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s = Φb

{φ1, ...,φK}

y = Φ∗s ∈ RK

Φ ∈ Rd×K
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Some notations
2

dictionary represented by a matrix with columns

signal synthesized by coefficients b

scalar products between s and elements 
of the dictionary (atoms)

The dictionary can be used to concatenate good signal components 
(ex: curvelets or shearlets + Gabor)

The dictionary can be learned from data 
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Sparsity Constrained Inverse Problems
3

Sparsity constrained recovery and inverse problems:

s̃ = argmin
s

1
2
�y −Us�2 + µ�s�TV �s�TV =

�

n

�
|D1h[n]|2 + |D2h[n]|2

For U=I : Rudin-Osher-Fatemi model

Fast algorithms: U ortho projector [Chambolle]

U general - proximal iterations [Combettes et al, Fadili, ...]

b̃ = argmin
b

1
2
�s−Φb�2 + µ�b�1

b̃ = argmin
b

1
2
�y −UΦb�2 + µ�b�1 s̃ = Φb̃

ỹ = Us

observed signal degrading operator

vendredi, 10 septembre 2010



Journée du Traitement du Signal et de l’Image pour le Biomedical

Take Home Messages So Far

- Many signals are sparse on some basis or dictionary
‣ zoology of fixed “optimal” bases
‣ bases/dictionary learning

- Sparsity offers a lot of flexibility
‣ dimensionality reduction
‣ compression

- Algorithms to handle sparsity (provably correct)
‣ greedy, convex relaxation ...

- Applications !

4
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Sad Realization and Hopeful Wish
5

Sparse recovery techniques are great for processing data but ...
... you acquire the whole signal, i.e dimension N and then ...

you trash most of it because you know it is sparse on some good basis !

threshold

x = Ψα
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Sad Realization and Hopeful Wish
6

Sparse recovery techniques are great for processing data but ...
... you acquire the whole signal, i.e dimension d and then ...

you trash most of it because you know it is sparse on some good basis !

Would it be possible to acquire only those important components ???

x = Ψα

y = Φx = ΦΨα

Φ ∈ RM×N with M << N and M ∼ K
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Sparse Recovery: principle
7

Sparsity constrained inverse problem

Restricted Isometry Property (RIP)

For all K-sparse vectors

best K-term approximation noise

(1− δK)�αK�22 ≤ �ΦαK�22 ≤ (1 + δK)�αK�22

α∗ = arg min
α∈RN

�α��1 subject to �ΦΨα− y�2 ≤ �

RIP 2K �α∗ − α��2 ≤ C0�α− αK��1/
√

K + C1 · �
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M ≥ C · µ2(Φ,Ψ) · K · log N
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Randomness and Incoherence
8

Suppose the signal is sparse on an ortho basis:

Intuitively you may want to sample in an incoherent basis:

x = Ψα

min
α∈RN

�α��1 subject to y = (RMΦ∗)Ψα

µ(Φ,Ψ) =
√

N · max
k,j

|�ϕk, ψj�|
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Bring Home Key Concepts
 Sparsity / Compressibility
- large dimension but few degrees of freedom

 Linear (non adaptive !) measurements
-  

 Incoherence / Randomness
- each measurement counts !
- universality, robustness, scalability

 Recovery
- provably correct algoS to solve inverse problem

9

M = O(K log N/K)
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Compressed Sensing in MRI
 Principles:
- Image magnetization of tissues
- RF pulses “read” Fourier transform of data

 Problem
- Long acquisition time for complete reading

 Solution
- Reduce number of measurement

10

Keywords: magnetic resonance imaging, compressed sensing, spread spectrum, incoher-
ence.

2 State-of-the-art

2.1 Magnetic resonance imaging

2.1.1 Standard magnetic resonance measurements

We denote by ρ the original two-dimensional image of interest which represents the magnetization induced
by resonance in the tissues to be imaged. Magnetic resonance measurements take the form of values of the
Fourier transform of the original image. In practice, the image acquired is always complex in nature due
imperfect experimental conditions, such as magnetic field inhomogeneities [8]. We denote the image as a
function ρ of the position x ∈ R2, with components (x, y), representing the intensity of the magnetization.

In the standard setting, magnetic resonance measurements take the general form:

ν (k) =
�

R2
ρ (x) e−2iπk·x d2x. (1)

2.1.2 Magnetic resonance inverse problem

The function ρ considered is considered to be band limited. It is completely identified by its Nyquist-
Shannon sampling on a discrete uniform grid of N = N1/2 × N1/2 points xi ∈ R2 in real, or image, space
with 1 � i � N . The sampled signal is denoted by a vector ρ ∈ CN ≡ {ρi ≡ ρ(xi)}1�i�N . The functions may
equivalently be described by its complex k-space coefficients on a discrete uniform grid of N = N1/2×N1/2

spatial frequencies ki with 1 � i � N . This grid is limited at some maximum frequency defining the band
limit.

For the sake of simplicity, we assume that the spatial frequencies k probed belong to the discrete grid
of points ki, so that we can discard any regridding operation [8]. The k-space coverage provided by the M
spatial frequencies probed kb, with 1 � b � M , can simply be identified by a binary mask in k-space equal
to 1 for each spatial frequency probed and 0 otherwise. The measurements may be denoted by a vector
of M complex k-space coefficients ν ∈ CM ≡ {νb ≡ ν(kb)}1�b�M , possibly affected by complex noise of
instrumental origin identified by the vector n ∈ CM ≡ {nb ≡ n(kb)}1�b�M .

In this discrete setting, we consider a noisy and incomplete k-space coverage in the perspective of accel-
erating acquisition time in comparison with a complete k-space coverage. An ill-posed inverse problem is
defined for the reconstruction of the image ρ from the measurements ν:

ν ≡ Φρ + n with Φ ≡ MF, (2)

where the matrix Φ ∈ CM×N identifies the complete linear relation between the signal and the measurements.
The unitary matrix F ∈ CN×N ≡ {Fij ≡ e−2iπui·xj /N1/2}1�i,j�N implements the discrete Fourier transform.
The matrix M ∈ RM×N ≡ {Mbj}1�b�M ;1�j�N is the rectangular binary matrix implementing the mask.

In the perspective of the reconstruction of the signal ρ, relation (2) represents the measurement constraint.
As M � N , many signals may formally satisfy the measurement constraint. A regularization scheme that
encompasses enough prior information on the original signal is needed in order to find a unique solution. All
image reconstruction algorithms will differ through the kind of regularization considered.

3
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MRI model
• In the perspective of signal reconstruction, an ill-posed inverse 
problem has to be solved:

11

R(M/2)×N

Visibility mask
CN×N

Fourier transform

CM/2

Measurements

C(M/2)×N

Sensing matrix
RN

Image
CM/2

Noise

ν ≡ Φρ + n with Φ ≡ MF,
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Compressed sensing
12

•           is sparse in a basis               :             with            
containing    non-zero entries.
• The condition for accurate and stable recovery for random 
selection of Fourier measurements                        reads as:

K

Φ ≡ MF ∈ RM×N

α ∈ RNx ∈ RN Ψ ∈ RN×N x ≡ Ψα

K ≤ cM

Nµ2 (F,Ψ) ln4 N

Is it possible to optimize the setting by “pre-conditioning” the signal ?

vendredi, 10 septembre 2010



Journée du Traitement du Signal et de l’Image pour le Biomedical

Chirp modulation & coherence
• For signals made up of Gaussian waveforms of size  ,             
the coherence takes the form:

• Natural limit for signal of spikes when         :

• Incoherence lost at finite   completely recovered at high 
enough   :

13

µ
�
FC(w)A(t0), Γ(t)

�
=

2tt0
t2 + t20

�
1 +

�
2πwt2t20
t2 + t20

�2
�− 1

2

.

lim
t→0

µ
�
FC(w)A(t0), Γ(t)

�
= 0 for all w, t0 ∈ R+.

t→ 0

t

w

lim
w→∞

µ
�
FC(w)A(t0), Γ(t)

�
= 0 for all t, t0 ∈ R+.

Spread spectrum universality !

t Ψ ≡ Γ(t)

Wiaux et al., 2009, Mon. Not. R. Astron. Soc, arXiv:0907.0944v1
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Simulations

• Signals are made up of 10 waveforms in     for 2 values of   .

• Noisy visibilities are simulated for 2 values of    (0 and 1).

• The     problem is solved with 2 assumed sparsity dictionaries:               
for optimal sparsity     or for optimal coherence    .

14

Γ(t) t

w

BP�

Γ(t) ∆
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Simulations
15
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Simulations
16
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Simulations
17

1.        better than          : rather optimize sparsity than coherence!
2.          equivalent to          as   is already optimal for          .   
3.         better than          as    is lower.
4.         independent of  : spread spectrum universality confirmed!

∆BP�0∆BP�1 µ

µ

ΓBP�1 t

∆BP�ΓBP�

ΓBP�0ΓBP�1

∆BP�0

vendredi, 10 septembre 2010



Journée du Traitement du Signal et de l’Image pour le Biomedical

Theoretical model
18

Let c be a Rademacher or Steinhaus sequence
Hoeffding gives, with probability   :

Fourier domain, they design a very simple Monte-Carlo procedure: they choose a grid based on the desired
resolution and field of view of the object, and randomly draw some indices from the pdf to choose the location
of measurements. The sampling in the k-space is governed by the pdf.

One possible choice for the pdf is to diminish the density sampling according to a power of the distance
from the center of the k-space. Most of the measurements are thus going to be concentrated at the center
of the k-space. They proposed to use 1 − |k|p, for some given value p ∈ R, as a possible pdf. In practice
values of p between 4 and 6 give good results for the overall reconstruction quality.

3 State of Research performed

3.1 Spread spectrum universality

As already emphasized in section 2.2.3, the incoherence plays a important role in the sparsity K we can
recover for a given number of measurements M , and, consequently, in the global reconstruction quality.
In the case of Fourier measurements, the coherence is defined as the maximum complex modulus of the
Fourier coefficients of the sparsity vectors. Intuitively, using the uncertainty principle, waveforms with a
wide support in real space will have a small support in the Fourier domain, e.g., wide Gaussian waveforms.
Their �2 norm being preserved in both domain and normalized to one, these waveforms are likely to have a
high coherence: the maximum complex modulus Fourier coefficient is big. On the contrary, waveforms with
a small support in real space are likely to have a small incoherence. In light of relations (8) and (9), signals
made of the later waveforms will be well reconstructed whereas signals made of the former ones will not.

To overcome this problem, we may modify the acquisition scheme and introduce a modulation before mea-
suring some Fourier coefficients. If the modulation preserve the norm of the signal, e.g. a chirp modulation,
then this multiplication in real space amounts to a convolution of the Fourier transform of the modulating
signal with that of the original image, hence spreading the power spectrum of the signal while preserving
its norm. The coherence is thus likely to decrease whatever the initial waveforms. As a consequence, we
can recover any sparse signal accurately with the same quality whatever the sparsity basis: spread spectrum
universality!

We proved the previous result in [13] for analog signals sparse in Gaussian dictionaries. Let us denote
the Gaussian sparsity dictionary Ψ ≡ Γ(t), where t ∈ R is the size of the Gaussian waveforms, and the
measurement matrix Φ ≡ FC(w)A(t0), where A(t0) is a diagonal matrix implementing a Gaussian window of
size t0 ∈ R that limit the field of view of the initial image, and C(w) is the diagonal matrix implementing
the chirp C(w)(|x|) = eiπw|x|2 with chirp rate w ∈ R and where the norm |x| corresponds to the distance
to the center of the field of view. In this setting, the coherence between the sparsity and the measurement
matrices satisfies:

µ
�
FC(w)A(t0), Γ(t)

�
=

2tt0
t2 + t20

�
1 +

�
2πwt2t20
t2 + t20

�2
�− 1

2

. (11)

It is easy to see that if t tends to zero, i.e. Ψ tends to the Dirac basis, the coherence tends to its optimal value:
0 (see relation (10); in the analog world N tends to infinity). When the size the waveforms increases, the
coherence also increases but, if we fix the value of t and let the chirp rate w tends to infinity, the coherence
tends again to its optimal value whatever the initial size t. This theoritical result confirms our previous
intuitions.

In a complete discrete setting, we can show the universality of the spread spectrum technique by consid-
ering a random phase modulation. Let c = (ck)1�k�N be a random Rademacher or Steinhaus sequence, and
C be the associated diagonal matrix. Using the well known Hoeffding’s inequality, we can show that, with
probability less than �, the coherence satisfies:

√
Nµ (FC,Ψ) >

�
2 log (2N2/�). (12)

6

�

One then shows that every K sparse vector can be recovered from:It is then possible to show that every K-sparse vector is recovered with probability � by solving the BP0

minimization problem (5) if

M � c K log
3
(12N/�) , (13)

for some constant c. The number of measurements does not depend any more on the coherence between the

Fourier basis and the sparsity basis. The previous relation is valid whatever the sparsity basis: the spread

spectrum universality is confirmed.

3.2 Quadratic phase profiles in MRI

Quadratic phase profiles have been used in MRI for various purposes, such as improvement of dynamic

range [14, 15], or reduction of aliasing artifacts [16, 17]. This technique is known as phase scrambling and

consists in altering the original image by a linear chirp modulation C(w)
(|x|) as defined in 3.1. This type of

modulation can be obtained by using dedicated coils or by modifying the RF pulse. The chirp rate w can be

controlled by the intensity of the quadratic profile and its duration of application. In this setting, magnetic

resonance measurements take the general form:

ν (k) =

�

R2
ρ (x) e

iπw|x|2
e
−2iπk·x

d
2x. (14)

In other words the measurement ν identifies with the k-space coefficient at spatial frequency k of a complex

signal obtained as the product of the original image ρ(x) with the linear chirp modulation C(w)
(|x|), which

is already the setting consider in section 3.1. We can thus think of using the spread spectrum universality

to acquire MRI images by compressed sensing methods.

Note that in the absence of quadratic field, i.e. for w = 0, the measurements simply reduce to their

standard form.

3.3 Simulations and real acquisition

3.3.1 Simulations

We highlighted the effectiveness of the spread spectrum technique for MRI acceleration in two differents

papers thanks to the use of extensive simulations [18, 19]. We recall here the main result we obtained.

The synthetic signal ρ that we consider for our analyses is the well-known Shepp-Logan phantom with

real positive values in the range [0, 1] in some arbitrary intensity units, sampled on a grid of N = 256× 256

pixels on some field of view L = L1/2 × L1/2
. The inverse problem is transparent to the precise value of the

field of view so that we do not need to fix it.

We assume that the spatial frequencies kb probed arise from a uniform random selection of spatial

frequencies. This allows us to discard considerations related to specific acquisition sequences, which are

numerous given the flexibility of MRI acquisition relative to the k-space coverage [8]. It also allows us to

place our discussion in a setting which complies directly with the requirement of the theory of compressed

sensing for random measurements. In this context, the inverse problem (2) is simply associated with a

k-space sensing basis Φ ≡ Φ(w) ≡ MFC(w)
, where the mask M contains a uniform random selection of spatial

frequencies.

The signal under scrutiny by definition is exactly sparse in a Haar wavelet basis. We choose this wavelet

basis to solve the BP� problem (5) and we analyzed the quality of the reconstruction with and without spread

spectrum for different number of measurements M corresponding to coverages in the range [4, 40] percent of

the k-space, with specific values of 4, 6, 8, 10, 15, 20, and 40 percent.

Instrumental noise is also added as independent identically distributed Gaussian noise. The corresponding

standard deviation σ(nr)
is identical for all r with 1 � r � M . The associated signal-to-noise ratio thus

reads as snr ≡ −20 log10(σ
(nr)/Σ(Fρ)

), where Σ(Fρ)
stands for the sample standard deviation of the real and

7

Independently of the sparsity basis !
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Fig. 1. Phase transition of the !1 minimization for different sparsity bases and random selection of Fourier measurements without (top panels)
and with (bottom panels) random modulation. The sparsity bases considered are the Dirac basis(left), the Daubechies-4 wavelets basis (center),
and the Fourier basis (right).

5

m/N

k/
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ν(k) =
�

R2
ρ(x)eiπw|x|2e−2iπk·xd2x

ν ≡ φ(w)ρ + n with φ(w) ≡MFC(w)
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Spread Spectrum in MRI
19

CS has already been applied to MR [Lustig, see also earlier talk in this workshop]
Here: Explore potential of spread-spectrum “conditioning”

Phase Scrambling
• well-known in MRI (high Dynamic, reduce aliasing)
• obtained through dedicated coils or RF pulses

Measurement model:

M/2 complex
Diagonal chirp 

matrix
FourierSub-sample

N-d real signal
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Simulations
20

Shepp-Logan phantom and chirp

7
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Figure 2. Top panels: reconstruction SNR as a function of the percentage of coverage in k-space in the range [4, 40] per cent, and for an input snr of
30 dB, both for wd = 0 (dot-dashed black curve) and wd = 1 (continuous red curve). Middle panels: reconstruction SNR as a function of the input snr
in the range [−30, 30] dB, for a k-space coverage of 20 per cent, both for wd = 0 (dot-dashed black curve) and wd = 1 (continuous red curve). Bottom
panels: reconstruction SNR as a function of the chirp rate wd in the range [0, 1.5], for a k-space coverage of 20 per cent, and for an input snr of 30 dB
(continuous red curve). The first, second, and third panels from the left respectively represent the SNR of reconstructions at the wavelet scales s = 5, s = 3,
and s = 1. The extreme right panels represent the SNR of the overall reconstruction. All SNR curves represent the mean SNR over 30 simulations, and
the vertical lines identify the error at 1 standard deviation.

the percentage of coverage in the range [4, 40] per cent, for
an input snr of 30 dB, and both for wd = 0 and wd = 1,
are reported in the top panel of Fig. 2, together with those
associated with each wavelet scale.
Firstly, as expected, for each coverage and noise level con-

sidered, the SNR for the overall reconstruction is significantly
larger for BPε1 than for BPε0. This is due to the spread
spectrum phenomenon related to the reduction of the mutual
coherence between the sensing basis and the sparsity basis in
the presence of the chirp modulation.
Secondly, for each coverage considered, the increase in the

reconstruction SNR is more important at large wavelet scales
s, in complete accordance with our previous discussion. In
particular, no significant increase is observed at s = 1, but
well at larger scales.
Finally, the enhancement in reconstruction quality for a

fixed number M/2 of complex measurements can be cast
in terms of a relative acceleration of the acquisition process
for a fixed reconstruction SNR. Under the conditions of our
simulations, a factor around 4 between the reconstructions

for wd = 0 and wd = 1 can be inferred from the graph
of the overall reconstruction SNR. Consequently, if a first
acceleration by a factor 2.5 (i.e. a k-space coverage of 40
per cent) is acceptable on the basis of the reconstruction SNR
at wd = 0, thanks to adequate regularization of the ill-posed
inverse problem in the context of compressed sensing, then the
acceleration is pushed to a factor 10 (i.e. a k-space coverage
of 10 per cent) at wd = 1 thanks to the spread spectrum
technique.3

3For large coverages, the overall reconstruction quality and the reconstruc-
tion quality at each wavelet scale also appear to be more stable around the
mean SNR values in the presence of the chirp modulation. This phenomenon
is probably related to the fact that the number of pairs of antipodal spatial
frequencies {kb ,−kb} contained in the mask M, designed from purely a
random selection of frequencies, is more variable for large k-space coverage.
For real images, which enjoy a symmetry property in k-space, taking a
measurement in −kb adds no information about the signal to that available
from kb , but only reduces the noise level. The reconstruction quality therefore
gets affected in proportion of the number of antipodal pairs. The chirp
modulation, which is complex, breaks this symmetry, so that all points
provide the same amount of information about the modulated signal and the
reconstruction quality is not affected by the number of antipodal pairs.

Input SNR = 30dB, sparsity basis = wavelets, 30 simulations

s=5 s=3 s=1 overall
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Simulations - leakage
21

Shepp-Logan phantom and chirp

Input SNR = 30dB, coverage 20%, sparsity basis = wavelets, 30 simulations

s=5 s=3 s=1 overall
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Figure 2. Top panels: reconstruction SNR as a function of the percentage of coverage in k-space in the range [4, 40] per cent, and for an input snr of
30 dB, both for wd = 0 (dot-dashed black curve) and wd = 1 (continuous red curve). Middle panels: reconstruction SNR as a function of the input snr
in the range [−30, 30] dB, for a k-space coverage of 20 per cent, both for wd = 0 (dot-dashed black curve) and wd = 1 (continuous red curve). Bottom
panels: reconstruction SNR as a function of the chirp rate wd in the range [0, 1.5], for a k-space coverage of 20 per cent, and for an input snr of 30 dB
(continuous red curve). The first, second, and third panels from the left respectively represent the SNR of reconstructions at the wavelet scales s = 5, s = 3,
and s = 1. The extreme right panels represent the SNR of the overall reconstruction. All SNR curves represent the mean SNR over 30 simulations, and
the vertical lines identify the error at 1 standard deviation.

the percentage of coverage in the range [4, 40] per cent, for
an input snr of 30 dB, and both for wd = 0 and wd = 1,
are reported in the top panel of Fig. 2, together with those
associated with each wavelet scale.
Firstly, as expected, for each coverage and noise level con-

sidered, the SNR for the overall reconstruction is significantly
larger for BPε1 than for BPε0. This is due to the spread
spectrum phenomenon related to the reduction of the mutual
coherence between the sensing basis and the sparsity basis in
the presence of the chirp modulation.
Secondly, for each coverage considered, the increase in the

reconstruction SNR is more important at large wavelet scales
s, in complete accordance with our previous discussion. In
particular, no significant increase is observed at s = 1, but
well at larger scales.
Finally, the enhancement in reconstruction quality for a

fixed number M/2 of complex measurements can be cast
in terms of a relative acceleration of the acquisition process
for a fixed reconstruction SNR. Under the conditions of our
simulations, a factor around 4 between the reconstructions

for wd = 0 and wd = 1 can be inferred from the graph
of the overall reconstruction SNR. Consequently, if a first
acceleration by a factor 2.5 (i.e. a k-space coverage of 40
per cent) is acceptable on the basis of the reconstruction SNR
at wd = 0, thanks to adequate regularization of the ill-posed
inverse problem in the context of compressed sensing, then the
acceleration is pushed to a factor 10 (i.e. a k-space coverage
of 10 per cent) at wd = 1 thanks to the spread spectrum
technique.3

3For large coverages, the overall reconstruction quality and the reconstruc-
tion quality at each wavelet scale also appear to be more stable around the
mean SNR values in the presence of the chirp modulation. This phenomenon
is probably related to the fact that the number of pairs of antipodal spatial
frequencies {kb ,−kb} contained in the mask M, designed from purely a
random selection of frequencies, is more variable for large k-space coverage.
For real images, which enjoy a symmetry property in k-space, taking a
measurement in −kb adds no information about the signal to that available
from kb , but only reduces the noise level. The reconstruction quality therefore
gets affected in proportion of the number of antipodal pairs. The chirp
modulation, which is complex, breaks this symmetry, so that all points
provide the same amount of information about the modulated signal and the
reconstruction quality is not affected by the number of antipodal pairs.

flexibility
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Compressed Sensing in MRI
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Original Image 10% Fourier coverage
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Compressed Sensing in MRI
23

Real data acquisition (+phantom “Marie”), 7T MRI@EPFL
chirp pre-modulation implemented with a dedicated shim coil

“Full scan” image No pre-modulation With chirp
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Low-power ECG ambulatory system
25

Problem: sense and transmit ECG (possibly multi-lead) from a 
low power body-area network

Compression ? Surely if we transmit less, we will waste less 
power in communication. 

Sure, but if we compress more we will waste energy using a 
complex encoder !

Can CS offer an interesting trade-off ?

Can everything be real-time ?
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 State-of-the-art
- Wavelet transform, followed by thresholding, 

quantization and entropy coding
- Pros: excellent compression results, signals nicely sparse 

(at least ventricular part)
- Cons: Full wavelet transform must be implemented on 

the sensing node

26
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What is a good sensing matrix for low-power sensing ?

Surely not gaussian ! (dense, complex to apply to signal and 
even complex to generate ...)

Sparse matrices, binary entries (ex: expander graphs)

generate binary vector
with d non-zero elements

generate full matrix by
random permutations
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vectors αS . It is worthwhile mentioning that coefficient 0,
corresponding to the mean of the ECG vector x, was separately
encoded.
3) Huffman coding: Since the N -dimensional vector αS

is exactly S-sparse; we can either directly encode it or only
encode its S nonzero entries and their corresponding indices.
The latter approach requires different codebooks for the coef-
ficients and indices, whereas the former obviously avoids the
index codebook. Our simulation results (omitted for lack of
space) showed that the first approach has better performance
for higher compression ratios thanks to the larger number
of zeros in the coefficient vector, which are more efficiently
encoded. The complete implementation of the thresholding-
based DWT compression requires 4.6 kB of RAM memory
and 10 kB of Flash memory, 5 kB of which is used for
Huffman codebook storage.

C. CS-Based Compression Algorithm
1) Linear transformation: The implementation of Gaussian

random sensing with matrix Φ ∈ RM×N , requires the imple-
mentation of a Gaussian-distributed random number generator
on the embedded platform and the computation of a large
matrix multiplication. This is too complex, time consuming
and certainly not real-time task for the MSP430. To address
this problem, we explored three different approaches to the
implementation of the random sensing matrix Φ.

a) Quantized Gaussian random sensing: We imple-
mented an 8-bit quantized version of a normal random number
generator to form Φ. Our simulations showed no meaningful
loss in signal quality between the quantized and the original
floating-point normal random number generation. While this
quantized version can be implemented on the MSP430, it was
discarded for its important drawbacks: (1) it uses the complex
log and sqrt functions; (2) for each input ECG vector, it
requires the generation of and the multiplication by a large
number of normal random numbers; (3) it is clearly not real-
time, as it requires over 1 minute to process a 2-second ECG
vector (i.e., N = 512 samples @ 256 Hz).

b) Pseudo-random sensing: We try to circumvent the on-
board generation of the normal random numbers by storing
them on the platform. Due to the memory constraints which
make it impossible to store the full Gaussian sensing matrix
of size (M×N ), we instead store one normal random column
vector and generate the other columns of our sensing matrix
by shuffling the positions of the entries of this vector. The
shuffling process is as follows: The generated random vector
is sorted, and the sorted index vector is used for successively
re-ordering the original vector. Unfortunately, this process is
also time consuming as it summons a sorting algorithm in
each iteration; a 2-second ECG vector is processed in 16
seconds. This is why we end up generating a random index
vector for shuffling the original vector. Interestingly, since both
approaches use the same (but shuffled) entries in each column,
the norm of each column of the sensing matrix is constant (vs.
the original approach where each column had to be normalized
on the platform), and the normalization can be moved to
the reconstruction side. Furthermore, this implementation does

not need an embedded Gaussian number generator and its
underlying complex and time-consuming functions such as
log and sqrt. Although this sub-optimal procedure can lead to
repeated or missed entries, it was verified that the output signal
quality is unchanged while the execution time is significantly
improved. More specifically, a 2-second ECG vector now takes
1.9 seconds to be CS sampled; which amounts to more than
90% of CPU execution time.

c) Sparse binary sensing: To address the shortcomings
of the previous two approaches, we herein introduce an in-
novative approach to CS implementation on embedded sensor
platforms. As aforementioned in Subsection II-B, it is possible
to use sub-Gaussian random matrices such as the one formed
by ±1 entries. To further decrease execution time, we explore
sparse binary sensing. For a sparse and binary matrix Φ (i.e.,
each column has exactly d nonzero entries equal to 1, with
d # N ), the RIP property of (4) is not valid. However, such
a sensing matrix satisfies a different form of this property, so-
called RIPp property. An M ×N matrix, Φ is said to satisfy
RIPp, if for any S-sparse vector α, we have:

(1− δ) ||α||p ≤ ||ΦΨα||p ≤ (1 + δ) ||α||p , (10)

it was proven in Theorem 2 of [38] that the RIP1 property of
a sparse binary sensing matrix with exactly d ones on each row
suffices to guarantee a good sparse approximation recovery by
a linear program.
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Since sparse sensing matrices are amenable to very fast
and efficient implementation of the large matrix multiplication
required by the CS, we herein explore the use of sparse
sensing matrices to decrease execution time. We consider two
alternatives: (1) sparse sensing matrices with non-zero entries
equal to ±1/

√
d; (2) sparse sensing matrices with nonzero

entries equal to 1/
√
d. Figure 3 plots the mutual coherence of

these two alternatives with the used Daubechies db10 wavelet
basis (i.e., sparsity basis), as defined in (3). As a baseline, the
mutual coherence corresponding to Gaussian sensing matrices
is also reported. The mutual coherence is plotted vs. the
number of non-zero elements d for the two sparse sensing
alternatives. The positions of the d non-zero elements are
randomly chosen to keep the incoherence between the columns
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of the sensing matrix. Obviously, the choice of the number
of non-zero elements depends on the sparsity of the signal.
Figure 3 shows that there is hardly any difference between the
two sparse sensing modalities, and these sub-optimal solutions
fast approach the optimal Gaussian sensing modalities as d
increases. The second sparse sensing modality corresponding
to a sparse sensing matrix Φ with exactly d non-zero entries
equal to 1/

√
d on each column will thus be retained thanks

to its simple implementation. This sensing modality will be
subsequently referred to as sparse binary sensing. Further-
more, we are interested in identifying the minimum value of
d that strikes the optimal trade-off between execution time and
(signal) recovery/reconstruction error. To do so, sparse binary
sensing matrices are applied to all the records of the MIT-BIH
Arrhythmia ECG database, and the output SNR of the recon-
structed signals is measured. Figure 4 reports the resulting
average output SNR versus the number of non-zero elements
d in the sparse binary sensing matrix Φ. Clearly, the output
SNR saturates after d = 12 non-zero elements, which is the
value retained for the rest of our hardware implementation
on the ShimmerTM. As aforementioned, all our experimental
results have been generated using the SPGL1 solver [31] in
combination with the SPARCO toolbox [39] in Matlab c© to
solve the sparse recovery problem of (6). Figure 5 shows the
average output SNR vs. different compression ratios (CR)
for the three different approaches to the implementation of the
random sensing matrix Φ explored in this subsection, namely,
(1) Gaussian random sensing: the double-precision Matlab
version; (2) Pseudo-random sensing: the version based on
the generation of a random index vector implemented on the
MSP430; (3) Sparse binary sensing: the version with d = 12
and all non-zero entries equal to 1/

√
12 also implemented

on the MSP430. These results were obtained for an input
vector of N = 512 samples and a 12-bit resolution for the
input vector x and the measurement vector y. Interestingly,
the obtained results validate that there is no meaningful
performance difference between these three approaches, while
sparse binary sensing offers the shortest execution time (a 2-
second vector is now CS-sampled in 82 ms), the simplest
operation and the smallest memory footprint, and as such will
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Fig. 5. Performance comparison between various CS implementation
approaches
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Fig. 6. a) Mean and variance (around each entry) of the measurement vector
y over 1296 consecutive measurement windows; b) Pdf of the difference signal
between two consecutive measurement vectors

be our implementation of choice. Note that Figure 5 also
illustrates that CS exhibits excellent robustness with respect
to quantization errors, unlike DWT (See Figure 2).
2) Inter-packet redundancy removal: The use of a fixed

binary sensing matrix, combined with the periodic nature of
the ECG signal, yields to very similar consecutive measure-
ment vectors y. This is confirmed by Figure 6(a), which

coherence quickly approaches “optimal case” SNR saturates after d=12 non-zero elements
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of the sensing matrix. Obviously, the choice of the number
of non-zero elements depends on the sparsity of the signal.
Figure 3 shows that there is hardly any difference between the
two sparse sensing modalities, and these sub-optimal solutions
fast approach the optimal Gaussian sensing modalities as d
increases. The second sparse sensing modality corresponding
to a sparse sensing matrix Φ with exactly d non-zero entries
equal to 1/

√
d on each column will thus be retained thanks

to its simple implementation. This sensing modality will be
subsequently referred to as sparse binary sensing. Further-
more, we are interested in identifying the minimum value of
d that strikes the optimal trade-off between execution time and
(signal) recovery/reconstruction error. To do so, sparse binary
sensing matrices are applied to all the records of the MIT-BIH
Arrhythmia ECG database, and the output SNR of the recon-
structed signals is measured. Figure 4 reports the resulting
average output SNR versus the number of non-zero elements
d in the sparse binary sensing matrix Φ. Clearly, the output
SNR saturates after d = 12 non-zero elements, which is the
value retained for the rest of our hardware implementation
on the ShimmerTM. As aforementioned, all our experimental
results have been generated using the SPGL1 solver [31] in
combination with the SPARCO toolbox [39] in Matlab c© to
solve the sparse recovery problem of (6). Figure 5 shows the
average output SNR vs. different compression ratios (CR)
for the three different approaches to the implementation of the
random sensing matrix Φ explored in this subsection, namely,
(1) Gaussian random sensing: the double-precision Matlab
version; (2) Pseudo-random sensing: the version based on
the generation of a random index vector implemented on the
MSP430; (3) Sparse binary sensing: the version with d = 12
and all non-zero entries equal to 1/

√
12 also implemented

on the MSP430. These results were obtained for an input
vector of N = 512 samples and a 12-bit resolution for the
input vector x and the measurement vector y. Interestingly,
the obtained results validate that there is no meaningful
performance difference between these three approaches, while
sparse binary sensing offers the shortest execution time (a 2-
second vector is now CS-sampled in 82 ms), the simplest
operation and the smallest memory footprint, and as such will
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be our implementation of choice. Note that Figure 5 also
illustrates that CS exhibits excellent robustness with respect
to quantization errors, unlike DWT (See Figure 2).
2) Inter-packet redundancy removal: The use of a fixed

binary sensing matrix, combined with the periodic nature of
the ECG signal, yields to very similar consecutive measure-
ment vectors y. This is confirmed by Figure 6(a), which

Hardly any difference between proposed sensing 
and gaussian sensing

2 s of signal are sensed in 82 ms
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of the sensing matrix. Obviously, the choice of the number
of non-zero elements depends on the sparsity of the signal.
Figure 3 shows that there is hardly any difference between the
two sparse sensing modalities, and these sub-optimal solutions
fast approach the optimal Gaussian sensing modalities as d
increases. The second sparse sensing modality corresponding
to a sparse sensing matrix Φ with exactly d non-zero entries
equal to 1/

√
d on each column will thus be retained thanks

to its simple implementation. This sensing modality will be
subsequently referred to as sparse binary sensing. Further-
more, we are interested in identifying the minimum value of
d that strikes the optimal trade-off between execution time and
(signal) recovery/reconstruction error. To do so, sparse binary
sensing matrices are applied to all the records of the MIT-BIH
Arrhythmia ECG database, and the output SNR of the recon-
structed signals is measured. Figure 4 reports the resulting
average output SNR versus the number of non-zero elements
d in the sparse binary sensing matrix Φ. Clearly, the output
SNR saturates after d = 12 non-zero elements, which is the
value retained for the rest of our hardware implementation
on the ShimmerTM. As aforementioned, all our experimental
results have been generated using the SPGL1 solver [31] in
combination with the SPARCO toolbox [39] in Matlab c© to
solve the sparse recovery problem of (6). Figure 5 shows the
average output SNR vs. different compression ratios (CR)
for the three different approaches to the implementation of the
random sensing matrix Φ explored in this subsection, namely,
(1) Gaussian random sensing: the double-precision Matlab
version; (2) Pseudo-random sensing: the version based on
the generation of a random index vector implemented on the
MSP430; (3) Sparse binary sensing: the version with d = 12
and all non-zero entries equal to 1/

√
12 also implemented

on the MSP430. These results were obtained for an input
vector of N = 512 samples and a 12-bit resolution for the
input vector x and the measurement vector y. Interestingly,
the obtained results validate that there is no meaningful
performance difference between these three approaches, while
sparse binary sensing offers the shortest execution time (a 2-
second vector is now CS-sampled in 82 ms), the simplest
operation and the smallest memory footprint, and as such will
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be our implementation of choice. Note that Figure 5 also
illustrates that CS exhibits excellent robustness with respect
to quantization errors, unlike DWT (See Figure 2).
2) Inter-packet redundancy removal: The use of a fixed

binary sensing matrix, combined with the periodic nature of
the ECG signal, yields to very similar consecutive measure-
ment vectors y. This is confirmed by Figure 6(a), which

difference between successive sensing vectors
Compression Ration: 20%

Gaussian RD theory
9 bits quantizer
Huffman coding
1.5 kB codebook stored on platform

Total memory footprint of CS implementation:
6.5 kB of RAM for computations
7.5 kB of Flash
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Fig. 7. Output SNR vs. CR for CS and DWT before and after inter-packet
redundancy removal and Huffman coding

plots the measured mean and variance on each of the 103
entries of 1296 consecutive measurement vectors y in 12-bit
resolution, for a compression ratio of CR = 20%. Clearly,
there is a large inter-packet redundancy that must be removed
prior to encoding and wireless transmission. Consequently, the
redundancy removal module computes the difference between
consecutive vectors, and only this difference is further pro-
cessed. Furthermore, Figure 6(b) shows the pdf of the differ-
ence signal between two consecutive measurement vectors. It
is thus sufficient to represent the difference signal using 9 bits,
instead of the 12 bits required for the measurement vector. This
observation translates into a larger compression performance.
3) Huffman Coding: Interestingly, Figure 6(b) shows that

the distribution of the difference signal at the output of the re-
dundancy removal module are far from uniform. Consequently,
Huffman encoding can be used for further compression. Since
the range of the difference signal just before encoding is
between [−256 : 255], a complete Huffman codebook of size
512 is needed with a maximum codeword length of 16 bits,
for a given compression ratio. The storage of such an offline-
generated codebook requires 1 kB for the codebook itself
and 512 B for its corresponding codeword lengths. The CS
implementation requires 6.5 kB of RAM memory and 7.5 kB
of Flash, 1.5 kB of which are for Huffman codebook storage.

D. Comparison between two algorithms
Figures 7 and 8 compare the output SNR and PRD,

averaged over all database records, for CS and DWT-based
compression before and after inter-packet redundancy removal
and Huffman coding for different compression ratios. They
confirm the crucial role of the redundancy removal module
and the careful design of the Huffman encoding. These figures
show the average quality metrics, but there is large variance
between the individual records. Alternatively, Figures 9(a)
and 9(b) show the box plots for both algorithms. On each
box, the central mark is the median, the edges of the box
are the 25th and 75th percentiles, and the whiskers extend to
the most extreme data points not considered outliers. Record
107 produces the best results for both CS and DWT: ”very
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Fig. 8. Output PRD vs. CR for CS and DWT before and after inter-packet
redundancy removal and Huffman coding

good” signal reconstruction quality (corresponding to PRD
below 2%, See Table I) can be reached for compression ratios
of up to 61% and 75% for CS and DWT respectively, while
”good” signal recovery is reached for compression ratios of
up to 74% and 90%. On average, ”very good” quality of
reconstruction for DWT-based compression is achieved up
to CR = 73%, and up to CR = 51% for CS. Moreover,
”good” reconstruction quality is reached on average for up to
CR = 90% and CR = 71% for DWT and CS, respectively.
As expected, the signal-adaptive DWT-based compression
outperforms the adaptive CS-based compression. However, the
measured performance of CS compression reported for the first
time in this work is certainly promising in view of its very low
computational complexity and limited resource needs. In fact,
this measured performance is strikingly promising since the
sparse reconstruction algorithm used in this work is the default
basis pursuit denoise, where no attempt has been made to
exploit the highly structured nature of the ECG signal. Finally,
it is worthwhile mentioning that the used metrics PRD and
SNR may not always reflect the reconstruction quality. To
illustrate their shortcoming, Figure 10 plots a fragment of the
original record 232 and its corresponding CS-compressed and
reconstructed signal. The PRD value corresponding to each
512-sample window is shown underneath, while the related
reconstruction error is plotted above. It is easily seen that
window 19 exhibits a very large PRD value (i.e., very bad
reconstruction). In fact, this window contains no ECG rhythm,
just background noise that does not fulfill our sparsity assump-
tion. Consequently, while bearing no relevant information, this
window leads to a detrimental reduction of the measured signal
quality in terms of PRD and SNR.

V. POWER AND ENERGY CONSUMPTION MEASUREMENTS

The previous section described in details the characteristics
of the embedded implementations of the two considered ECG
compression algorithms, and carefully motivated the various
underlying trade-offs and implementation choices. It also
proposed a comparative study of these algorithms in terms
of the signal reconstruction metrics (i.e., PRD and SNR)
and their embedded memory usage. The present section further

very good

good

In terms of pure compression performance, an optimized DWT encoder 
is clearly (and obviously better) than the non-adaptive CS scheme

vendredi, 10 septembre 2010



Journée du Traitement du Signal et de l’Image pour le Biomedical

Comparisons - Power consumption
31

Consumption measured on the platform in real-life use

Code execution time: 95ms for CS, 580ms for DWT
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The reported results show that DWT-based compression fails
to achieve any lifetime extension, compared to the default al-
ternative of streaming uncompressed ECG data. Alternatively,
CS shows a 7.12 % and 12.9 % extension in node lifetime for
”very good” and ”good” reconstruction quality, respectively.
CS manages to achieve limited lifetime extension thanks to

TABLE II
AVERAGE POWER CHARACTERIZATION OF SHIMMERTM

Radio reception 84.6 mW
Radio transmission 64.35 mW
Sampling with microcontroller idle 6.60 mW
Beacon duration 2.7 ms
Full packet duration (transmission) 4.2 ms
Reception duration after radio transmission 2.7 ms

TABLE III
NODE LIFE TIME FOR ”VERY GOOD” RECONSTRUCTION QUALITY WITH

EMBEDDED COMPRESSION

DWT CS No Comp.
Compression Ratio (%) 73 51 0
Code execution time (ms) 580 99.5 0
Packet Ready every ... (ms) 1099.5 605.9 296.9
Beacon Interval (ms) 4398 2423 1187
Energy Consumption (mJ) 9.08 7.81 8.37
Life time (h) (280 mAh@3.7 V ) 110 127.9 119.4

TABLE IV
NODE LIFE TIME FOR ”GOOD” RECONSTRUCTION QUALITY WITH

EMBEDDED COMPRESSION

DWT CS No Comp.
Compression Ratio (%) 90 71 0
Code execution time (ms) 580 99.5 0
Packet Ready every ... (ms) 2968.8 1023.7 296.9
Beacon Interval (ms) 11875 4094 1187
Energy Consumption (mJ) 8.78 7.46 8.37
Life time (h) (280 mAh@3.7 V ) 113.76 133.95 119.4
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Fig. 13. Node lifetime for various microcontroller/processor series running
embedded CS-based compression

its shorter processing time. These disappointing results are
in fact due the fact that the MSP430 is not optimized for
ultra-low-power digital signal processing (DSP) operations,
and as such limits the achievable node lifetime extension
through embedded signal pre-processing and reduction prior
to wireless communication. To investigate the full potential of
CS to extend node lifetime, we consider its implementation on
more competitive state-of-the-art ultra-low-power processors.
Figure 13 shows the node lifetime for the MSP430 and the re-
cently introduced ultra-low-power DSP/MCUs icyflex1 [42]
and icyflex2 [43], by the Swiss Center for Electronics and
Microtechnology (CSEM). These processors are designed in
technologies that are more power efficient and are customized
for DSP applications. The reported results for embedded CS
on icyflex series are calculated based on their published
specification, while wireless transceiver consumption is the
same as in Subsection V-B. Strikingly, Figure 13 shows that
the node lifetime can be extended by 76 % and 46 % for
”good” and ”very good” reconstruction quality, respectively,
on the currently available icyflex1. Furthermore, the lifetime
extension is further increased up to 92 % and 54 % by
the upcoming icyflex265nm for ”good” and ”very good”
reconstruction quality, respectively. These results establish the
relevance of energy-aware embedded ECG compression on
sensor motes as a powerful mean to extend their autonomy.

VI. CONCLUSIONS
This paper proposed a complete system-level compari-

son between a new CS-based and the state-of-the-art DWT-
based embedded ECG compression algorithms. As expected,
nonadaptive CS-based compression was found to exhibit
inferior compression performance compared to its signal-
adaptive DWT-based counterpart for a given reconstructed
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The reported results show that DWT-based compression fails
to achieve any lifetime extension, compared to the default al-
ternative of streaming uncompressed ECG data. Alternatively,
CS shows a 7.12 % and 12.9 % extension in node lifetime for
”very good” and ”good” reconstruction quality, respectively.
CS manages to achieve limited lifetime extension thanks to

TABLE II
AVERAGE POWER CHARACTERIZATION OF SHIMMERTM

Radio reception 84.6 mW
Radio transmission 64.35 mW
Sampling with microcontroller idle 6.60 mW
Beacon duration 2.7 ms
Full packet duration (transmission) 4.2 ms
Reception duration after radio transmission 2.7 ms

TABLE III
NODE LIFE TIME FOR ”VERY GOOD” RECONSTRUCTION QUALITY WITH

EMBEDDED COMPRESSION

DWT CS No Comp.
Compression Ratio (%) 73 51 0
Code execution time (ms) 580 99.5 0
Packet Ready every ... (ms) 1099.5 605.9 296.9
Beacon Interval (ms) 4398 2423 1187
Energy Consumption (mJ) 9.08 7.81 8.37
Life time (h) (280 mAh@3.7 V ) 110 127.9 119.4

TABLE IV
NODE LIFE TIME FOR ”GOOD” RECONSTRUCTION QUALITY WITH

EMBEDDED COMPRESSION

DWT CS No Comp.
Compression Ratio (%) 90 71 0
Code execution time (ms) 580 99.5 0
Packet Ready every ... (ms) 2968.8 1023.7 296.9
Beacon Interval (ms) 11875 4094 1187
Energy Consumption (mJ) 8.78 7.46 8.37
Life time (h) (280 mAh@3.7 V ) 113.76 133.95 119.4
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its shorter processing time. These disappointing results are
in fact due the fact that the MSP430 is not optimized for
ultra-low-power digital signal processing (DSP) operations,
and as such limits the achievable node lifetime extension
through embedded signal pre-processing and reduction prior
to wireless communication. To investigate the full potential of
CS to extend node lifetime, we consider its implementation on
more competitive state-of-the-art ultra-low-power processors.
Figure 13 shows the node lifetime for the MSP430 and the re-
cently introduced ultra-low-power DSP/MCUs icyflex1 [42]
and icyflex2 [43], by the Swiss Center for Electronics and
Microtechnology (CSEM). These processors are designed in
technologies that are more power efficient and are customized
for DSP applications. The reported results for embedded CS
on icyflex series are calculated based on their published
specification, while wireless transceiver consumption is the
same as in Subsection V-B. Strikingly, Figure 13 shows that
the node lifetime can be extended by 76 % and 46 % for
”good” and ”very good” reconstruction quality, respectively,
on the currently available icyflex1. Furthermore, the lifetime
extension is further increased up to 92 % and 54 % by
the upcoming icyflex265nm for ”good” and ”very good”
reconstruction quality, respectively. These results establish the
relevance of energy-aware embedded ECG compression on
sensor motes as a powerful mean to extend their autonomy.

VI. CONCLUSIONS
This paper proposed a complete system-level compari-

son between a new CS-based and the state-of-the-art DWT-
based embedded ECG compression algorithms. As expected,
nonadaptive CS-based compression was found to exhibit
inferior compression performance compared to its signal-
adaptive DWT-based counterpart for a given reconstructed

Radio consumption

MSP430 idle and 
sampling till buffer full

CS code running
periodic “ping”

transmission 
& reception

Note: contrary to what is usually assumed in litterature, 
optimized antennas are really low power !
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Final results: it is important to know your architecture VERY well
TABLE III

NODE LIFE TIME FOR ”VERY GOOD” RECONSTRUCTION QUALITY WITH
EMBEDDED COMPRESSION

DWT CS No Comp.
Compression Ratio (%) 73 51 0
Code execution time (ms) 580 99.5 0
Packet Ready every ... (ms) 1099.5 605.9 296.9
Beacon Interval (ms) 4398 2423 1187
Energy Consumption (mJ) 9.08 7.81 8.37
Life time (h) (280 mAh@3.7 V ) 110 127.9 119.4

MSP430: ratio micro-controller/antenna is such that DWT 
compression does NOT improve on “raw” streaming ... 
CS improvement rather small
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The reported results show that DWT-based compression fails
to achieve any lifetime extension, compared to the default al-
ternative of streaming uncompressed ECG data. Alternatively,
CS shows a 7.12 % and 12.9 % extension in node lifetime for
”very good” and ”good” reconstruction quality, respectively.
CS manages to achieve limited lifetime extension thanks to

TABLE II
AVERAGE POWER CHARACTERIZATION OF SHIMMERTM

Radio reception 84.6 mW
Radio transmission 64.35 mW
Sampling with microcontroller idle 6.60 mW
Beacon duration 2.7 ms
Full packet duration (transmission) 4.2 ms
Reception duration after radio transmission 2.7 ms

TABLE III
NODE LIFE TIME FOR ”VERY GOOD” RECONSTRUCTION QUALITY WITH

EMBEDDED COMPRESSION

DWT CS No Comp.
Compression Ratio (%) 73 51 0
Code execution time (ms) 580 99.5 0
Packet Ready every ... (ms) 1099.5 605.9 296.9
Beacon Interval (ms) 4398 2423 1187
Energy Consumption (mJ) 9.08 7.81 8.37
Life time (h) (280 mAh@3.7 V ) 110 127.9 119.4

TABLE IV
NODE LIFE TIME FOR ”GOOD” RECONSTRUCTION QUALITY WITH

EMBEDDED COMPRESSION

DWT CS No Comp.
Compression Ratio (%) 90 71 0
Code execution time (ms) 580 99.5 0
Packet Ready every ... (ms) 2968.8 1023.7 296.9
Beacon Interval (ms) 11875 4094 1187
Energy Consumption (mJ) 8.78 7.46 8.37
Life time (h) (280 mAh@3.7 V ) 113.76 133.95 119.4
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embedded CS-based compression

its shorter processing time. These disappointing results are
in fact due the fact that the MSP430 is not optimized for
ultra-low-power digital signal processing (DSP) operations,
and as such limits the achievable node lifetime extension
through embedded signal pre-processing and reduction prior
to wireless communication. To investigate the full potential of
CS to extend node lifetime, we consider its implementation on
more competitive state-of-the-art ultra-low-power processors.
Figure 13 shows the node lifetime for the MSP430 and the re-
cently introduced ultra-low-power DSP/MCUs icyflex1 [42]
and icyflex2 [43], by the Swiss Center for Electronics and
Microtechnology (CSEM). These processors are designed in
technologies that are more power efficient and are customized
for DSP applications. The reported results for embedded CS
on icyflex series are calculated based on their published
specification, while wireless transceiver consumption is the
same as in Subsection V-B. Strikingly, Figure 13 shows that
the node lifetime can be extended by 76 % and 46 % for
”good” and ”very good” reconstruction quality, respectively,
on the currently available icyflex1. Furthermore, the lifetime
extension is further increased up to 92 % and 54 % by
the upcoming icyflex265nm for ”good” and ”very good”
reconstruction quality, respectively. These results establish the
relevance of energy-aware embedded ECG compression on
sensor motes as a powerful mean to extend their autonomy.

VI. CONCLUSIONS
This paper proposed a complete system-level compari-

son between a new CS-based and the state-of-the-art DWT-
based embedded ECG compression algorithms. As expected,
nonadaptive CS-based compression was found to exhibit
inferior compression performance compared to its signal-
adaptive DWT-based counterpart for a given reconstructed

State-of-the-art homegrown 
low-power microntrollers

92% lifetime extension, 6 times better than MSP430

Note: CS decoder runs real-time on a jailbroken iPhone 3GS
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Conclusions & Outcome
 Many interesting applications in “niches”
- low power embedded systems (ex: in vivo bio-chips)
- coded-aperture super-resolution
- high-transmission cost, reduced computational power (ex: 

satellites) 
 Full system implementations are very sparse 
- in theory, it’s easy but in practice one gets surprises
- it takes more time to publish ...
- interestingly multidisciplinar
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