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Semidefinite programming

minimize Trace(CX )

such that A(X ) = b,

X � 0.

Here,

I X , the unknown, is an n × n matrix ;

I C is a fixed n × n matrix (cost matrix) ;

I A : Symn → Rm is linear ;

I b is a fixed vector in Rm.
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Motivations

Very diverse applications.

Main motivation for us : Many hard combinatorial optimization
problems can be approximated by semidefinite programs.

Principle :

Quadratic constraints over a vector x ∈ Rn

m
Linear constraints over the matrix X = xxT ∈ Rn×n

⇒ Problems with quadratic constraints can be turned to
semidefinite programs with the change of variable “x → X”.
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Numerical solvers

General SDPs can be solved at arbitrary precision in
polynomial time.
But the order of the polynomial is large.

Interior point solvers : complexity O(n4) per iteration.

First-order ones : O(n3), more iterations needed.

. . .

→ Numerically, high dimensional SDPs are difficult to solve.
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Low-rank semidefinite programming

We can speed up the solving if we know that the solution has
some special structure and exploit it.

→ We assume that the solution has low rank r � n.

Intuition : When the problem has been obtained by the change
of variable “x → X = xxT”, the solution should be rank 1.
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Exploiting the low rank

Two main strategies :

I Frank-Wolfe methods ;
[Frank and Wolfe, 1956]

I Burer-Monteiro factorization.
[Burer and Monteiro, 2003]

Remark : The Burer-Monteiro factorization is only a heuristic,
which may not always work. The goal of the present work is
precisely to help understanding when it works / does not work.
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Burer-Monteiro factorization : principle

I Assume that there is a solution with rank ropt .

I Choose some integer p ≥ ropt .

I Write X under the form

X = VV T ,

with V an n × p matrix.

I Minimize Trace(CVV T ) over V .
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minimize Trace(CX )

for X ∈ Rn×n such that A(X ) = b,

X � 0.

m

minimize Trace(CVV T )

for V ∈ Rn×p such that A(VV T ) = b.

Remark : p is the factorization rank. It must be chosen, and
can be equal to or larger than ropt .
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minimize Trace(CVV T )

for V ∈ Rn×p such that A(VV T ) = b.

We assume that {V ∈ Rn×p,A(VV T ) = b} is a “nice”
manifold.

→ Solve with Riemannian optimization algorithms.
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Main advantage of the factorized formulation

The number of variables is not O(n2) anymore, but O(np),
with p � n.

→ Allows reducing the computational complexity.

Main drawback of the factorized formulation

Contrarily to the SDP, the factorized problem is non-convex.

→ Riemannian algorithms may get stuck at a critical point
instead of finding a global minimizer.

This issue can arise or not, depending on the factorization
rank p.
⇒ How to choose p ?
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Outline

1. Literature review
I In practice, algorithms don’t get stuck if p & ropt .
I In particular situations, this phenomenon is understood.
I In a general setting, no guarantees unless p &

√
2m.

I But ropt �
√

2m. Why this gap ?

2. Optimal rank for the Burer-Monteiro formulation
I A minor improvement is possible over previous general

guarantees.
I The improved result is optimal.

→ If p .
√

2m, Riemannian algorithms cannot be certified
correct without additional assumptions.

I Idea of proof.

3. Open questions
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Numerical observations

1. [Burer and Monteiro, 2003]
Various problems, notably MaxCut and minimum
bisection.

2. [Journée, Bach, Absil, and Sepulchre, 2010]
MaxCut (with a particular initialization scheme).

3. [Boumal, 2015]
Orthogonal synchronization.

4. “SDP-like” problems ; see for example [Mishra, Meyer,
Bonnabel, and Sepulchre, 2014].

In all these articles, it is reported that Riemannian algorithms
do not get stuck as soon as p is slightly larger than r0.
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Theoretical explanations in particular cases

Strong guarantees, but in very specific situations only.

Typical result :

“Consider a specific subclass of semidefinite programs.
In it, choose an element at random, with a specific
probability distribution.
With high probability, Riemannian algorithms do not get
stuck if p ≥ r0.”

Main such result : [Bandeira, Boumal, and Voroninski, 2016]

Other particular SDP-like problems : [Ge, Lee, and Ma, 2016]
...
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General case : one main result
[Boumal, Voroninski, and Bandeira, 2018]

minimize Trace(CVV T )

for V ∈ Rn×p such that A(VV T ) = b.

The only assumption is (approximately) that

Mp
déf
= {V ∈ Rn×p,A(VV T ) = b}

is a manifold.
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General case : one main result
[Boumal, Voroninski, and Bandeira, 2018]

minimize Trace(CVV T ),

for V ∈Mp.

Riemannian optimization algorithms typically converge to
second-order critical points :

A matrix V0 ∈Mp is a second-order critical point if

I ∇fC (V0) = 0n,p ;

I Hess fC (V0) � 0,

where fC
déf
=
(
V ∈Mp → Trace(CVV T )

)
.
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General case : one main result
[Boumal, Voroninski, and Bandeira, 2018]

Theorem

For almost all matrices C , if

p >

⌊√
2m +

1

4
− 1

2

⌋
,

all second-order critical points are global minimizers.
Consequently, Riemannian optimization algorithms always find
a global minimizer.

Remark : The value of p does not depend on ropt .
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Summary

I In empirical experiments, as well as in the few particular
cases that have been studied, algorithms seem to always
work when

p = O(ropt).

I The only available general result guarantees that
algorithms work when

p &
√

2m.

As ropt is often much smaller than
√

2m, this leaves a big gap.

→ Is it possible to obtain general guarantees for p �
√

2m ?
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Overview of our results

I A minor improvement is possible over the result by
[Boumal, Voroninski, and Bandeira, 2018], but it does not
change the leading order term

p &
√

2m.

I With this improvement, the result is essentially optimal,
even if ropt �

√
2m.
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[Boumal, Voroninski, and Bandeira, 2018]

improved

Theorem

For almost all matrices C , if

p >

⌊√
2m +

1

4
− 1

2

⌋
,

all second-order critical points are global minimizers.
Consequently, Riemannian optimization algorithms always find
a global minimizer.

⌊√
2m + 9

4 −
3
2

⌋
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Theorem (Quasi-optimality of the previous result)

Let r0 = min{rank(X ),A(X ) = b,X � 0}.
Under suitable hypotheses, if

p ≤

√2m +

(
r0 +

1

2

)2

−
(
r0 +

1

2

) ,
there is a set of matrices C with non-zero Lebesgue measure
for which :

1. The global minimizer has rank r0.

2. There is a second order critical point which is not a global
minimizer.
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Comments

I In most applications, r0 is small, possibly r0 = 1.

I We have the following picture :

p0

⌊√
2m +

(
r0 + 1

2

)2 −
(
r0 + 1

2

)⌋
⌊√

2m + 9
4
− 3

2

⌋≤ r0 − 1

Riemannian optimization
cannot be certified correct. ?

Riemannian
optimization works.
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Example : MaxCut relaxations

Relaxes the Maximum Cut problem from graph theory.
[Delorme and Poljak, 1993]

Maximum Cut : for a graph with weighted edges, split the
graph in two so as to maximize the weight of cut edges.

Most famous example of a SDP approximating a hard
combinatorial problem.

minimize Trace(CX )

such that diag(X ) = 1,

X � 0.
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Example : MaxCut relaxations

minimize Trace(CX ),

such that diag(X ) = 1,

X � 0.

⇓

minimize Trace(CVV T ),

such that diag(VV T ) = 1,V ∈ Rn×p.

(Original SDP)

(Burer-Monteiro

factorization)

In this case, r0 = 1.
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Example : MaxCut relaxations

I For almost all C , if

p >

⌊√
2n +

9

4
− 3

2

⌋
,

no bad second-order critical point exists ; Riemannian
algorithms work.

I If

p ≤

⌊√
2n +

9

4
− 3

2

⌋
,

even when assuming a rank 1 solution, there are matrices
C for which Riemannian algorithms can fail.
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Idea of proof

We assume p .
√

2m. A and b are fixed.

We want to show that there exists C for which the problem

minimize Trace(CX )

for X ∈ Rn×n such that A(X ) = b,

X � 0.

1. has a global minimizer of rank r0 ;

2. has a “bad” second order critical point when factorized
through the Burer-Monteiro heuristic.
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Idea of proof

The theorem actually requires a whole non-zero Lebesgue
measure set of such matrices C to exist.

With classical geometrical arguments, it more or less suffices
to construct one such matrix C .

⇒ Let us construct C .
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Idea of proof : construct C

1. This problem must have a rank r0 minimizer :

minimize Trace(CX )

for X ∈ Rn×n such that A(X ) = b,

X � 0.

2. This one must have a “bad” second-order critical point :

minimize Trace(CVV T )

for V ∈ Rn×p such that A(VV T ) = b.

These conditions can be written under a purely analytical form.
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Idea of proof : construct C

After several simplifications, we see that the existence of C is
implied by the existence of X0,V , µ such that :

I X0 is feasible for the SDP and has rank r0 ;

I V is feasible for the factorized problem ;

I V TA∗(µ)V � 0 and XT
0 A∗(µ)V = 0.
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Idea of proof : construct C

The first two conditions are easy ; we focus on the third one.

∃µ, V TA∗(µ)V � 0 and XT
0 A∗(µ)V = 0 ?

Fix X0,V . Consider the map

Rm → Symp×p × Rr0×p

µ → (V TA∗(µ)V , XT
0 A∗(µ)V )

dimension m dimension p(p+1)
2

+ pr0

If m ≥ p(p+1)
2

+ pr0, it is generically surjective and µ exists.

⇐⇒ p ≤
√

2m +
(
r0 + 1

2

)2 −
(
r0 + 1

2

)
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Burer-Monteiro factorization : summary

I [Boumal, Voroninski, and Bandeira, 2018]

When p &
√

2m, for almost any cost matrix, all
second-order critical points are minimizers.

Numerical experiments suggest it could be true for

p = O(ropt)�
√

2m.

I [Our result]

When p .
√

2m, it is not true.
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Open questions

1. Refined understanding of the regime p <
√

2m ;

2. Study of specific semidefinite programs for applications.
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Understanding the regime p <
√

2m

Our result says :

“If we want to guarantee that the Burer-Monteiro heuristic
works for almost all cost matrices C , we need p &

√
2m.”

But in practice, we oftentimes do not need the heuristic to
work for all cost matrices.

→ Establish more realistic guarantees, like

“For p ∈ [r0;
√

2m], the Burer-Monteiro heuristic works for
most cost matrices C .” ?
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Application to phase retrieval problems

Reconstruct x ∈ Cd from |〈ak , x〉|, 1 ≤ k ≤ m.

Here,

I a1, . . . , am ∈ Cd are known ;

I |.| is the complex modulus.

Important applications in optics.

Algorithms using approximations
with semidefinite programs usually
offer good reconstruction quality,
but are too slow.
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Application to phase retrieval problems

To what extent does the Burer-Monteiro heuristic allow to
speed up these algorithms ?
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Thank you !

I. Waldspurger and A. Waters (2018). Rank optimality for the
Burer-Monteiro factorization. arXiv preprint arXiv :1812.03046.
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