filtering)

● Based on graph Fourier transform
● Defined by diagonalizing the graph 

Laplacian
● Popular filters are polynomial filters

Bruna et al. Spectral Networks and Locally Connected 
Networks on Graphs (2013)
Bronstein et al. Geometric Deep Learning (2017)
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Continuous Graph Neural Networks(Spectral) Graph Neural Networks
● Propagate signal over nodes

Output
● Signal over nodes (permutation-equivariant)
● Single vector with pooling (permutation-invariant)

Output
● Function (“continuous” permutation-equivariant)
● Vector (“continuous” permutation-invariant)

Trainable polynomial graph 
filters with normalized Laplacian

Filters with normalized 
Laplacian operator

ReLU

Same
parameters!

● Propagate function over latent space
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Continuous limit of GNNs
Thm (Non-asymptotic convergence)
If                           , with probability            , the deviation between the outputs of 
the discrete GNN and the continuous GNN is

● Thanks to normalized Laplacian, 
the limit does not depend on        
but the rate of convergence does...

● Could have used
normalized adjacency
with operator
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Large graphs?
● CNN (translation-invariant) are robust 

to spatial deformations

● GNN: stability to discrete graph metrics

● Difficult to interpret, difficult to define for different-sized graphs
● What’s a meaningful notion of deformation for a graph?

Mallat. Group Invariant Scattering (2012)
Bruna and Mallat. Classification with scattering 
operators (2013)
Bietti and Mairal. Group invariance, stability to 
deformations, and complexity of deep 
convolutional representations (2019)

Gama et al. Stability Properties of Graph 
Neural Networks (2020)
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Stability of continuous GNNs

Thm (Stability, simplified)
For translation-invariant kernels, if:
●      is replaced by                                   
●      is replaced by                   (and     is translated)
●      is replaced by
Then, the deviation of c-GNN is bounded by

Continuous domain allows to define intuitive geometric deformations

Deformation of distribution Deformation of kernel
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● Are GNNs universal on graph structures? Can they distinguish non-isomorphic graphs?
● A classical algorithm for graph isomorphism is the Weisfeiler-Lehman test.

● Works by propagating labels with injective message-passing function
● Sometimes yields false positive

By construction, message-passing GNNs are not more powerful than WL test, and 
can be as powerful if the message-passing function is injective (sufficient number of 
neurons). Xu et al. How Powerful are Graph Neural Networks? (2019)

Weisfeiler and Lehman. A reduction of a graph 
to a canonical form and an algebra arising 
during this reduction (1968)
Babai and Kucera. Canonical labelling of 
graphs in linear average time (1979)WL fails here...
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● Thm. SGNNs converge toward c-SGNN.

● Thm. c-SGNNs are strictly more powerful than c-GNNs

● Thm. Using Stone-Weierstrass theorem, c-SGNNs are 
universal (both permutation-invariant/equivariant):

● On most SBMs
● Many “additive” kernels
● 1D radial kernels (w/ symmetry)

● Most dot-product kernels...
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nkeriven.github.io

Outlooks:
● Sparse graphs, “differential” Laplacian operator, preferential attachement graphs...
● Message-passing GNNs, high-order tensors...
● Generalization, optimization...

Keriven, Bietti, Vaiter. Convergence and Stability of Graphs Convolutional Networks on Large Random Graphs. 
NeurIPS (Spotlight) (2020)
Keriven, Bietti, Vaiter. On the Universality of Graph Neural Networks on Large Random Graphs. Submitted. (2021)
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