Robust SBM

Statistical guarantees

Numerical results

References

Outliers detection in networks with missing links

Solenne Gaucher¹, Olga Klopp², <u>Geneviève Robin³</u>

¹ Université Paris-Sud
 ² ESSEC Business School, ENSAE
 ³ CNRS, Université d'Évry Val d'Essonne

22 October, 2021

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

-

Robust SBN 0000 Statistical guarantees 00000

Numerical results

References

Example: Les Misérables characters network

Figure: Network of Victor Hugo's novel Les Misérables characters

Network data:

- V: Set of nodes (characters: Jean Valjean, Fantine, etc.).
- *E*: Set of **edges** between nodes (whenever two characters appear in the same chapter).

イロト 不得 トイヨト イヨト

-

Robust SBN 0000

Introduction

Statistical guarantees 00000

Numerical results

References

General framework for network data analysis

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへ⊙

Statistical guarantees 00000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

General framework for network data analysis

Imperfect data setting:

- 1. <u>Missing values</u> (possibly many: machine failure, individual non response, etc.)
- <u>Outliers</u> (hubs, adversary agents, etc.): "an observation that deviates so much from other observations as to arouse suspicion that it was generated by a different mechanism"

Objectives:

- 1. Predict missing values: estimation of connection probabilities
- 2. Detect outliers: support recovery
- 3. Scalable method (\sim 10,000 nodes)

Statistical guarantees 00000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The Stochastic Block Model (SBM) [Holland et al., 1983]

- Classical network model in probabilistic framework.
- Main ideas:
 - 1. The nodes (characters) are partitioned into unknown communities (narrative units).
 - 2. The probability that two nodes are connected (appear in the same chapter) depends on their respective communities.
 - 3. Communities assignment and connection probabilities are learned from data.

Robust SBM

Statistical guarantees

Numerical results

References

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The Stochastic Block Model (SBM)

- Nodes distributed across K > 0 communities w.p. π_1, \ldots, π_K .
- Denote $z_{ik} = \begin{cases} 1 \text{ if node } i \text{ is in community } k \\ 0 \text{ otherwise} \end{cases}$:

$$(z_{i1},\ldots,z_{iK})\sim \mathsf{Multi}(1,(\pi_1,\ldots,\pi_K)).$$

 The probability of connections between nodes is given by Q ∈ [0, 1]^{K×K} symmetric matrix of connection probabilities between communities:

$$\mathbb{P}(\mathsf{A}_{ij}=1|z_{ik}=1,z_{jl}=1)=\mathsf{Q}_{k,l}$$

The Stochastic Block Model (SBM)

• Up to reordering of the nodes, the expected adjacency matrix is *block-wise constant*. Its *rank* is at most *K*.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Robust SBN 0000 Statistical guarantees

Numerical results

References

Limitations of the SBM

Figure: SBM applied to Les Misérables characters network (nodes colored by community) Some nodes are not well modeled:

- Hubs (Jean Valjean, Myriel)
- Mixed memberships (Gavroche)
- Neutral nodes (Napoléon)
- Adversarial nodes

Unobserved edges:

- Nonresponse, dropout
- Expensive exploration of interactions

イロト 不得 トイヨト イヨト ニヨー

Robust SBM

Statistical guarantees

Numerical results

Our contributions

- 1. New algorithm to estimate connection probabilities in a network, robust to outliers and missing values
- 2. Achieves exact detection of the outliers (new result in low-rank plus sparse matrix decomposition)
- 3. Estimation guarantees for connection probabilities (best known error for polynomial time algorithms)
- 4. Scalable to moderate networks (\sim 1e4 nodes, 1e6 edges)
- 5. Numerical illustration & applications to epidemiology and social network analysis

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

General model

• Decompose the set of edges into $\mathcal{V} = \mathcal{I} \cup \mathcal{O}$, where \mathcal{I} is a set of n - s inliers, and O is a set of s outliers.

General model

- Decompose the set of edges into V = I ∪ O, where I is a set of n − s inliers, and O is a set of s outliers.
- For (i, j) ∈ I², A_{ij} ~ Bernoulli(L^{*}_{ij}), where L^{*} is a *low-rank* matrix in [0, 1].

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Statistical guarantees

Numerical results

References

General model

- Decompose the set of edges into V = I ∪ O, where I is a set of n − s inliers, and O is a set of s outliers.
- For (i, j) ∈ I², A_{ij} ~ Bernoulli(L^{*}_{ij}), where L^{*} is a *low-rank* matrix in [0, 1].
- For (i, j) ∈ O × I, A_{ij} ~ Bernoulli(S^{*}_{ij}), where S^{*} is an column-wise sparse matrix in [0, 1].

Statistical guarantees

Numerical results

References

General model

- Decompose the set of edges into V = I ∪ O, where I is a set of n − s inliers, and O is a set of s outliers.
- For (i, j) ∈ I², A_{ij} ~ Bernoulli(L^{*}_{ij}), where L^{*} is a *low-rank* matrix in [0, 1].
- For (i, j) ∈ O × I, A_{ij} ~ Bernoulli(S^{*}_{ij}), where S^{*} is an column-wise sparse matrix in [0, 1].
- For (i, j) ∈ O × O, A_{ij} ~ Bernoulli(S^{*}_{ij} + S^{*}_{ji}), where S^{*} is an column-wise sparse matrix in [0, 1].

Robust SBM

Statistical guarantees

Numerical results

References

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

General model

- Low-rank matrix L* generalizes the block-wise constant SBM model (of rank K).
- S* contains the arbitrary connection probabilities of outliers:

$$\mathsf{S}^{\star} = \begin{bmatrix} \cdot & 0 & 0 & \mathsf{S}^{\star}_{1,4} & \mathsf{S}^{\star}_{1,5} \\ 0 & \cdot & 0 & \mathsf{S}^{\star}_{2,4} & \mathsf{S}^{\star}_{2,5} \\ 0 & 0 & \cdot & \mathsf{S}^{\star}_{3,4} & \mathsf{S}^{\star}_{3,5} \\ 0 & 0 & 0 & \cdot & \mathsf{S}^{\star}_{4,5} \\ 0 & 0 & 0 & \mathsf{S}^{\star}_{5,4} & \cdot \end{bmatrix}$$

• Column-wise sparse ⇒ small number of ouliers *s* compared to the total number of nodes *n*.

•
$$\mathbb{E}[A_{ij}] = \mathsf{L}_{ij}^{\star} + \mathsf{S}_{ij}^{\star} + \mathsf{S}_{ji}^{\star}$$

Robust SBM

Statistical guarantees

Numerical results

References

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Estimation procedure

• Objective function:

Robust SBM

Statistical guarantees

Numerical results

References

Estimation procedure

• Objective function:

$$\Phi_{\epsilon}(\mathsf{S},\mathsf{L}) \stackrel{\triangle}{=} \underbrace{\frac{1}{2} \|\Omega \odot (\mathsf{A} - \mathsf{L} - \mathsf{S} - (\mathsf{S})^{\top})\|_{\mathsf{F}}^{2}}_{\text{data fitting term}} + \underbrace{\lambda_{1} \|\mathsf{L}\|_{\star}}_{\text{low-rank penalty}} + \underbrace{\lambda_{2} \|\mathsf{S}\|_{2,1}}_{\text{column-wise sparse penalty}}$$

• Estimation problem:

$$(\hat{\mathsf{S}},\hat{\mathsf{L}})\in \operatorname{argmin}_{\mathsf{S}\in[0,1]^{n imes n},\mathsf{L}\in[0,1]^{n imes n}}\Phi_{\epsilon}(\mathsf{S},\mathsf{L})$$

Robust SBM

Statistical guarantees

Numerical results

References

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Estimation procedure

• Objective function:

$$\Phi_{\epsilon}(\mathsf{S},\mathsf{L}) \stackrel{\triangle}{=} \underbrace{\frac{1}{2} \|\Omega \odot (\mathsf{A} - \mathsf{L} - \mathsf{S} - (\mathsf{S})^{\top})\|_{F}^{2}}_{\text{data fitting term}} + \underbrace{\lambda_{1} \|\mathsf{L}\|_{\star}}_{\text{low-rank penalty}} + \underbrace{\lambda_{2} \|\mathsf{S}\|_{2,1}}_{\text{column-wise sparse penalty}}$$

• Estimation problem:

$$(\hat{\mathsf{S}},\hat{\mathsf{L}})\in \operatorname{argmin}_{\mathsf{S}\in[0,1]^{n imes n},\mathsf{L}\in[0,1]^{n imes n}}\Phi_{\epsilon}(\mathsf{S},\mathsf{L})$$

• In practice:

$$(\mathsf{S}^{\mathsf{opt}},\mathsf{L}^{\mathsf{opt}})\in \mathsf{argmin}_{\mathsf{S},\mathsf{L}}\,\Phi_{\epsilon}(\mathsf{S},\mathsf{L})$$

Statistical guarantees 00000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Assumptions on missing values

• Let Π_{ii} denote the probability to observe the entry A_{ii} : assume $\Pi_{ij} \geq \mu_n > 0$.

- Denote by ν_n and $\tilde{\nu}_n$ two sequences such that
 - For all i ∈ I, ∑_{j∈I} Π_{ij} ≤ ν_nn
 For all i ∈ V, ∑_{j∈O} Π_{ij} ≤ ν̃_nn

Robust SBM 0000 Statistical guarantees 0000

Numerical results

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

eferences

Assumptions on connections

- Bounded parameters: $\|\mathbf{L}\|_{\infty} \leq \rho_n$, $\|\mathbf{S}\|_{\infty} \leq \gamma_n$
 - $\rho_n n$ average degree of inliers
 - $\gamma_n n$ average degree of outliers

• Number of observed edges:

$$u_n \rho_n n \ge \log(n), \quad \tilde{\nu}_n \gamma_n n \ge \log(n)$$

Robust SBN 0000 Statistical guarantees

Numerical results

Signal to noise ratio

For estimation of connection probabilities: ν_nρ_nn ≥ ν̃_nγ_ns

- $\nu_n \rho_n n$: average observed degree of inliers
- $\tilde{\nu}_n \gamma_n n$: average observed degree of outliers

- For detection of outliers: $\sum_{i \in \mathcal{I}} \prod_{ij} S_{ij}^{\star} \ge C \nu_n \rho_n n$
 - ∑_{i∈I} Π_{ij}S^{*}_{ij}: average number of observed edges between outliers and inliers
 - $\nu_n \rho_n n$: average observed degree of inliers

Robust SBM

Statistical guarantees

Numerical results

References

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Estimation of connection probabilities

Theorem

Choose $\lambda_1 = 84\sqrt{\nu_n\rho_n n}$ and $\lambda_2 = 19\sqrt{\nu_n\rho_n n}$. Then, there exists absolute constants C > 0 and c > 0 such that with probability at least $1 - \frac{c}{n}$,

$$\left\|\left(\widehat{\mathsf{L}}-\mathsf{L}^*\right)_{|I}\right\|_{F}^2 \leq \frac{C}{\mu_n}\left(\frac{\nu_n}{\mu_n}\rho_n kn + (\nu_n\rho_n\vee\widetilde{\nu}_n\gamma_n)\rho_n sn\right).$$

• Denote by \hat{O} the set of outliers detected by the MCGD algorithm (the nonzero columns in $S^{(T)}$).

Theorem (Outliers detection)

Let $\lambda_2 = 19\sqrt{\rho_n\nu_n n}$. There exists an absolute constant c > 0 such that with probability at least $1 - \frac{cs}{n}$:

$$\hat{\mathcal{O}} = \mathcal{O}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Simulation scheme: SBM with outliers

- n = 1000 nodes, k = 3 communities
- Connection probabilities: inside community p = 0.05, between communities q = 0.01
- Add outliers: Hubs connecting to any node with probability π_{hub} and Mixed membership connecting to two communities with probability π_{mix}
- Remove randomly 20% of the links (unobserved links)
- Evaluate the method for outliers detection and link prediction

Robust SBM

Statistical guarantees

Numerical results

References

Outliers detection

(a) **Hubs** detection: **Power** (red points) and **FDR** (blue triangles) for increasing $\rho_{hub} \sim \pi_{hub}/p$, averaged across 10 replications. $\rho_{hub} = 1$ indicated with dashed black line.

(b) Mixed membership: Power (red points) and FDR (blue triangles) for increasing $\rho_{\text{mix}} \sim \pi_{\text{mix}}/p$, averaged across 10 replications. $\rho_{\text{mix}} = 1$ indicated with dashed black line.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

Robust SBN 0000 Statistical guarantees

Numerical results

References

Link prediction

Robust SBM 0000 Statistical guarantees

Numerical results

References

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Political Twitter network

- Mentions network between political Twitter accounts, first analyzed in Fraisier et al. [2018], collected during the 2017 French presidential election
- 22,853 (political Twitter accounts)
- 1,896,262 edges edges (mentions in Tweets)
- Each account labeled manually according to political preferences (FI, LR, LREM,PS, RN)
- Apply our method and look at the detected outliers

Robust SBM 0000 Statistical guarantees

Numerical results

References

Political Twitter network: results

- Around 600 detected outliers
- Large hubs: Political figures (candidates: Benoît Hamon, Jean-Luc Mélenchon, etc., journalists and elected officials: Jean-Jacques Bourdin, Alexis Corbière, etc.), main media, unofficial political groups.
- Mixed membership nodes: Accounts affiliated to multiple political parties (smaller hubs: Christine Boutin, La Manif Pour Tous) and individual profiles with no public exposition (@mrericmas: LREM/LR, @erayeye: LR/RN, @Apostillier1: LREM/PS, etc.) that would not be detected using histogram of degrees

Robust SBM 0000 Statistical guarantees 00000

Numerical results

References

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Conclusion

Summary

- New algorithm to analyze network data in presence of outliers and missing links
- Exact detection of outliers
- Estimation error of connection probabilities
- Encouraging empirical results
- R package gsbm

Future work

- Classification properties of the algorithm
- Detection of groups of outliers
- Extension to dynamic networks

Robust SBM 0000 Statistical guarantees

Numerical results

References

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Generalized SBM [Cai and Li, 2015]

 The set of nodes V contains n – s "inliers" obeying the SBM and s "outliers" connecting other nodes in an arbitrary way:

$$\mathcal{V} = \underbrace{\mathcal{I}}_{\text{inliers}} \cup \underbrace{\mathcal{O}}_{\text{outliers}}$$

Robust SBM 0000 Statistical guarantees

Numerical results

References

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Generalized SBM [Cai and Li, 2015]

 The set of nodes V contains n – s "inliers" obeying the SBM and s "outliers" connecting other nodes in an arbitrary way:

$$\mathcal{V} = \underbrace{\mathcal{I}}_{\text{inliers}} \cup \underbrace{\mathcal{O}}_{\text{outliers}}$$

Estimate the matrix of community assignments
 Z = (z_{ik})_{1≤i≤n,1≤k≤K} via convex optimization (semi-definite
 program).

Robust SBM 0000 Statistical guarantees 00000

Numerical results

References

Generalized SBM [Cai and Li, 2015]

 The set of nodes V contains n – s "inliers" obeying the SBM and s "outliers" connecting other nodes in an arbitrary way:

$$\mathcal{V} = \underbrace{\mathcal{I}}_{\text{inliers}} \cup \underbrace{\mathcal{O}}_{\text{outliers}}$$

- Estimate the matrix of community assignments
 Z = (z_{ik})_{1≤i≤n,1≤k≤K} via convex optimization (semi-definite program).
- Main result: *inliers* are correctly classified into communities with high probability.

Statistical guarantees

Numerical results

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

SBM with unobserved edges [Tabouy et al., 2017]

- Unobserved dyads (pairs of nodes) in networks
- Estimation of SBM parameters with Variational Expectation-Maximization (VEM)
- Missing Completely At Random (MCAR), Missing At Random (MAR), Not Missing At Random (NMAR) settings
- Unbiased estimation in several NMAR settings
- Does not account for outliers

Statistical guarantees

Optimization algorithm

- R package gsbm
- Mixed Coordinate Gradient Descent
- S and L are updated alternatively along descent directions

Algorithm 1 Mixed coordinate gradient descent (MCGD)

- 1: Initialization: $(L^{(0)}, S^{(0)}, t) \leftarrow (0, 0, 0)$
- 2: for t = 1, ..., T do
- 3: $t \leftarrow t+1$
- 4: Compute a proximal update with fixed step size to obtain $S^{(t)}$.
- 5: Compute a Conjugate Gradient update to obtain L^(t) (step size given by theory).
- 6: end for
- 7: return $(L^{(T)}, S^{(T)})$

Robust SBM 0000 Statistical guarantees

Numerical results

References

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Convergence of the algorithm

Theorem (Sublinear convergence of MCGD)

For $\delta > 0$, the MCGD algorithm converges to a δ -optimal solution in $O(1/\delta)$ iterations:

$$|\Phi_{\epsilon}(\mathsf{S}^{(\mathcal{T}_{\delta})},\mathsf{L}^{(\mathcal{T}_{\delta})}) - \Phi_{\epsilon}(\mathsf{S}^{opt},\mathsf{L}^{opt})| \leq \delta,$$

 $T_{\delta} = \mathcal{O}(1/\delta).$

- T. T. Cai and X. Li. Robust and computationally feasible community detection in the presence of arbitrary outlier nodes. *Annals of Statistics*, 43(3):1027–1059, 2015.
- Ophélie Fraisier, Guillaume Cabanac, Yoann Pitarch, Romaric Besançon, and Mohand Boughanem. Élysée2017fr: The 2017 french presidential campaign on twitter. 2018. URL https://www.aaai.org/ocs/index.php/ICWSM/ICWSM18/ paper/view/17821.
- P.W. Holland, K.B. Laskey, and S. Leinhardt. Stochastic blockmodels: First steps. *Social Networks*, 5(2):109–137, 1983.
- T. Tabouy, P. Barbillon, and J. Chiquet. Variational Inference for Stochastic Block Models from Sampled Data. *ArXiv e-prints*, July 2017.