Compressed Sensing *Some experimental promises* **?**

Pierre Vandergheynst

Signal Processing Lab, EPFL

Journée du Traitement du Signal et de l'Image pour le Biomedical

Marseille, 10 septembre 2010

Some parts jointly with: G. Puy, Y. Wiaux (MRI) and N. Khaled, D. Atienza, H. Mamaghanian (ECG)

 $\boldsymbol{\Phi} \in \mathbb{R}^{d \times K}$ dictionary represented by a matrix with columns $\{\phi_1, ..., \phi_K\}$

 $s = \Phi b$ signal synthesized by coefficients b

 $y = \Phi^* s \in \mathbb{R}^K$ scalar products between s and elements of the dictionary (atoms)

The dictionary can be used to concatenate good signal components (ex: curvelets or shearlets + Gabor)

The dictionary can be learned from data

Sparsity Constrained Inverse Problems

Sparsity constrained recovery and inverse problems:

$$\tilde{b} = \arg\min_{b} \frac{1}{2} \|s - \Phi b\|^{2} + \mu \|b\|_{1}$$

$$\tilde{b} = \arg\min_{b} \frac{1}{2} \|y - \mathbf{U}\Phi b\|^{2} + \mu \|b\|_{1} \implies \tilde{s} = \Phi \tilde{b}$$
observed signal degrading operator
$$\tilde{y} = \mathbf{U}s$$

$$\tilde{s} = \arg\min_{s} \frac{1}{2} \|y - \mathbf{U}s\|^{2} + \mu \|s\|_{\mathrm{TV}} \qquad \|s\|_{\mathrm{TV}} = \sum_{n} \sqrt{|D_{1}h[n]|^{2} + |D_{2}h[n]|^{2}}$$

For $\mathbf{U}=\mathbf{I}$: Rudin-Osher-Fatemi model

Fast algorithms: U ortho projector [Chambolle]

U general - proximal iterations [Combettes et al, Fadili, ...]

Take Home Messages So Far

- Many signals are sparse on some basis or dictionary
 - zoology of fixed "optimal" bases
 - bases/dictionary learning
- Sparsity offers a lot of flexibility
 - dimensionality reduction
 - ▶ compression
- Algorithms to handle sparsity (provably correct)
 - ▶ greedy, convex relaxation ...
- Applications !

Sad Realization and Hopeful Wish

Sparse recovery techniques are great for processing data but you acquire the whole signal, i.e dimension N and then ...

you trash most of it because you know it is sparse on some good basis !

 $x = \Psi \alpha$

vendredi, 10 septembre 2010

Journée du Traitement du Signal et de l'Image pour le Biomedical

Sad Realization and Hopeful Wish

Sparse recovery techniques are great for processing data but you acquire the whole signal, i.e dimension d and then ...

you trash most of it because you know it is sparse on some good basis !

$$x = \Psi \alpha$$

Would it be possible to acquire only those important components ???

$y = \mathbf{\Phi} x = \mathbf{\Phi} \mathbf{\Psi} \alpha$

$$\boldsymbol{\Phi} \in \mathbb{R}^{M \times N} \text{ with } M << N \text{ and } M \sim K$$

Sparse Recovery: principle

$$\alpha^* = \arg\min_{\alpha \in \mathbb{R}^N} \|\alpha\|_{\ell_1} \text{ subject to } \|\Phi\Psi\alpha - y\|_2 \le \epsilon$$

Sparsity constrained inverse problem

$$(1 - \delta_K) \|\alpha_K\|_2^2 \le \|\Phi\alpha_K\|_2^2 \le (1 + \delta_K) \|\alpha_K\|_2^2$$

For all K-sparse vectors

Restricted Isometry Property (RIP)

$$\operatorname{RIP 2K} \left\| \alpha^* - \alpha \right\|_{\ell_2} \leq C_0 \|\alpha - \alpha_K\|_{\ell_1} / \sqrt{K} + C_1 \cdot \epsilon_{\operatorname{best K-term approximation}} \right\|_{\operatorname{best K-term approximation}} (1 + C_1) - C_1 + C_1 \cdot \epsilon_{\operatorname{best K-term approximation}} (1 + C_1) - C_1 \cdot \epsilon_{\operatorname{best K-term approximation}} (1 + C_1) - C_1 \cdot \epsilon_{\operatorname{best K-term approximation}} (1 + C_1) - C_1 \cdot \epsilon_{\operatorname{best K-term approximation}} (1 + C_1) - C_1 \cdot \epsilon_{\operatorname{best K-term approximation}} (1 + C_1) - C_1 \cdot \epsilon_{\operatorname{best K-term approximation}} (1 + C_1) - C_1 \cdot \epsilon_{\operatorname{best K-term approximation}} (1 + C_1) - C_1 \cdot \epsilon_{\operatorname{best K-term approximation}} (1 + C_1) - C_1 \cdot \epsilon_{\operatorname{best K-term approximation}} (1 + C_1) - C_1 \cdot \epsilon_{\operatorname{best K-term approximation}} (1 + C_1) - C_1 \cdot \epsilon_{\operatorname{best K-term approximation}} (1 + C_1) - C_1 \cdot \epsilon_{\operatorname{best K-term approximation}} (1 + C_1) - C_1 \cdot \epsilon_{\operatorname{best K-term approximation}} (1 + C_1) - C_1 \cdot \epsilon_{\operatorname{best K-term approximation}} (1 + C_1) - C_1 \cdot \epsilon_{\operatorname{best K-term approximation}} (1 + C_1) - C_1 \cdot \epsilon_{\operatorname{best K-term approximation}} (1 + C_1) - C_1 \cdot \epsilon_{\operatorname{best K-term approximation}} (1 + C_1) - C_1 \cdot \epsilon_{\operatorname{best K-term approximation}} (1 + C_1) - C_1 \cdot \epsilon_{\operatorname{best K-term approximation}} (1 + C_1) - C_2 \cdot \epsilon_{\operatorname{best K-term approximation}} (1 + C_1) - C_2 \cdot \epsilon_{\operatorname{best K-term approximation}} (1 + C_1) - C_2 \cdot \epsilon_{\operatorname{best K-term approximation}} (1 + C_1) - C_2 \cdot \epsilon_{\operatorname{best K-term approximation}} (1 + C_1) - C_2 \cdot \epsilon_{\operatorname{best K-term approximation}} (1 + C_1) - C_2 \cdot \epsilon_{\operatorname{best K-term approximation}} (1 + C_1) - C_2 \cdot \epsilon_{\operatorname{best K-term approximation}} (1 + C_1) - C_2 \cdot \epsilon_{\operatorname{best K-term approximation}} (1 + C_1) - C_2 \cdot \epsilon_{\operatorname{best K-term approximation}} (1 + C_1) - C_2 \cdot \epsilon_{\operatorname{best K-term approximation}} (1 + C_1) - C_2 \cdot \epsilon_{\operatorname{best K-term approximation}} (1 + C_1) - C_2 \cdot \epsilon_{\operatorname{best K-term approximation}} (1 + C_1) - C_2 \cdot \epsilon_{\operatorname{best K-term approximation}} (1 + C_1) - C_2 \cdot \epsilon_{\operatorname{best K-term approximation}} (1 + C_1) - C_2 \cdot \epsilon_{\operatorname{best K-term approximation}} (1 + C_1) - C_2 \cdot \epsilon_{\operatorname{best K-term approximation}} (1 + C_1) - C_2 \cdot \epsilon_{\operatorname{best K-term approximation}} (1 + C_1) - C_2 \cdot \epsilon_{\operatorname{best K-term approximation}} (1 + C_1) - C_2 \cdot$$

Journée du Traitement du Signal et de l'Image pour le Biomedical

Randomness and Incoherence

Suppose the signal is sparse on an ortho basis: $x = \Psi \alpha$

Intuitively you may want to sample in an incoherent basis:

$$\mu(\mathbf{\Phi}, \mathbf{\Psi}) = \sqrt{N} \cdot \max_{k, j} |\langle \varphi_k, \psi_j \rangle|$$

 $\min_{\alpha \in \mathbb{R}^N} \|\alpha\|_{\ell_1} \text{ subject to } y = (R_M \Phi^*) \Psi \alpha$

 $M \ge C \cdot \mu^2(\mathbf{\Phi}, \mathbf{\Psi}) \cdot K \cdot \log N$

8

Bring Home Key Concepts

- Sparsity / Compressibility
 - large dimension but few degrees of freedom
- Linear (non adaptive !) measurements
 - $M = \mathcal{O}(K \log N/K)$
- Incoherence / Randomness
 - each measurement counts !
 - universality, robustness, scalability
- Recovery
 - provably correct algoS to solve inverse problem

Compressed Sensing in MRI

- Principles:
 - Image magnetization of tissues
 - RF pulses "read" Fourier transform of data

$$\nu\left(\boldsymbol{k}\right) = \int_{\mathbb{R}^2} \rho\left(\boldsymbol{x}\right) \mathrm{e}^{-2\mathrm{i}\pi\boldsymbol{k}\cdot\boldsymbol{x}} \mathrm{d}^2\boldsymbol{x}.$$

- Problem
 - Long acquisition time for complete reading
- Solution
 - Reduce number of measurement

MRI model

• In the perspective of signal reconstruction, an ill-posed inverse problem has to be solved:

Journée du Traitement du Signal et de l'Image pour le Biomedical

• $\boldsymbol{x} \in \mathbb{R}^N$ is sparse in a basis $\Psi \in \mathbb{R}^{N \times N}$: $\boldsymbol{x} \equiv \Psi \boldsymbol{\alpha}$ with $\boldsymbol{\alpha} \in \mathbb{R}^N$ containing K non-zero entries.

• The condition for accurate and stable recovery for random selection of Fourier measurements $\Phi \equiv MF \in \mathbb{R}^{M \times N}$ reads as:

$$K \le \frac{cM}{N\mu^2 \left(\mathsf{F}, \Psi\right) \ln^4 N}$$

Is it possible to optimize the setting by "pre-conditioning" the signal ?

Chirp modulation & coherence

• For signals made up of Gaussian waveforms of size t, $\Psi \equiv \Gamma^{(t)}$ the coherence takes the form:

$$\mu\left(\mathsf{FC}^{(w)}\mathsf{A}^{(t_0)},\mathsf{\Gamma}^{(t)}\right) = \frac{2tt_0}{t^2 + t_0^2} \left[1 + \left(\frac{2\pi w t^2 t_0^2}{t^2 + t_0^2}\right)^2\right]^{-\frac{1}{2}}$$

• Natural limit for signal of spikes when $t \to 0$:

$$\lim_{t \to 0} \mu \left(\mathsf{FC}^{(w)} \mathsf{A}^{(t_0)}, \mathsf{\Gamma}^{(t)} \right) = 0 \text{ for all } w, t_0 \in \mathbb{R}_+.$$

• Incoherence lost at finite t completely recovered at high enough w:

$$\lim_{w\to\infty} \mu\left(\mathsf{FC}^{(w)}\mathsf{A}^{(t_0)},\mathsf{\Gamma}^{(t)}\right) = 0 \text{ for all } t, t_0 \in \mathbb{R}_+.$$

Spread spectrum universality !

vendredi, 10 septembre 2010

Wiaux et al., 2009, Mon. Not. R. Astron. Soc, arXiv:0907.0944v1 Journée du Traitement du Signal et de l'Image pour le Biomedical

- Signals are made up of 10 waveforms in $\Gamma^{(t)}$ for 2 values of t.
- Noisy visibilities are simulated for 2 values of w(0 and 1).
- The BP_{ϵ} problem is solved with 2 assumed sparsity dictionaries: for optimal sparsity $\Gamma^{(t)}$ or for optimal coherence Δ .

Simulations

Original signal

Spread spectrum

Reconstructions

Journée du Traitement du Signal et de l'Image pour le Biomedical

Simulations

Original signal

Spread spectrum

Reconstructions

Journée du Traitement du Signal et de l'Image pour le Biomedical

1. ΓBP_{ϵ} better than ΔBP_{ϵ} : rather optimize sparsity than coherence! 2. $\Delta BP_{\epsilon}1$ equivalent to $\Delta BP_{\epsilon}0$ as μ is already optimal for $\Delta BP_{\epsilon}0$. 3. $\Gamma BP_{\epsilon}1$ better than $\Gamma BP_{\epsilon}0$ as μ is lower. 4. $\Gamma BP_{\epsilon}1$ independent of t: spread spectrum universality confirmed!

4. $\Gamma BP_{\epsilon}1$ independent of t: spread spectrum universality confirmed!

Theoretical model

Let \mathbf{c} be a Rademacher or Steinhaus sequence

Hoeffding gives, with probability ϵ :

$$\sqrt{N}\mu\left(\mathsf{FC},\Psi\right) > \sqrt{2\log\left(2N^2/\epsilon\right)}$$

One then shows that every K sparse vector can be recovered from:

k/m

Journée du Traitement du Signal et de l'Image pour le Biomedical

Spread Spectrum in MRI

CS has already been applied to MR [Lustig, see also earlier talk in this workshop] Here: Explore potential of spread-spectrum "conditioning"

$$\nu(\mathbf{k}) = \int_{\mathbb{R}^2} \rho(\mathbf{x}) e^{i\pi w |\mathbf{x}|^2} e^{-2i\pi \mathbf{k} \cdot \mathbf{x}} d^2 \mathbf{x}$$

Phase Scrambling

- well-known in MRI (high Dynamic, reduce aliasing)
- obtained through dedicated coils or RF pulses

Measurement model:

$$\nu \equiv \phi^{(w)} \rho + \mathbf{n} \text{ with } \phi^{(w)} \equiv \mathbf{MFC}_{\text{Sub-sample}} \xrightarrow{\text{Fourier}} \text{Diagonal chirp}_{\text{matrix}}$$

vendredi, 10 septembre 2010

Journée du Traitement du Signal et de l'Image pour le Biomedical

Simulations

Shepp-Logan phantom and chirp

Input SNR = 30dB, sparsity basis = wavelets, 30 simulations

vendredi, 10 septembre 2010

Journée du Traitement du Signal et de l'Image pour le Biomedical

Compressed Sensing in MRI

Original Image

10% Fourier coverage

Journée du Traitement du Signal et de l'Image pour le Biomedical

Compressed Sensing in MRI

Real data acquisition (+phantom "Marie"), 7T MRI@EPFL chirp pre-modulation implemented with a dedicated shim coil

"Full scan" image

No pre-modulation

With chirp

Journée du Traitement du Signal et de l'Image pour le Biomedical

Journée du Traitement du Signal et de l'Image pour le Biomedical

Low-power ECG ambulatory system

Problem: sense and transmit ECG (possibly multi-lead) from a low power body-area network

Compression ? Surely if we transmit less, we will waste less power in communication.

Sure, but if we compress more we will waste energy using a complex encoder !

Can CS offer an interesting trade-off ?

Can everything be real-time ?

- State-of-the-art
 - Wavelet transform, followed by thresholding, quantization and entropy coding
 - Pros: excellent compression results, signals nicely sparse (at least ventricular part)
 - Cons: Full wavelet transform must be implemented on the sensing node

What is a good sensing matrix for low-power sensing?

- Surely not gaussian ! (dense, complex to apply to signal and even complex to generate ...)
- Sparse matrices, binary entries (ex: expander graphs)

generate binary vector with d non-zero elements generate full matrix by random permutations

Journée du Traitement du Signal et de l'Image pour le Biomedical

Performance indexes for sensing mechanism

difference between successive sensing vectors Compression Ration: 20%

Total memory footprint of CS implementation:6.5 kB of RAM for computations7.5 kB of Flash

29

Comparisons - Quality vs Compression

In terms of pure compression performance, an optimized DWT encoder is clearly (and obviously better) than the non-adaptive CS scheme

Note: CS decoder runs real-time on a jailbroken iPhone 3GS

Conclusions & Outcome

- Many interesting applications in "niches"
 - low power embedded systems (ex: in vivo bio-chips)
 - coded-aperture super-resolution
 - high-transmission cost, reduced computational power (ex: satellites)
- Full system implementations are very sparse
 - in theory, it's easy but in practice one gets surprises
 - it takes more time to publish ...
 - interestingly multidisciplinar

