Breaking the Curse of Dimension in Smooth Optimal Transport Estimation

Adrien Vacher LIGM, UGE and INRIA Boris Muzellec INRIA Paris Alessandro Rudi INRIA Paris Francis Bach INRIA Paris François-Xavier Vialard LIGM, UGE

Overall motivation

Optimal transport is

- Gaining interest in data science.
- Data distribution \mathcal{P} accessible via samples $x_1, \ldots, x_n \in \mathbb{R}^d$, d >> 1.
- Typical situation: find a parametrized distribution Q_{θ} close to \mathcal{P} .

Statement of the problem

Given samples $x_1, ..., x_n \sim \mathcal{P}$ and $y_1, ..., y_n \sim \mathcal{Q}$, How to estimate efficiently $W_2(\mathcal{P}, \mathcal{Q})$?

An elementary Wasserstein estimation problem

Estimation of a shift

Consider $x_1, \ldots, x_n \sim \mathcal{N}(\mu, \mathrm{Id}_d)$ and $y_1, \ldots, y_n \sim \mathcal{N}(\mu + \delta, \mathrm{Id}_d)$.

$$\blacksquare \mathbb{E}[|\frac{1}{n}\sum_{i=1}^{n}(y_i-x_i)-\delta|] \lesssim \sqrt{\frac{2d}{n}}.$$

Kernel based distances

Reproducing Kernel Hilbert Spaces (RKHS)

Consider $H \subset \mathcal{F}(\Omega, \mathbb{R})$ Hilbert Space such that $H \hookrightarrow C^0(\Omega)$.

- $\delta_x \in H^*$.

Dual norms (a.k.a. Maximum Mean Discrepancy (MMD))

- $\blacksquare \mathcal{M}_1(\Omega) \subset H^*, \|\mu\|_{H^*} = \sup_{\|f\|_H \le 1} \langle f, \mu \rangle.$
- $\|\hat{\mu} \mu\|_{H^*} \lesssim \sqrt{\frac{2|k|_{\infty}}{n}}$ where $\hat{\mu} := \frac{1}{n} \sum_{i=1}^{n} \delta_{x_i}$ independent of the dimension.

Why? $\|\mu\|_{H^*}^2 = \|k^{1/2}\mu\|_{L^2}^2$ and Monte-Carlo rate.

W1 optimal tranpsort

Recall that

$$W_1(\mu, \hat{\mu}) = \sup_{f \text{s.t.} \|\nabla f\|_{\infty} \le 1} \langle f, \mu - \hat{\mu} \rangle. \tag{1}$$

Dudley, 1969

If d > 2, on a bounded domain for the support of \mathcal{P} ,

$$\mathbb{E}[|W_1(\mathcal{P}_n, \mathcal{P})|] \lesssim O(n^{-1/d}). \tag{2}$$

Sharp if \mathcal{P} has density w.r.t. Lebesgue.

Compare with kernel norms! $n^{-1/2}$.

Goal: Define Est s.t. $\mathbb{E}[\operatorname{Est}(\mathcal{P}_n, \mathcal{Q}_n) - W_2^2(\mathcal{P}, \mathcal{Q})] \lesssim \frac{1}{\sqrt{n}}(\star)$.

Example: Est(\mathcal{P}_n , \mathcal{Q}_n) = $W_2^2(\mathcal{P}_n$, \mathcal{Q}_n) \Longrightarrow $O(n^{-1/d})$ in $O(n^3 \log(n))$.

Q: Can we design statistical and computational efficient estimators of high-dimensional W_2 in good cases?

A: Yes, in the case of "smooth" W_2 using

Sum of Squares (SOS) approach on RKHS and sampling inequalities.

State of the art

- Entropic optimal transport (EOT) with λ regularization: $O(\frac{1}{\lambda^{\lfloor d/2 \rfloor} \sqrt{n}})$.
- (Chizat et al, 2020), Estimation of (\star) via EOT: $O(\varepsilon^{-d/2+2})$ and $O(\varepsilon^{-(d'+5.5)})$ operations. Curse of dimension.
- (Hütter, Rigollet, 2019), Minimax rates of convergences for smooth OT. No computationally feasible algorithm.
- (Weed, Berthet, 2019), need $O(\varepsilon^{-\frac{d+2s}{1+s}})$ samples and $O(\varepsilon^{-(2d+d/2)})$ Computational time suffers from curse of dimensionality.

Smooth OT

Dual static formulation of OT:

$$OT(\mu, \nu) = \sup_{u, v \in C(\mathbb{R}^d)} \int u(x) d\mu(x) + \int v(y) d\nu(y)$$
subject to $c(x, y) \ge u(x) + v(y), \ \forall (x, y) \in X \times Y,$

$$(3)$$

Theorem

Let X, Y be two bounded open subsets of \mathbb{R}^d , let c be the quadratic cost $c(x,y) = \frac{\|x-y\|^2}{2}$ and $k \geq 0$. If (μ, ν) admit densities $(\rho_{\mu}, \rho_{\nu}) \in \mathcal{C}^k(X) \times \mathcal{C}^k(Y)$, bounded away from zero and infinity, and Y is convex, then the optimal map $T = \nabla u$ sending μ onto ν is \mathcal{C}^{k+1} .

Actually, only need the optimal potentials are

$$(u_*, v_*) \in H^{s+2}(X) \times H^{s+2}(Y)$$
 where $s > d+1$.

Leveraging smoothness

Sampling inequalities:

- lacksquare $\Omega\subset\mathbb{R}^d$ with interior cone condition: include convex bounded sets.
- $X = \{x_1, ..., x_n\}$ the sampling set.
- Define *fill distance* $h = \sup_{y \in \Omega} \min_{x_i \in X} ||x_i y||_2$.

Then, it holds (Wendland, Rieger 2005)

$$||f||_{\infty(\Omega)} \le Ch^{s-d/2}||f||_{H^s(\Omega)} + 2|f|_{\infty(X)}.$$
 (4)

if $h \leq \frac{cste(\Omega)}{|s|^2}$ and s > d/2.

Sample Ω : x_1, \ldots, x_n : $p < 1 - \delta$, if $n \ge n_0(R, d)$, then

$$h \le Cn^{-1/d} \left[\log \left(\frac{n}{\delta} \right) \right]^{2/d} . \tag{5}$$

Main issues to leverage smoothness in dual OT

- How to optimize on the set $\{(u,v); c(x,y) u(x) v(y) \ge 0\}$, $\|u\|_{H^s}, \|v\|_{H^s} \le M$?
- Subsampling the inequality: Control $\inf_D f$ if $f_X \ge 0$?
 - \rightarrow Only Lipschitz bound can be used.
- Imposing to work on Fenchel-Legendre pairs?
 - ightarrow Not feasible computationally

Solutions

Replace inequality by equality : represent nonnegative functions using sum of squares (SOS)

Sum of squares relaxation (Lasserre,...)

Optimizing on nonnegative polynomials
$$\min_{P} L(P)$$
 subject to

$$A(P) = b$$

 $P(x) > 0$ for x s.t. $Q_i(x) > 0$.

Include optimization of polynomials:
$$\min P(x)$$
.

$$L(P)$$
 subject to $P = h$

$$A(P) = b$$

$$A(P) = b$$

$$A(P) = b$$

$$A(P) = b$$

$$P(x) = \sigma_0(x) + \sum_{i=1}^{d} \sigma_i(x) g_i(x) \qquad \text{where } \sigma_i(x) = \sum_j q_j(x)^2.$$
 (11)

$$\min_{P} L(P)$$
 subject to

(6)

(7)

(8)

SOS in RKHS

■ Finding Global Minima via Kernel Approximations (Rudi, Marteau-Ferrey, Bach, 2020).

$$c(x,y) - u(x) - v(y) = \sum_{i=1}^{k} h_i(x,y)^2.$$
 (12)

Assume H RKHS with kernel k:

$$c(x,y) - u(x) - v(y) = \sum_{i=1}^{k} \langle h_i, k \rangle_H^2 = \langle k, Ak \rangle_H,$$
 (13)

where A self-adjoint, finite rank: $A = \sum_{i=1}^{k} h_i \otimes h_i$.

Representation result for smooth OT

Theorem

Let (u_{\star}, v_{\star}) be Kantorovich potentials such that $u_{\star} \in H^{s+2}(X)$ and $v_{\star} \in H^{s+2}(Y)$ for s > d+1. There exist functions $w_1, \ldots, w_d \in H^s(X \times Y)$ such that

$$\frac{1}{2}||x-y||^2 - u_{\star}(x) - v_{\star}(y) = \sum_{i=1}^{d} w_i(x,y)^2, \quad \forall (x,y) \in X \times Y.$$

Proof.

Consider
$$f(x) = \frac{\|x\|^2}{2} - u_{\star}(x)$$
, $f^{\star}(y) = \frac{\|y\|^2}{2} - v_{\star}(y)$, $f(x) + f^{\star}(y) - \langle x, y \rangle = h(x, y) \geq 0$. \rightarrow Second order Taylor expansion on $h(x, y)$ with remainder at points $(x, T(x))$.

$$h(x,y) = \langle y - T(x), \int_0^1 (1-t) \nabla^2_{yy} h dt (y - T(x)).$$

Strong convexity of
$$f^*$$
 + square root of $\nabla^2_{\nu\nu}h$.

(14)

Soft-penalized OT-SOS formulation

"Continuous formulation"

OT-SOS
$$(\mu, \nu) = \sup_{u, v, A} \int u(x) d\mu(x) + \int v(y) d\nu(y)$$

 $-\lambda_1 \operatorname{tr}(A) - \lambda_2(\|u\|_H^2 + \|v\|_H^2)$ (15)
such that $c - (u + v) = \langle k, Ak \rangle$.

"Sampled formulation"

$$\widehat{\text{OT-SOS}}(\hat{\mu}, \hat{v}) = \sup_{u, v, A} \int u(x) d\hat{\mu}(x) + \int v(y) d\hat{v}(y) - \lambda_1 \operatorname{tr}(A) - \lambda_2 (\|u\|_H^2 + \|v\|_H^2)$$
 (16)

such that $c(x_k, y_k) - u(x_k) - v(y_k) = \langle k(x_k, y_k), Ak(x_k, y_k) \rangle$.

14/21

Approximation result

Theorem

- $\delta \in (0,1]$.
- $(\tilde{x}_i, \tilde{y}_i)$ $j \in [1, \ell]$ uniform sampling on $X \times Y$.

There exists $\ell_0(d,m)$ and C_1 , $C_2(u_{\star},v_{\star})$ s.t. if $\ell \geq \ell_0$ and if

$$\lambda_1 \ge C_1 \ell^{-m/2d+1/2} \log \frac{\ell}{\delta}, \quad \lambda_2 \ge \|\mu - \hat{\mu}\|_{(H^s)^*} + \|\nu - \hat{\nu}\|_{(H^s)^*} + \lambda_1,$$
 (17)

then, with probability $1 - \delta$, we have

$$|\widehat{OT}(\hat{\mu},\hat{\nu}) - OT(\mu,\nu)| \le C_2\lambda_2$$
.

where

$$\widehat{OT}(\hat{\mu}, \hat{v}) = \int \hat{u}(x)d\hat{\mu}(x) + \int \hat{v}(y)d\hat{v}(y)$$
(18)

 \hat{u}, \hat{v} maximizers of $\widehat{\text{OT-SOS}}(\hat{u}, \hat{v})$.

Reduction to SDP problem

- $Q_{i,j} = k_X(\tilde{x}_i, \tilde{x}_j) + k_Y(\tilde{y}_i, \tilde{y}_j)$
- $z_j = \hat{w}_{\mu}(\tilde{x}_j) + \hat{w}_{\nu}(\tilde{y}_j) \lambda_2 c(\tilde{x}_j, \tilde{y}_j)$
- $q^2 = \|\hat{\mu}\|_{(H^s)*}^2 + \|\hat{\nu}\|_{(H^s)*}^2$
- $\mathbf{K}_{i,j} = k_{XY}(\tilde{x}_i, \tilde{y}_i, \tilde{x}_j, \tilde{y}_j)$
- $\mathbf{K} = \mathbf{\Phi}\mathbf{\Phi}^{\top}$ (Cholesky).

The dual problem writes:

$$\min_{\gamma \in \mathbb{R}^{\ell}} \frac{1}{4\lambda_2} \gamma^{\top} \mathbf{Q} \gamma - \frac{1}{2\lambda_2} \sum_{j=1}^{\ell} \gamma_j z_j + \frac{q^2}{4\lambda_2}$$
such that
$$\sum_{j=1}^{\ell} \gamma_j \Phi_j \Phi_j^{\top} + \lambda_1 \operatorname{Id}_{\ell} \succeq 0.$$
(19)

$$\widehat{\text{OT}} = \frac{q^2}{2\lambda_2} - \frac{1}{2\lambda_2} \sum_{j=1}^{\ell} \hat{\gamma}_j (\hat{w}_{\mu}(\tilde{x}_j) + \hat{w}_{\nu}(\tilde{y}_j))$$
 (20)

Computational complexity

Solving the SDP formulation: IPM

$$O(C + E\ell + \ell^{3.5} \log \frac{\ell}{\epsilon})$$
 time, $O(\ell^2)$ memory,

where C is the cost for computing q^2 and E is the cost to compute one z_i .

 $= \tilde{O}(\varepsilon^{-4} + \varepsilon^{-2-2d/(m-d)} + \varepsilon^{-7d/(m-d)}) = \tilde{O}(\varepsilon^{-\max(4,7d/(m-d))}).$

(21)

Theorem

The cost to achieve
$$|\widehat{OT} - OT(\mu, \nu)| \le \varepsilon$$
:

2. Space: $\tilde{O}(\varepsilon^{-\frac{4d}{m-d}})$. #samples of μ, ν : $\tilde{O}(\varepsilon^{-2})$.

Proof.
$$s^{-2} = n \cdot s = 0$$

$$\varepsilon^{-2}=n$$
 , $\varepsilon=\frac{1}{\sqrt{n}}$.

 $\tilde{O}(C + E\ell + \ell^{3.5}) = \tilde{O}(n_u^2 + n_v^2 + (n_\mu + n_\nu)\ell + \ell^{3.5})$

1. Time:
$$\tilde{O}(\varepsilon^{-\max(4,\frac{7d}{m-d})})$$
.
2. Space: $\tilde{O}(\varepsilon^{-\frac{4d}{m-d}})$. #samples of μ , 1

Summary

- Leverage smoothness via sampling inequalities.
- Remove inequality constraint with equality (SOS).
- Need structural result on the optimum.
- Reduction to SDP formulation.

No free lunch: curse of dimension is in the constants.