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Overall motivation

Optimal transport is

m Gaining interest in data science.

m Data distribution P accessible via samples x1,...,x, € R, d >> 1.

m Typical situation: find a parametrized distribution Qg close to P.

Statement of the problem

Given samples x1,...,x, ~ Pandyy, ..., Y, ~ Q,
How to estimate efficiently Wo(P, Q)?




An elementary Wasserstein estimation problem

Estimation of a shift
Consider x1, ..., %, ~ N (,1dy) and y1,. .., yu ~ N (p+6,1d,).

n E[lL I (i —x) — ol S /2.
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Kernel based distances

Reproducing Kernel Hilbert Spaces (RKHS)

Consider H C F(Q,R) Hilbert Space such that H < C°(Q).
m o, € H".

m (0, 0) =0v(x) =: (k(x,),0)H.

Dual norms (a.k.a. Maximum Mean Discrepancy (MMD))
m Mi(Q) C H, ||plln- = Sup|\f|\H§1<frV>~
2|k|oo

m || — pllpe S/ where fi := 2 ¥ | 6, independent of the
dimension.

Why? [[]|3;. = ||k'/2u||2, and Monte-Carlo rate.




W1 optimal tranpsort

Recall that

Wi(p, i) = sup  (f,u—1). (1)
fot|Vfllo<1

Dudley, 1969
If d > 2, on a bounded domain for the support of P,

E[|W1(Py, P)|] S O(n~/). (2)

Sharp if P has density w.r.t. Lebesgue.

Compare with kernel norms! n=1/2,
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Goal: Define Est s.t. IE[Est(P,, Q) — WZZ(P, 9) < 1 (%).

B

Example: Est(Py, Q) = W2(Py, Q1) = O(n~4)in O(n®log(n)).

Q: Can we design statistical and computational efficient estimators of
high-dimensional W in good cases?

A: Yes, in the case of "smooth" W, using

Sum of Squares (SOS) approach on RKHS and sampling inequalities.



State of the art

m Entropic optimal transport (EOT) with A regularization: O(; ‘”ZJW)'

m (Chizat et al, 2020), Estimation of (%) via EOT: O(e~4/2+2) and
O(e~@+55)) gperations. Curse of dimension.

m (Hutter, Rigollet, 2019), Minimax rates of convergences for smooth OT.

No computationally feasible algorithm

m (Weed, Berthet, 2019), need O(e™ T ) samples and O (g~ (24+d/2))
Computational time suffers from curse of dimensionality.



Smooth OT

Dual static formulation of OT:
OT(uv) = sup  [ulx)du(x)+ [o)dv(y)
u,veC(RY) (3)
subjectto c(x,y) > u(x) +v(y), Y(x,y) € X xY,

Theorem

Let X,Y be two bounded open subsets of R?, let ¢ be the quadratic cost
c(x,y) = M andk > 0. If (4, v) admit densities

(pu, pv) € CK(X) x CX(Y), bounded away from zero and infinity, and Y is
convex, then the optimal map T = Vu sending y onto v is @&,

Actually, only need the optimal potentials are

(4, v,) € H2(X) x H¥"2(Y) wheres > d + 1.
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Leveraging smoothness

Sampling inequalities:

m OO C R? with interior cone condition: include convex bounded sets.

m X ={xq,...,x,} the sampling set.
m Define fill distance h = sup, cq minyex [|xi = 2.

Then, it holds (Wendland, Rieger 2005)
£ loo(y < CEY2| fll s (2) + 21 floo(x) - (4)
ifh < “Ej‘}) ands > d/2.
Sample O x1,...,x,: p <1—96,if n > np(R,d), then
] 2/d
h<Cn V4 {log <”ﬂ . (5)
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Main issues to leverage smoothness in dual OT

m How to optimize on the set {(1,v); c(x,y) — u(x) —v(y) > 0},
[uell s, ol s < M2

m Subsampling the inequality: Control infp f if fx > 07
— Only Lipschitz bound can be used.

m Imposing to work on Fenchel-Legendre pairs ?
— Not feasible computationally

Solutions

Replace inequality by equality : represent nonnegative functions using sum
of squares (SOS)
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Sum of squares relaxation (Lasserre,...)

Optimizing on nonnegative polynomials

rr})in L(P) subject to
A(P) =
P(x) > 0for xs.t. Q;(x) >0.

Include optimization of polynomials: min P(x).

Structural result: Positivestellensatz

rr%n L(P) subject to
A(P)=b




SOS in RKHS

m Finding Global Minima via Kernel Approximations (Rudi,
Marteau-Ferrey, Bach, 2020).

k

c(x,y) —u(x) —o(y) = Y hi(x,y)*. (12)
i=1
Assume H RKHS with kernel k:
k
(y) —ulx) —o(y) = L Ky = (AR, (13)

where A self-adjoint, finite rank: A = Zi'(:l h; ® h;.
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Representation result for smooth OT
Theorem

Let (14, v,) be Kantorovich potentials such that u, € H*"?(X) and

v, € H**2(Y) fors > d + 1. There exist functions wy, ..., wy € H*(X x Y)
such that

3l = ylI? = w(x) = vu(y) = Ty wi(x, )%, V(xy) € X x Y.

Proof.

Consider £(x) = 15 —u.(x), f*(y) = 14"~ 0.(y).
f) +f*(y) = (xy) = h(x y)=0.
— Second order Taylor expansion on h(x, y) with remainder at points

)
Boy) = (= T6), [ A= OV3Aty-T(). (4

Strong convexity of f* + square root of Viyh. O




Soft-penalized OT-SOS formulation
"Continuous formulation"

OT-SOS(y,v) = sup x)dp(x +/
u,v,A

= Mtr(A) = Ap(Jlull + [lolF)  (15)
such that c — (u +v) = (k, Ak) .

"Sampled formulation”

OTS05(7,7) = sup [ u(x)df(x) + [ o(y)ds
u,v,A

= Mtr(A) = Ma(l[ull; + [Ioll7)  (16)

such that C(xk,yk) — u(xk) = v(yk) = <k(xk;yk)/Ak(xkr]/k)> :
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Approximation result

Theorem
m e (0,1]
m (%;,7;) j € [1, €] uniform sampling on X X Y.
There exists {o(d, m) and C1, Ca(uy, v4) s.t. if £ > £y and if
A > C1€7m/2d+1/2 log g, Ay > H"Ll — ﬁH(Hs)* o Hl/ = 0H(H5)* + A1, (17)

then, with probability 1 — 4, we have

OT(,9) — OT(p,v)| < Cahs.

where

OT(#,0) = [ a(x)dp(x) + [ o(y)av(y) (18)

i1, O maximizers of OfS\OS(ﬁ,ﬁ).




Reduction to SDP problem

m Q;; = kx (%, %) + ky(¥:, 7))

m Zj = Wy (%)) + Dv(F;) — A2c(%;, 77)
o P = . + 1912

m K= kXy(xl,yl,x],y])

m K= ®®" (Cholesky).

The dual problem writes:

1yl
frmng 4A27 TQy o, Li=17i% + 1y

suchthat  Yf 79;® + A ld, - 0.

OT = sz 2172 Zf:1 §i(@u (%) + Do (7))

(20)
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Computational complexity
Solving the SDP formulation: IPM

O(C+El+ 31log g) time, O(*) memory, (21)

where C is the cost for computing g> and E is the cost to compute one zj.

Theorem
The cost to achieve |6T —OT(u,v)| <e:
1. Time: O(e _max(4’mld))
2. Space: O (g™ m- d) #samples of u,v: O(e72).

Proof.

=2 _ — 1
ef=n,e=

O(C+E€—|—£35) O(n + 13+ (ny, + ny )+ £32)
:O( +€ —2-2d/(m— d)_|_£ 7d/(m— d) ( —max(4,7d/(m—d)))'




Summary

m Leverage smoothness via sampling inequalities.

m Remove inequality constraint with equality (SOS).
m Need structural result on the optimum.
[

Reduction to SDP formulation.

No free lunch: curse of dimension is in the constants.
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