Rank optimality for the Burer-Monteiro factorization

Irène Waldspurger

CNRS and CEREMADE (Université Paris Dauphine) Équipe MOKAPLAN (INRIA)

Joint work with Alden Waters (Bernoulli Institute, Rijksuniversiteit Groningen)

> June 19, 2020 Séminaire signal-apprentissage Marseille, I2M / LIS

> > ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Semidefinite programming

minimize $\operatorname{Trace}(CX)$ such that $\mathcal{A}(X) = b$, $X \succeq 0$.

Here,

- > X, the unknown, is an $n \times n$ matrix;
- C is a fixed $n \times n$ matrix (cost matrix);
- ▶ \mathcal{A} : Sym_n → \mathbb{R}^m is linear;
- *b* is a fixed vector in \mathbb{R}^m .

Motivations

Very diverse applications.

Main motivation for us : Many hard combinatorial optimization problems can be approximated by semidefinite programs.

Motivations

Very diverse applications.

Main motivation for us : Many hard combinatorial optimization problems can be approximated by semidefinite programs.

Principle :

Quadratic constraints over a vector $x \in \mathbb{R}^n$ $\label{eq:constraints}$ Linear constraints over the matrix $X = xx^T \in \mathbb{R}^{n imes n}$

 \Rightarrow Problems with quadratic constraints can be turned to semidefinite programs with the change of variable " $x \rightarrow X$ ".

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Numerical solvers

General SDPs can be solved at arbitrary precision in polynomial time. But the order of the polynomial is large.

. . .

Numerical solvers

General SDPs can be solved at arbitrary precision in polynomial time. But the order of the polynomial is large. 35

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Interior point solvers : complexity $O(n^4)$ per iteration.

First-order ones : $O(n^3)$, more iterations needed.

. . .

Numerical solvers

General SDPs can be solved at arbitrary precision in polynomial time. But the order of the polynomial is large.

Interior point solvers : complexity $O(n^4)$ per iteration.

First-order ones : $O(n^3)$, more iterations needed.

 \rightarrow Numerically, high dimensional SDPs are difficult to solve.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Low-rank semidefinite programming

We can speed up the solving if we know that the solution has some special structure and exploit it.

Low-rank semidefinite programming

We can speed up the solving if we know that the solution has some special structure and exploit it.

 \rightarrow We assume that the solution has low rank $r \ll n$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Low-rank semidefinite programming

We can speed up the solving if we know that the solution has some special structure and exploit it.

 \rightarrow We assume that the solution has low rank $r \ll n$.

Intuition : When the problem has been obtained by the change of variable " $x \to X = xx^{T}$ ", the solution should be rank 1.

Exploiting the low rank

Two main strategies :

- Frank-Wolfe methods; [Frank and Wolfe, 1956]
- Burer-Monteiro factorization.
 [Burer and Monteiro, 2003]

Remark : The Burer-Monteiro factorization is only a heuristic, which may not always work. The goal of the present work is precisely to help understanding when it works / does not work.

Burer-Monteiro factorization : principle

- Assume that there is a solution with rank r_{opt}.
- Choose some integer $p \ge r_{opt}$.
- Write X under the form

 $X = VV^{T},$

with V an $n \times p$ matrix.

• Minimize $\operatorname{Trace}(CVV^{T})$ over V.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Remark : p is the *factorization rank*. It must be chosen, and can be equal to or larger than r_{opt} .

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

minimize
$$\operatorname{Trace}(CVV^T)$$

for $V \in \mathbb{R}^{n \times p}$ such that $\mathcal{A}(VV^T) = b$.

We assume that $\{V \in \mathbb{R}^{n \times p}, \mathcal{A}(VV^{T}) = b\}$ is a "nice" manifold.

 \rightarrow Solve with Riemannian optimization algorithms.

Main advantage of the factorized formulation

The number of variables is not $O(n^2)$ anymore, but O(np), with $p \ll n$.

 \rightarrow Allows reducing the computational complexity.

Main advantage of the factorized formulation

The number of variables is not $O(n^2)$ anymore, but O(np), with $p \ll n$.

 \rightarrow Allows reducing the computational complexity.

Main drawback of the factorized formulation

Contrarily to the SDP, the factorized problem is non-convex.

 \rightarrow Riemannian algorithms may get stuck at a critical point instead of finding a global minimizer.

Main advantage of the factorized formulation

The number of variables is not $O(n^2)$ anymore, but O(np), with $p \ll n$.

 \rightarrow Allows reducing the computational complexity.

Main drawback of the factorized formulation

Contrarily to the SDP, the factorized problem is non-convex.

 \rightarrow Riemannian algorithms may get stuck at a critical point instead of finding a global minimizer.

This issue can arise or not, depending on the factorization rank p.

 \Rightarrow How to choose *p*?

Outline

- 1. Literature review
 - In practice, algorithms don't get stuck if $p \gtrsim r_{opt}$.
 - In particular situations, this phenomenon is understood.
 - In a general setting, no guarantees unless $p \gtrsim \sqrt{2m}$.
 - But $r_{opt} \ll \sqrt{2m}$. Why this gap?

Outline

1. Literature review

- In practice, algorithms don't get stuck if $p \gtrsim r_{opt}$.
- In particular situations, this phenomenon is understood.
- In a general setting, no guarantees unless $p \gtrsim \sqrt{2m}$.
- But $r_{opt} \ll \sqrt{2m}$. Why this gap?
- 2. Optimal rank for the Burer-Monteiro formulation
 - A minor improvement is possible over previous general guarantees.
 - The improved result is optimal.
 - → If $p \leq \sqrt{2m}$, Riemannian algorithms cannot be certified correct without additional assumptions.
 - Idea of proof.

Outline

1. Literature review

- In practice, algorithms don't get stuck if $p \gtrsim r_{opt}$.
- In particular situations, this phenomenon is understood.
- In a general setting, no guarantees unless $p \gtrsim \sqrt{2m}$.
- But $r_{opt} \ll \sqrt{2m}$. Why this gap?
- 2. Optimal rank for the Burer-Monteiro formulation
 - A minor improvement is possible over previous general guarantees.
 - The improved result is optimal.
 - → If $p \lesssim \sqrt{2m}$, Riemannian algorithms cannot be certified correct without additional assumptions.
 - Idea of proof.
- 3. Open questions

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

Numerical observations

- 1. [Burer and Monteiro, 2003] Various problems, notably MaxCut and minimum bisection.
- 2. [Journée, Bach, Absil, and Sepulchre, 2010] MaxCut (with a particular initialization scheme).
- 3. [Boumal, 2015] Orthogonal synchronization.
- 4. "SDP-like" problems; see for example [Mishra, Meyer, Bonnabel, and Sepulchre, 2014].

In all these articles, it is reported that Riemannian algorithms do not get stuck as soon as p is slightly larger than r_0 .

Theoretical explanations in particular cases

Strong guarantees, but in very specific situations only.

Typical result :

. . .

"Consider a specific subclass of semidefinite programs. In it, choose an element at random, with a specific probability distribution. With high probability, Riemannian algorithms do not get stuck if $p \ge r_0$."

Main such result : [Bandeira, Boumal, and Voroninski, 2016] Other particular SDP-like problems : [Ge, Lee, and Ma, 2016]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

General case : one main result [Boumal, Voroninski, and Bandeira, 2018]

minimize $\operatorname{Trace}(CVV^{T})$ for $V \in \mathbb{R}^{n \times p}$ such that $\mathcal{A}(VV^{T}) = b$.

The only assumption is (approximately) that

$$\mathcal{M}_p \stackrel{def}{=} \{ V \in \mathbb{R}^{n \times p}, \mathcal{A}(VV^T) = b \}$$

is a manifold.

General case : one main result [Boumal, Voroninski, and Bandeira, 2018]

minimize
$$\operatorname{Trace}(CVV^T)$$
,
for $V \in \mathcal{M}_p$.

Riemannian optimization algorithms typically converge to second-order critical points :

A matrix $V_0 \in \mathcal{M}_p$ is a second-order critical point if

General case : one main result [Boumal, Voroninski, and Bandeira, 2018]

Theorem

For almost all matrices C, if

$$p>\left\lfloor \sqrt{2m+rac{1}{4}}-rac{1}{2}
ight
floor,$$

all second-order critical points are global minimizers. Consequently, Riemannian optimization algorithms always find a global minimizer.

General case : one main result [Boumal, Voroninski, and Bandeira, 2018]

Theorem

For almost all matrices C, if

$$p>\left\lfloor \sqrt{2m+rac{1}{4}}-rac{1}{2}
ight
floor,$$

all second-order critical points are global minimizers. Consequently, Riemannian optimization algorithms always find a global minimizer.

Remark : The value of p does not depend on r_{opt} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Summary

In empirical experiments, as well as in the few particular cases that have been studied, algorithms seem to always work when

 $p = O(r_{opt}).$

The only available general result guarantees that algorithms work when

 $p\gtrsim\sqrt{2m}$.

Summary

In empirical experiments, as well as in the few particular cases that have been studied, algorithms seem to always work when

 $p = O(r_{opt}).$

The only available general result guarantees that algorithms work when

$$p\gtrsim\sqrt{2m}.$$

As r_{opt} is often much smaller than $\sqrt{2m}$, this leaves a big gap. \rightarrow Is it possible to obtain general guarantees for $p \ll \sqrt{2m}$?

Overview of our results

A minor improvement is possible over the result by [Boumal, Voroninski, and Bandeira, 2018], but it does not change the leading order term

 $p\gtrsim\sqrt{2m}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Overview of our results

A minor improvement is possible over the result by [Boumal, Voroninski, and Bandeira, 2018], but it does not change the leading order term

18 / 35

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $p\gtrsim\sqrt{2m}.$

• With this improvement, the result is essentially optimal, even if $r_{opt} \ll \sqrt{2m}$.

[Boumal, Voroninski, and Bandeira, 2018]

Theorem

For almost all matrices C, if

$$p>\left\lfloor \sqrt{2m+rac{1}{4}}-rac{1}{2}
ight
floor,$$

19 / 35

all second-order critical points are global minimizers. Consequently, Riemannian optimization algorithms always find a global minimizer. [Boumal, Voroninski, and Bandeira, 2018] improved

Theorem

For almost all matrices C, if

$$p > \left\lfloor \sqrt{2m + \frac{1}{4} - \frac{1}{2}} \right\rfloor, \left\lfloor \sqrt{2m + \frac{9}{4} - \frac{3}{2}} \right\rfloor$$

all second-order critical points are global minimizers. Consequently, Riemannian optimization algorithms always find a global minimizer. Theorem (Quasi-optimality of the previous result) Let $r_0 = \min\{\operatorname{rank}(X), \mathcal{A}(X) = b, X \succeq 0\}$. Under suitable hypotheses, if

$$p \leq \left\lfloor \sqrt{2m + \left(r_0 + \frac{1}{2}\right)^2} - \left(r_0 + \frac{1}{2}\right)
ight
floor,$$

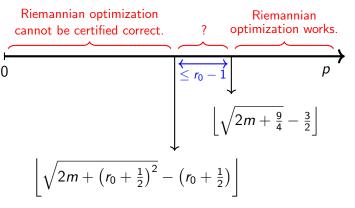
there is a set of matrices \boldsymbol{C} with non-zero Lebesgue measure for which :

- 1. The global minimizer has rank r_0 .
- 2. There is a second order critical point which is not a global minimizer.

Optimal rank for the Burer-Monteiro factorization 21 / 35

Comments

- ln most applications, r_0 is small, possibly $r_0 = 1$.
- We have the following picture :



▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Example : MaxCut relaxations

Relaxes the *Maximum Cut* problem from graph theory. [Delorme and Poljak, 1993]

Maximum Cut : for a graph with weighted edges, split the graph in two so as to maximize the weight of cut edges.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Example : MaxCut relaxations

Relaxes the *Maximum Cut* problem from graph theory. [Delorme and Poljak, 1993]

Maximum Cut : for a graph with weighted edges, split the graph in two so as to maximize the weight of cut edges.

Most famous example of a SDP approximating a hard combinatorial problem.

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ ()

Example : MaxCut relaxations

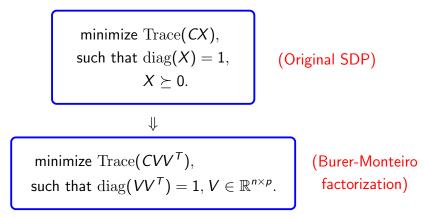
Relaxes the *Maximum Cut* problem from graph theory. [Delorme and Poljak, 1993]

Maximum Cut : for a graph with weighted edges, split the graph in two so as to maximize the weight of cut edges.

Most famous example of a SDP approximating a hard combinatorial problem.

 $\begin{array}{l} \text{minimize } \operatorname{Trace}(\mathit{CX})\\ \text{such that } \operatorname{diag}(\mathit{X}) = 1,\\ \mathit{X} \succeq \mathsf{0}. \end{array}$

Example : MaxCut relaxations



23 / 35

In this case, $r_0 = 1$.

Example : MaxCut relaxations

► For almost all *C*, if

$$p>\left\lfloor\sqrt{2n+\frac{9}{4}}-\frac{3}{2}
ight
floor,$$

24 / 35

no bad second-order critical point exists; Riemannian algorithms work.

► If

$$p\leq \left\lfloor \sqrt{2n+rac{9}{4}}-rac{3}{2}
ight
floor,$$

even when assuming a rank 1 solution, there are matrices C for which Riemannian algorithms can fail.

Idea of proof

We assume $p \leq \sqrt{2m}$. A and b are fixed.

We want to show that there exists C for which the problem

 $\begin{array}{l} \text{minimize } \operatorname{Trace}({{\it C}}{{\it X}})\\ \text{for } {\it X} \in \mathbb{R}^{n \times n} \text{ such that } {\it A}({\it X}) = {\it b},\\ {\it X} \succeq 0. \end{array}$

- 1. has a global minimizer of rank r_0 ;
- 2. has a "bad" second order critical point when factorized through the Burer-Monteiro heuristic.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

26 / 35

Idea of proof

The theorem actually requires a whole non-zero Lebesgue measure set of such matrices C to exist.

With classical geometrical arguments, it more or less suffices to construct one such matrix C.

Idea of proof

The theorem actually requires a whole non-zero Lebesgue measure set of such matrices C to exist.

With classical geometrical arguments, it more or less suffices to construct one such matrix C.

 \Rightarrow Let us construct *C*.

うせん 同一人用 人用 人用 人口 マ

26 / 35

Idea of proof : construct C

1. This problem must have a rank r_0 minimizer :

$$\begin{array}{l} \text{minimize } \operatorname{Trace}(\mathit{CX}) \\ \text{for } X \in \mathbb{R}^{n \times n} \text{ such that } \mathcal{A}(X) = b, \\ X \succeq 0. \end{array}$$

2. This one must have a "bad" second-order critical point :

 $\begin{array}{l} \text{minimize } \operatorname{Trace}(\mathit{CVV}^{\mathit{T}}) \\ \text{for } \mathit{V} \in \mathbb{R}^{n \times p} \text{ such that } \mathcal{A}(\mathit{VV}^{\mathit{T}}) = \mathit{b}. \end{array}$

These conditions can be written under a purely analytical form.

27 / 35

Idea of proof : construct C

After several simplifications, we see that the existence of C is implied by the existence of X_0 , V, μ such that :

28 / 35

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Idea of proof : construct C

After several simplifications, we see that the existence of C is implied by the existence of X_0 , V, μ such that :

28 / 35

- X_0 is feasible for the SDP and has rank r_0 ;
- ► *V* is feasible for the factorized problem ;

Idea of proof : construct C

After several simplifications, we see that the existence of C is implied by the existence of X_0 , V, μ such that :

28 / 35

- X_0 is feasible for the SDP and has rank r_0 ;
- ► *V* is feasible for the factorized problem ;
- $V^{\mathsf{T}}\mathcal{A}^*(\mu)V \succeq 0$ and $X_0^{\mathsf{T}}\mathcal{A}^*(\mu)V = 0$.

Idea of proof : construct C

The first two conditions are easy; we focus on the third one.

$$\exists \mu, \quad V^{\mathsf{T}} \mathcal{A}^*(\mu) V \succeq 0 \qquad ext{and} \qquad X_0^{\mathsf{T}} \mathcal{A}^*(\mu) V = 0 \, ?$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Idea of proof : construct C

The first two conditions are easy; we focus on the third one.

$$\exists \mu, \quad V^{\mathsf{T}} \mathcal{A}^*(\mu) V \succeq 0 \qquad ext{and} \qquad X_0^{\mathsf{T}} \mathcal{A}^*(\mu) V = 0 \, ?$$

Fix X_0 , V. Consider the map

dimension *m* $\mathbb{R}^{m} \rightarrow \mathbb{Sym}^{p \times p} \times \mathbb{R}^{r_{0} \times p}$ $\mu \rightarrow (V^{T} \mathcal{A}^{*}(\mu) V, X_{0}^{T} \mathcal{A}^{*}(\mu) V)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Idea of proof : construct C

The first two conditions are easy; we focus on the third one.

$$\exists \mu, \quad V^{\mathsf{T}} \mathcal{A}^*(\mu) V \succeq 0 \qquad ext{and} \qquad X_0^{\mathsf{T}} \mathcal{A}^*(\mu) V = 0 ?$$

Fix X_0 , V. Consider the map

dimension m $\mathbb{R}^{m} \rightarrow \mathbb{Sym}^{p \times p} \times \mathbb{R}^{r_{0} \times p}$ $\mu \rightarrow (V^{T} \mathcal{A}^{*}(\mu) V, X_{0}^{T} \mathcal{A}^{*}(\mu) V)$

If $m \ge \frac{p(p+1)}{2} + pr_0$, it is generically surjective and μ exists.

Idea of proof : construct C

The first two conditions are easy; we focus on the third one.

$$\exists \mu, \quad V^{\mathsf{T}} \mathcal{A}^*(\mu) V \succeq 0 \qquad ext{and} \qquad X_0^{\mathsf{T}} \mathcal{A}^*(\mu) V = 0 \, ?$$

Fix X_0 , V. Consider the map

dimension m $\mathbb{R}^{m} \rightarrow \underbrace{\operatorname{Sym}^{p \times p}}_{\mu \rightarrow (V^{T} \mathcal{A}^{*}(\mu) V)} \times \mathbb{R}^{r_{0} \times p}}_{\mathbb{R}^{m} \rightarrow (V^{T} \mathcal{A}^{*}(\mu) V)} \times X_{0}^{T} \mathcal{A}^{*}(\mu) V)$ If $\underline{m} \geq \frac{p(p+1)}{2} + pr_{0}$ it is generically surjective and μ exists. $\iff p \leq \sqrt{2m + (r_{0} + \frac{1}{2})^{2}} - (r_{0} + \frac{1}{2})$

30 / 35

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Burer-Monteiro factorization : summary

▶ [Boumal, Voroninski, and Bandeira, 2018]

When $p \gtrsim \sqrt{2m}$, for almost any cost matrix, all second-order critical points are minimizers.

Numerical experiments suggest it could be true for

$$p = O(r_{opt}) \ll \sqrt{2m}.$$

[Our result]

When $p \lesssim \sqrt{2m}$, it is not true.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Open questions

- 1. Refined understanding of the regime $p < \sqrt{2m}$;
- 2. Study of specific semidefinite programs for applications.

32 / 35

Understanding the regime $p < \sqrt{2m}$

Our result says :

"If we want to guarantee that the Burer-Monteiro heuristic works for almost all cost matrices *C*, we need $p \gtrsim \sqrt{2m}$."

But in practice, we oftentimes do not need the heuristic to work for *all* cost matrices.

32 / 35

Understanding the regime $p < \sqrt{2m}$

Our result says :

"If we want to guarantee that the Burer-Monteiro heuristic works for almost all cost matrices *C*, we need $p \gtrsim \sqrt{2m}$."

But in practice, we oftentimes do not need the heuristic to work for *all* cost matrices.

 \rightarrow Establish more realistic guarantees, like

"For $p \in [r_0; \sqrt{2m}]$, the Burer-Monteiro heuristic works for most cost matrices *C*." ?

Application to phase retrieval problems

Reconstruct $x \in \mathbb{C}^d$ from $|\langle a_k, x \rangle|, 1 \leq k \leq m$.

Here,

- ▶ $a_1, \ldots, a_m \in \mathbb{C}^d$ are known;
- ▶ |.| is the complex modulus.

Important applications in optics.

Algorithms using approximations with semidefinite programs usually offer good reconstruction quality, but are too slow.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Application to phase retrieval problems

To what extent does the Burer-Monteiro heuristic allow to speed up these algorithms?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Thank you !

I. Waldspurger and A. Waters (2018). Rank optimality for the Burer-Monteiro factorization. arXiv preprint arXiv :1812.03046.