Analysis and Modeling of the cerebral development

Julien Lefèvre^{1,2}

¹ LSIS, UMR CNRS 6168, Université d'Aix-Marseille 2 ² LNAO, Neurospin, I2BM, CEA Saclay

10 September 2010

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

3

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Motivations

Motivations

Folding Analysis

Motivations

Folding Analysis

A developmental Model

Motivations

Folding Analysis

A developmental Model

Conclusion

Conclusion

Cortical Development

From 24 weeks to birth : appearance of folding patterns

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Cortical Development

MRI of premature newborns

Dubois et al, Cerebal Cortex, 2007

Folding Analysis

A developmental Model

Conclusion

Some questions

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Biondi et al.

American Journal of Neuroradiology, 1998

- How does the development shapes the anatomy of the brain ?
- How to explain both reproducibility and variability in the sulcal patterns of the brain ?

"Sulcal Roots" theory

Anatomical landmarks present among human brains

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・のへぐ

"Sulcal Roots" theory

Sulcal roots can be identified with mean curvature or depth maps

Lohmann et al, Cerebral Cortex, 2008

Identification of growth seeds

Method to track the origin of the folding process of neonates

Lefèvre et al, IPMI. 2009

- Longitudinal data
 2 T2 MRI of 4 neonates at birth and at birth + 4 weeks
- Brain segmentation
- Depth maps
- Non linear Registration

Cachier et al,

Computer Vision and Image Understanding, 2003

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Optical flow computation

Minimization of the functional

$$\mathcal{E}(\mathbf{V}) = \int_{\mathcal{M}} \left(\frac{\partial I}{\partial t} + g(\mathbf{V},
abla_{\mathcal{M}} I)
ight)^2 \mathrm{d}\mu + \lambda \int_{\mathcal{M}} \mathrm{Tr}({}^t
abla \mathbf{V}.
abla \mathbf{V}) \mathrm{d}\mu$$

Variational formulation and finite elements method

$$f(\mathbf{U}) = -\int_{\mathcal{M}} g(\mathbf{U}, \nabla_{\mathcal{M}} I) \partial_t I \, \mathrm{d}\mu,$$

$$a(\mathbf{U}, \mathbf{V}) = \int_{\mathcal{M}} g(\mathbf{U}, \nabla_{\mathcal{M}} I) g(\mathbf{V}, \nabla_{\mathcal{M}} I) \mathrm{d}\mu + \lambda \int_{\mathcal{M}} \mathrm{Tr}({}^t \nabla \mathbf{U} \nabla \mathbf{V}) \, \mathrm{d}\mu.$$

$$\mathbf{V} = \operatorname*{arg\,min}_{\mathbf{U} \in \Gamma^{1}(\mathcal{M})} \mathcal{E}(\mathbf{U}) \Longleftrightarrow a(\mathbf{V}, \mathbf{U}) = f(\mathbf{U}), \forall \mathbf{U} \in \Gamma^{1}(\mathcal{M})$$

Lefèvre & Baillet, IEEE PAMI, 2008

A developmental Model

Conclusion

Optical flow computation

Results

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Discrete Helmholtz decomposition

Theorem : Given V a vector field on a mesh \mathcal{M}_h , there exists unique functions U and A, up to an additive constant, and a vector field H such as :

$$\mathbf{V} = \nabla_{\mathcal{M}_h} U + \mathbf{Curl}_{\mathcal{M}_h} A + \mathbf{H}$$

div_{\mathcal{M}_h} \mathbf{H} = 0 curl_{\mathcal{M}_h} \mathbf{H} = 0

with the following definitions :

1

$$\int_{\mathcal{M}} U \operatorname{div}_{\mathcal{M}_h} \mathbf{H} = - \int_{\mathcal{M}_h} g(\mathbf{H}, \nabla_{\mathcal{M}_h} U)$$
$$\mathbf{Curl}_{\mathcal{M}_h} \mathbf{A} = \nabla_{\mathcal{M}_h} \mathbf{A} \wedge \mathbf{n} \qquad \operatorname{curl}_{\mathcal{M}_h} \mathbf{H} = \operatorname{div}_{\mathcal{M}_h} (\mathbf{H} \wedge \mathbf{n})$$

Polthier & Preuß, Vizualisation and Mathematics, 2002

Discrete Helmholtz decomposition

U and A minimize the two functionals :

$$\int_{\mathcal{M}} || \mathbf{V} -
abla_{\mathcal{M}_h} U ||^2$$
 $\int_{\mathcal{M}} || \mathbf{V} - \mathbf{Curl}_{\mathcal{M}_h} A ||^2$

The minima U and A satisfy :

$$\forall \phi, \ \int_{\mathcal{M}} g(\mathbf{V}, \nabla_{\mathcal{M}_h} \phi) = \int_{\mathcal{M}} g(\nabla_{\mathcal{M}_h} U, \nabla_{\mathcal{M}_h} \phi)$$
$$\forall \phi, \ \int_{\mathcal{M}} g(\mathbf{V}, \mathbf{Curl}_{\mathcal{M}_h} \phi) = \int_{\mathcal{M}} g(\mathbf{Curl}_{\mathcal{M}_h} A, \mathbf{Curl}_{\mathcal{M}_h} \phi)$$

Discrete Helmholtz decomposition

Potential U and its local minima

Identification of growth seeds

9 reproducible clusters of growth seeds among 4 subjetcs

Different hypotheses of the cortical folding

Differential growth of cortical layers

Mechanical tensions exerted by white matter fibers

Elasticity/plasticity of the cortex

Reaction-diffusion approaches

Morphogenesis

	-	

Turing.

Phil. Trans. Roy. Soc. Lond. B, 1952

Cartwright,

Journal of Theoretical Biology, 2002

・ロット (雪) (日) (日)

ъ

Prediction of folding orientation

Striegel & Hurdal, PLOS Computational Biology, 2009

Our approach

Gray-Scott model

Two interacting morphogens, U (inhibitor) and V (activator).

$$\partial_t U = d_1 \Delta U + F(1 - U) - UV^2$$

$$\partial_t V = d_2 \Delta V + UV^2 - (F + k)V$$

Leads to pattern formation

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

The model

Notations :

M: the surface on which evolve the morphogens U and V. g_t : determinant of the metric tensor associated to M.

• Reaction-Diffusion mechanism :

Gray-Scott model adapted for a time-varying geometry

Lefèvre & Mangin,

PLOS Computational Biology, 2010

$$\partial_t U + U \partial_t \log \sqrt{g_t} = d_1 \Delta_{\mathcal{M}_t} U + F(1 - U) - UV^2 \partial_t V + V \partial_t \log \sqrt{g_t} = d_2 \Delta_{\mathcal{M}_t} V + UV^2 - (F + k)V$$

Surface deformation :

$$\frac{\partial \mathcal{M}}{\partial t} = h(U, V) \mathbf{N}$$

Motivations

Conclusion

Numerical implementation

Variational formulation

$$orall W \in H_1(\mathcal{M}), \ \int_{\mathcal{M}} W \partial_t U d\mu + \int_{\mathcal{M}} W U \partial_t \log \sqrt{g_t} d\mu = \ d_1 \int_{\mathcal{M}} W \Delta U d\mu + \int_{\mathcal{M}} W f(U, V) d\mu$$

Then with Green's formula :

$$orall W \in H_1(\mathcal{M}), \ \int_{\mathcal{M}} W \partial_t U d\mu + \int_{\mathcal{M}} W U \partial_t \log \sqrt{g_t} d\mu =
onumber \ -d_1 \int_{\mathcal{M}} g(
abla U,
abla W) d\mu + \int_{\mathcal{M}} W f(U, V) d\mu$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Numerical implementation

Finite Elements

Given w_i the basis functions associated to a mesh \mathcal{M}_h , we are looking for a solution

$$U(t,x) = \sum_{i} U_i(t) w_i(x)$$

and the weak formulation becomes :

$$\forall j, \ \sum_{i} \frac{dU_{i}}{dt} \int_{\mathcal{M}_{h}} w_{j}w_{i} + \sum_{i} U_{i} \int_{\mathcal{M}_{h}} w_{j}w_{i} \partial_{t} \log \sqrt{g_{t}} = -d_{1} \sum_{i} U_{i} \int_{\mathcal{M}_{h}} g(\nabla w_{i}, \nabla w_{j}) + \int_{\mathcal{M}_{h}} w_{j}f\left(\sum_{i} U_{i}w_{i}, \sum_{i} V_{i}w_{i}\right)$$

▲□▶▲圖▶▲≣▶▲≣▶ ■ のへの

Motivations

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Numerical Implementation

• Discretization in time

Implicit and explicit discretization between t^n and $t^{n+1} = t^n + \Delta t$:

$$[A]\frac{[U]^{n+1} - [U]^n}{\Delta t} + d_1[\nabla][U]^{n+1} + [B][U]^{n+1} + [A]f([U]^n, [V]^n) = 0$$

with

$$[A]_{i,j} = \int_{\mathcal{M}_h} w_j(x) w_i(x) dx, \quad [\nabla]_{i,j} = \int_{\mathcal{M}_h} g(\nabla w_i, \nabla w_j) dx$$
$$[B]_{i,j} = \int_{\mathcal{M}_h} w_j(x) w_i(x) \frac{\log \sqrt{g_n} - \log \sqrt{g_{n-1}}}{\Delta t} dx$$
$$f([U]^n, [V]^n)_i = f(U_i(t_n), V_i(t_n))$$

Numerical Implementation

Surface deformation

Each vertex of the mesh is moved according to :

$$v_i^{n+1} = v_i^n + \Delta t \ h(U_i^{n+1}, V_i^{n+1}) \mathbf{N}_i^n$$

In practice we take h(U, V) = KV

In order to avoid abnormal deformations, we refine the triangles whose areas exceed a threshold

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Results

Labyrinthine Patterns

 $F = 0.04, k = 0.06, d_1 = 0.2, d_2 = 0.1, K = 0.0005$ and $\Delta t = 2$.

Initial conditions : perturbation of the stable equilibrium U = 1, V = 0. $U = \frac{1}{2} + n$ and $V = \frac{1}{4} + n$ on a broad line, with *n* white noise of amplitude 0.001.

Results

Labyrinthine Patterns

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Order Parameter

Evolution of the number of folds

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の々で

Results

Reproducibility

Curvature $\kappa_i(x, t)$ computed for 50 noisy initial conditions.

Folds are defined by $M_i(x, t) = \mathbf{1}_{\kappa_i(x, t) < 0}$

Average map of folding :

$$\sum_{i=1}^{50} M_i(x, 4000)$$

・ロト・四ト・日本・日本・日本・日本

Results

Reproducibility

Comparison with an average model of the cortex

Lyttelton et al,

Neuroimage, 2007

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Results

Variability

The main fold can be in one or several parts

Results

Variability

Number of connected components in the main fold

Variability of the left STS

- 1 segment : 28 %
- 2 segments : 32 %
- 3 segments : 16 %
- 4 segments : 24 %

Ochiai et al, Neuroimage, 2004

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Results

• Phase diagram of the model

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Results

Developmental pathologies

Polymicrogyria

Lissencephaly

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Conclusion

• Several qualitative similarities between our "toy model" and the ground truth (reproducibility/variability, phase diagram and pathologies of folding).

• The link between morphogens and genes of cortical development (Pax6, Ngn2, Id4) needs to be explained.

• The effect of surface deformation on pattern formation needs to be studied theoretically.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Aknowledgments

LNAO, Neurospin

Jean-François Mangin

• INSERM U562, Neurospin François Leroy, Jessica Dubois,

LENA, CNRS UPR640 Sylvain Baillet, Sheraz Khan

• Department of Pediatrics, Geneva University Hospitals Petra S. Huppi