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Barycenters in the space of probability measures [Agueh, Carlier (2011)]

L2 barycenter Wasserstein barycenter
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Wasserstein distance

Let µ, ν be two measures supported on Rd with moment of order 2, i.e.
µ, ν ∈ P2(Rd).

Kantorovich’s problem

W2(µ, ν) =
(

min
π∈Π(µ,ν)

∫
Rd×Rd

‖x− y‖2dπ(x, y)
)1/2

where π is a transport plan that belongs to the space Π(µ, ν) of the product
measures with marginals µ and ν.
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(

min
π∈Π(µ,ν)

∫
Rd×Rd

‖x− y‖2dπ(x, y)
)1/2

where π is a transport plan that belongs to the space Π(µ, ν) of the product
measures with marginals µ and ν.

If µ ∈ Pac2 (Rd) is absolutely continuous (a.c.) wrt Lebesgue measure, then

Monge’s problem

W2(µ, ν) =
(

min
T∈T(µ,ν)

∫
Rd
‖x− T (x)‖2dµ(x)

)1/2

where T(µ, ν) is the set of measurable functions T : Rd → Rd such that
ν = T#µ, i.e. for any measurable set B ⊂ Rd, ν(B) = µ(T−1(B)).
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Barycenter for probability measures

Let ν1, . . . , νk ∈ P2(Rd) and λ1, . . . , λk weights in the simplex.

Wasserstein barycenter

arg min
µ∈P2(Rd)

k∑
i=1

λiW
2
2 (µ, νi)

For distributions ν1, . . . , νk absolutely continuous such that ν1 has a
bounded density

arg min
µ∈P2(Rd)

k∑
i=1

λiW
2
2 (µ, νi) = arg min

µ∈P2(Rd)

k∑
i=1

λi

∫
Rd
‖x− T νiµ (x)‖2dµ(x),

where T νiµ is optimal in the Monge problem and in particular T νiµ #µ = νi,
and the unique barycenter∗ µ̄ verifies

µ̄ =

(
k∑
i=1

λiT
νi
µ̄

)
#µ̄,→ Iterative procedure

∗Fixed point characterisation [Álvarez-Esteban, del Barrio, Cuesta-Albertos and
Matrán (2016)] and [Zemel and Panaretos (2019)]
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How to get rid of the absolutely continuous assumptions on the
measures?

For µ ∈ Pac2 (Rd), there exists T ∗ and π∗ such that T ∗#µ = ν, π∗ ∈ Π(µ, ν)
and

W 2
2 (µ, ν) =

∫
‖x−T ∗(x)‖2dµ(x) =

∫∫
‖x−y‖2dπ∗(x, y), with π∗ = (id, T ∗)#µ.

And T ∗(x) =
∫
Rd
ydπ∗x(y), where π∗x is the disintegration of the transport

plan π∗ ∈ Π(µ, ν) with respect to the first marginal µ i.e.

π∗(dxdy) = π∗x(dy)µ(dx).

Barycentric projection

Sνµ(x) :=
∫
Rd
ydπµ,νx (y)

→ Which plan to choose for the construction?
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Optimal weak transport problem

Optimal weak transport [Gozlan, Roberto, Samson, Tetali (2017)]
Let µ, ν ∈ P2(Rd),

V (µ|ν) = inf
π∈Π(µ,ν)

∫
Rd
‖x−

∫
Rd
ydπx(y)︸ ︷︷ ︸
Sνµ(x)

‖2dµ(x) = inf
X∼µ,Y∼ν

E‖X−E(Y |X)‖2,

Main advantages:
• The optimal plan π is unique for any distributions.
• Characterization via convex ordering [Gozlan and Juillet (2020)] and
[Backhoff-Veraguas, Beiglböck, Pammer (2019)]:

V (µ|ν) = inf
η6cν

W 2
2 (µ, η) = W 2

2 (µ, Sνµ#µ)

where η 6c ν stands for the convex ordering of measures: for any φ
convex function,

∫
φ dη 6

∫
φ dν.

• Two random variables with the same mean can be compared by how
spread out their distributions are, this is captured by the convex
ordering.
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About the barycentric projection
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• SOT (x) =
∫
ydπOTx (y), with πOT optimal in the OT sense.

• SOWT (x) =
∫
ydπOWT

x (y), with πOWT optimal in the OWT sense.
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Barycenter for optimal weak transport

Weak barycenter

arg min
µ∈P2(Rd)

k∑
i=1

λiV (µ|νi)

Theorem
The weak barycenter problem admits solutions.

For any distributions ν1, . . . , νk ∈ P2(Rd)

arg min
µ∈P2(Rd)

k∑
i=1

λiV (µ|νi) = arg min
µ∈P2(Rd)

k∑
i=1

λi

∫
Rd
‖x− Sνiµ (x)‖2dµ(x)

with Sνiµ optimal in the weak problem.
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Interpretation as a latent variable model

Theorem
Assume that µ is a weak barycenter of {νi}i=1,...,k, which is not a Dirac
measure. Then, for each i = 1, . . . , k, the random variable Yi ∼ νi can be
realised as

Yi = X + (EYi + EX)︸ ︷︷ ︸
translation

+ Ȳi︸︷︷︸
idiosyncratic or
cluster specific
component

where X ∼ µ and Ȳi = Yi − E(Yi|X).
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Robustness to outlier

For µ a weak barycenter which is not a Dirac measure, and X ∼ µ:

Yi = X + (EYi + EX)︸ ︷︷ ︸
translation

+ Ȳi︸︷︷︸
cluster specific
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Figure: Empirical Gaussian distributions and their OWT (black) and OT (red)
barycenters for Gaussian observations (crosses) and corrupted observations (dots).
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Fixed-point approach for the weak barycenter problem

Iterative procedure

µn+1 = G(µn) with G(µ) =

(
k∑
i=1

λiS
νi
µ

)
#µ

with for each i = 1, . . . , k, Sνiµ =
∫
ydπµ,νix (y), with πµ,νi ∈ Π(µ, νi)

achieving the minimum for the optimal weak problem.

Remark: Assuming that µ is a fixed-point doesn’t imply that µ is a weak
barycenter.

In the classical Wassertein barycenter framework, for a.c. measures, with at
least one measure with bounded density, this result is not straightforward
either: µ barycenter implies µ fixed-point
• if x =

∑k

i=1 λiT
νi
µ (x) for every x ∈ Rd, not only µ-almost everywhere

[Agueh, Carlier, 2011].
• by invoking more smoothness on the distributions ν1, . . . , νk [Zemel,
Panaretos, 2019]. Additionally, they only conjecture that the
fixed-point is unique under these smoothness conditions.
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An algorithm for a stream of data

Let Q be a probability distribution supported on a set of measures living in
P2(Rd), then

Weak population barycenter

arg min
µ∈P2(Rd)

∫
P2(Rd)

V (µ|ν)dQ(ν)

Let µ0 ∈ P2(Rd), νk
i.i.d.∼ Q and γk > 0. We define the following iterative

procedure for k > 0 :

µk+1 =
[
(1− γk)id + γkS

νk

µk

]
#µk

with
∑∞

k=1 γ
2
k <∞ and

∑∞
k=1 γk =∞

Theorem
The sequence (µk)k is a.s. relatively compact in Wq for all q < 2 (in
particular it is tight). Moreover, a limit point µ verifies
x =

∫
Sνµ(x)dQ(ν), µ(x)-a.s.

Stochastic gradient descent in the classical Wasserstein setting: [Backhoff-Veraguas,
Fontbona, Rios, Tobar (2018)] and [Chewi, Maunu, Rigollet, Stromme (2020)].
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Computation of Sνµ

Let µ =
∑n

i=1 aiδxi and ν =
∑m

j=1 bjδyj

Quadratic programming

min
π∈Rn×m

{∥∥∥∥x−(πyT

a

)∥∥∥∥2

µ

, π > 0, π1 = µ, πT1 = ν

}

Proximal algorithm

min
π∈Rn×m

n∑
i=1

ai‖xi −

Sνµ︷ ︸︸ ︷(
πyT

a

)
i

‖2︸ ︷︷ ︸
f(π)

+ 1Π(µ,ν)(π)︸ ︷︷ ︸
g(π)

,

where is the indicator function of the set C is 1C(π) =
{

π if π ∈ C
∞ otherwise.

Then
πk+1 = proxγkg(π

k − γk∇f(πk)),
and proxg is the projection operator onto Π(µ, ν).
→ Accelerated version FISTA [Beck, Teboulle (2009)].
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Comparison setting

Recall the online algorithm

µk+1 =
[
(1− γk)id + γkS

νk

µk

]
#µk,

where Sν
k

µk = πyT
a

can be constructed from any transport plan π.

We consider the same iterative algorithm for π computed as:
• an optimal transport plan of W2 → "OT barycenter"
• an optimal transport plan of the entropy regularized OT problem (or
Sinkhorn problem):

arg min
π∈Π(µ,ν)

∫
‖x− y‖2dπ(x, y) + εKL(π|µ⊗ ν)

→ "Sinkhorn barycenter"
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Gaussian distributions
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Figure: First row : K = 15 points clouds of n = 100 observations from Gaussian
distributions each. Weak barycenter (black) and OT barycenter (red) computed
from the streaming algorithm. Second row : illustration of the weak (black), OT
(red) and OT Sinkhorn (blue) barycenters for different values of ε = 0.1, 1 and 5.
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Stream of spiral distributions
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Figure: (left) k = 10 distributions supported on spiral, each distribution consists of
p random points, with p randomly chosen in (200, 225). (right) Weak (black) and
OT (red) barycenters.
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MNIST dataset

Prototype ”8” 1st noisy ”8” 2nd noisy ”8”

OWT
OT Regularised OT

Figure: Digit "8" from MNIST dataset. First row. (left) Prototype "8". (middle &
right) Noisy versions of the prototype by randomly (Bernoulli p = 0.1) moving
pixels. Second row. Comparison of three barycenters : OWT plan (left), OT plan
(middle) and entropy regularised OT plan for ε = 1 (right).
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Further work

→ General conditions on the family of input measures for the existence of
weak barycenters that are not Dirac masses.

→ Conditions on input measures for a "maximal" weak barycenter (in
terms of convex ordering) to exist when d > 2, among all the solutions
of the weak barycenter problem. When d = 1, a maximal barycenter
exists thanks to the complete lattice property of the set of probability
measures wrt the convex ordering.
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