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Wasserstein distance

Let 110 and 111 be two probability measures on R?, then the 2-Wasserstein
distance between 1 and u, is defined by

Wi ) i= inf  E(IYo-ilP) = it ] ey,
R4 x R4

Yo~ o3 Y1~ pg YETL (1205 1)

where TI(uo, 1) C P2(RY x R?) is the subset of probability distributions ~ on
R? x R? with marginal distributions 1o and .
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[1] C. Villani, Optimal transport : old and new, 2008.
[2] F. Santambrogio, Optimal Transport for Applied Mathematicians, 2015.
[3] G. Peyré and M. Cuturi, Computational optimal transport, 2019.



Optimal transport

If o is absolutely continuous, then it can be shown that the optimal transport
plan ~ is unique and has the form

Y= (Id7 T)#,uov

where T : RY — R is an application called optimal transport map and
satisfying T#uo = -

Notation : T#u(A) = u(T71(A)).



Barycenter

If v is an optimal transport plan for W, between two probability distributions
o and pu1, the path (pu)icpo,1) given by

vt e [0,1], = Pi#y, where Pi(x,y)= (1—1t)x+ty,

defines a geodesic in P,(R?).

The path (1+):cp0,1) is called the displacement interpolation between po and 14
and it satisfies

JI7RS argminp (1 - t)Wz(/Ao, p)z + th(m, p)z.




Optimal transport between Gaussian distributions
If i = N'(my, %), i € {0,1} are two Gaussian distributions on RY, then

1
1 1\ 2
W3 (0, 1) = llmo — m||* + tr (Eo T -2 (Eo2 2125) ) ;

where, for every symmetric semi-definite positive matrix M, the matrix Mz is
its unique semi-definite positive square root.

If 3 is non-singular, then the optimal map T between o and p; is affine and
given by

1
_1 1 1\2 _1
Vx € Rd, T(X) = ml—l—ZO 2 (202 21202) EO 2 (x—mo) = m1+251(2021)%(x—mO)7
and the optimal plan ~ is then a degenerate Gaussian distribution on R*,

supported by the affine line y = T(x).

Moreover, if Xy and X; are non-degenerate, the geodesic path (), f € (0,1),
between 1 and p; is given by p; = N (my, 3¢) with my = (1 — t)mg + tm; and

Y= ((1 - I +tC)S((1 — H)I; + tC),
1 1 1 *% 1
with I, the d x d identity matrix and C = X} (Ef 20217> 7.
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Applications
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illustration: Cuturi, Peyré, OT book
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Texture mixing [Xia et al, 2014]



Gaussian Mixture Models (GMM)

Definition :
Let K > 1 be an integer. A Gaussian mixture model of size K on R” is a
probability distribution ; on R? that can be written

K K

p=> mu where p =N(m, %) and € RE, > me=1.
k=1 k=1

Notation : This set is denoted GMM;(K), and let
GMM,,{(OO) = UK>1GMM,1(K).

Remark : Inference from samples via EM algorithm.



Examples in Image Processing

GMM on patches

— Many applications for image restoration, image editing (style transfer,
inpainting), texture synthesis, etc.



Optimal transport between GMM

OT plans between GMM : usually not GMM themselves. Same remark for
barycenters !

Example : o = NV(0,1) and 1 = 1(5-1 + 61). Then g has a density

f = 1 (5 () 1+ (354) 1),

where g is the density of A/(0,1).

! 1
py==N(=50.1)+=H(50.1)

N
A‘ o = N (0,1) ‘,‘ \\
Y a




Restricting the set of couplings : MW,

Definition
Let uo and 1 be two Gaussian mixture models. We define the
Mixture-restricted Wasserstein distance by

MW3 (0, ) == / N llyo — vall*dy (yo, 1)

inf
YE (10, 11)NGMMpg(00) J Rd 5 R



Properties of MW,
Proposition
MW, has an equivalent discrete formulation, given by

MW3 (o, n) = min >~ waW3 (o, 1)

weIl(mg,m) 1

It happens that this discrete form has been recently proposed as an
ingenious alternative to W, in the machine learning literature, both in
[CGT19] and [CYL19].

Corollary
Let o = S0, mhuk and pun = KL 7%k be two Gaussian mixtures on R?,
then the infimum in MW, is attained for a given

’V* S H(,LL()7 ,u1) n GMMzd(Ko + Ky — 1).

[CGT19] Y. Chen, T. T. Georgiou, and A. Tannenbaum, Optimal Transport for Gaussian Mixture
Models, IEEE Access, 2019.

[CYL19] Y. Chen, J. Ye, and J. Li, Aggregated Wasserstein Distance and State Registration for
Hidden Markov Models, IEEE Transactions on Pattern Analysis and Machine.Intelligence, 2019.



Properties of MW, (continued)

Proposition
MW, defines a metric on GMM,(oo) and the space GMM,;(o0) equipped with
the distance MW, is a geodesic space.

Corollary

The barycenters between o = 3, nbub and u1 = 3", i1t all belong to
GMM,(o0) and can be written explicitely as

VEE[0,1], =Py = wim,
k,l

where w* is an optimal solution of the discrete formulation, and 1" is the
displacement interpolation between v and 1. When Sk is non-singular, it is
given by

pi' = (1= )ld + tTes)#p,

with Ty, the affine transport map between pl and ).
These barycenters have less than K, + K1 — 1 components.



Properties of MW, (continued)
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Properties of MW, (continued)

Proposition
Let po € GMM,(Ko) and u1 € GMM,(Kq) be two Gaussian mixtures. Then,

K; 2
Wa(pio, 1) < MWa(pio, ) < Wapao, ) + ) (227%‘“%6(2?)) ;
i=0,1 k=1

where the XX are the covariance matrices of the components of ;.



Using MW, on real data
From a transport plan to a map :

Let uo and p1 be two GMM. Then, the optimal transport plan between 1o and
m for MW, is given by

YY) = D WGt st ()=, 0
k,l

It is not of the form (Id, T)# o

GMMTO




Using MW, on real data

We can define two maps :

Zk,l W Emk 5k () Ti1(x)
Zk TFS gm’é,Zk (X)

0

Tmean(x) = ]E-y(Y|X = x) =

Wi Gt sk (X)
Toma(x) = Tes(x)  with probability pe(x) = — o6
58, )

(It is not clear how to define a measurable random map from T,,4.)



Example : color transfer
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Example : color transfer

Result of Tyean



Example : color transfer

Result of T4




Example : color transfer

Result of Sliced OT




Example : color transfer
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Example : color transfer

FIGURE — First line : color distribution of the image uy, the 10 classes found by the EM
algorithm, and color distribution of Tyean (149). Second line : color distribution of the
image 11, the 10 classes found by the EM algorithm, and color distribution of T,,,,; (1)
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Example : color transfer

K=1 K=3 K=10

FIGURE — The left-most image is the “red mountain” image, and its color distribution is
modified to match the one of the right-most image (the “white mountain” image) with

MW, using respectively K = 1, K = 3 and K = 10 components in the Gaussian
mixtures.
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Example : Texture Synthesis

Original texture u ADSN (u) Synthesized texture

where ADSN(u) is a stationary Gaussian field that has same mean and
same covariance as u.

Texture synthesis algorithm :
e decompose 1 and ADSN(u) into two sets of patches

e compute the optimal plan (for MW,) between corresponding GMMs
o replace patches from ADSN(u) with matching patches in u.

[Ongoing work with A. Leclaire], inspired by [Leclaire, Galerne, Rabin, 2018]
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Multiscale texture synthesis

[Ongoing work with A. Leclaire]




Extension 1 : Mixing EM and MW, ?

Instead of a two step formulation (first EM, then MW,), we propose here a
relaxed formulation combining directly MW, with EM.

Let vy and v be two probability measures on R, we define

E = i —v1|1*dvy(yo, y1)— AE,, [log Po#~y] —AE,, [log P1#9],
exo) = amin oyl (4n. ) =N og Podr] B log Puf]
where X > 0 is a parameter.

Remarks :
» Generally not a distance

> If 1; has a density, then E,, [log Pi#t+] = —KL(v;, Pi#y) — H(v;), where
H(v;) is the differential entropy of v
— link with unbalanced transport [Chizat et. al]

» Use of automatic differentiation



Mixing EM and MW,

(dxr=05 (e) A =01 (f) A = 0.01

FIGURE — The distributions v and v; are 1d discrete distributions, plotted as the red
and blue discrete histograms. The red and blue plain curves represent the final
distributions Py#+~ and P1#~. In this experiment, we use K = 3 Gaussian components

for ~.



Extension 2 : multi-marginal formulation
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Conclusion

» MW, : a distance on GMMs suited for high dimensional data
» Reduced complexity : Optimal Transport for a Ky x K; problem
» Relevant for data structured in classes

» Limitation : use of EM

» Extension to data living in spaces of different dimension ?
(Gromov-Wasserstein)

J. Delon and A. Desolneux, A Wasserstein-type distance in the space of Gaussian
Mixture Models, SIAM Journal on Imaging Sciences, Vol. 13(2), pp. 936-970, 2020.
https://hal.archives-ouvertes.fr/hal-02178204

https://github.com/judelo/gmmot
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