Comparison-Based Learning: Hierarchical Clustering and Classification

Michaël Perrot

Max Planck Institute for Intelligent Systems, Tübingen, Germany

February 21, 2020

4 A 1 1 4

The 14 at 14

1 Comparison-Based Learning

2 Hierarchical Clustering

3 Classification

3.5 3

・ロト ・ 日 ト ・ 日 ト ・

3.5 3

・ロト ・ 日 ト ・ 日 ト ・

イロト イロト イヨト イ

э

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

- 34

Ordinal Comparisons

Assumptions

- $\mathcal{X} = \{x_i\}_{i=1}^N$ a set of N examples,
- $w : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ an unknown similarity function $(w_{ij} = w(x_i, x_j))$,
- $\mathcal{T} = \{(x_i, x_j, x_k) : w_{ij} \ge w_{ik} \text{ with } i, j, k \in [N] \text{ and } j \neq k\}$ the set of all triplets associated with \mathcal{X} ,
- $Q = \{(x_i, x_j, x_k, x_l) : w_{ij} \ge w_{kl} \text{ with } i, j, k, l \in [N] \text{ and } j \ne l\}$ the set of all quadruplets associated with \mathcal{X} .

(日) (四) (日) (日) (日)

Ordinal Comparisons

Assumptions

- $\mathcal{X} = \{x_i\}_{i=1}^N$ a set of N examples,
- $w : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ an unknown similarity function $(w_{ij} = w(x_i, x_j))$,
- *T* = {(x_i, x_k, x_j) : w_{ij} ≥ w_{ik} with i, j, k ∈ [N] and j ≠ k} the set of all (noisy) triplets associated with X,
- $Q = \{(x_k, x_l, x_i, x_j) : w_{ij} \ge w_{kl} \text{ with } i, j, k, l \in [N] \text{ and } j \ne l\}$ the set of all (noisy) quadruplets associated with \mathcal{X} .

(日) (四) (日) (日) (日)

Ordinal Comparisons

Assumptions

- $\mathcal{X} = \{x_i\}_{i=1}^N$ a set of N examples,
- $w : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ an unknown similarity function $(w_{ij} = w(x_i, x_j))$,
- *T* = {(x_i, x_k, x_j) : w_{ij} ≥ w_{ik} with i, j, k ∈ [N] and j ≠ k} the set of all (noisy) triplets associated with X,
- $Q = \{(x_k, x_l, x_i, x_j) : w_{ij} \ge w_{kl} \text{ with } i, j, k, l \in [N] \text{ and } j \ne l\}$ the set of all (noisy) quadruplets associated with \mathcal{X} .

Is it possible to solve standard **machine learning** problems using **only** comparisons?

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Comparison-Based Machine Learning

Ordinal Embedding

- Idea: Embed the examples in \mathbb{R}^D such that the comparisons are respected and then apply standard machine learning methods.
- Works for a wide range of problems.
- Difficult to derive guarantees because of the two steps process.

Comparison-Based Machine Learning

Ordinal Embedding

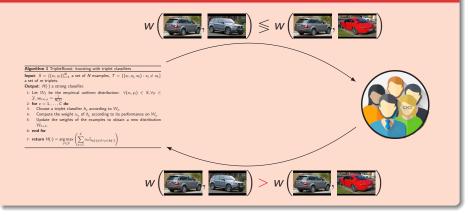
- Idea: Embed the examples in \mathbb{R}^D such that the comparisons are respected and then apply standard machine learning methods.
- Works for a wide range of problems.
- Difficult to derive guarantees because of the two steps process.

Learning from Comparisons

- Idea: Design new machine learning methods able to directly handle ordinal comparisons.
- Each new problem requires the development of a new method.
- Easier to derive theoretical results.

- 4 伊 ト 4 日 ト 4 日

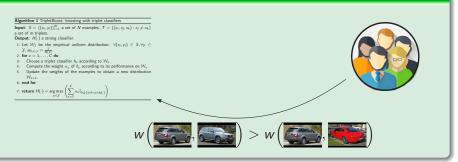
Obtaining the Comparisons



イロト イロト イヨト イヨト

Obtaining the Comparisons

Passively



3

イロト イロト イヨト イヨト

Comparison-Based Learning

2 Hierarchical Clustering

- Algorithms
- Theoretical Analysis
- Experiments
- Conclusion

3 Classification

< 67 ▶

Focus: Hierarchical Clustering

Joint work with **Debarghya Ghoshdastidar** and **Ulrike von Luxburg**. Accepted to NeurIPS 2019.

Example: Cars Dendrogram

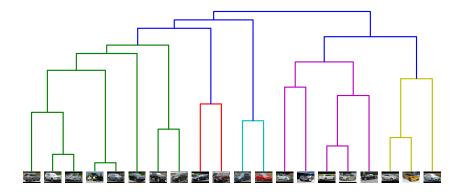
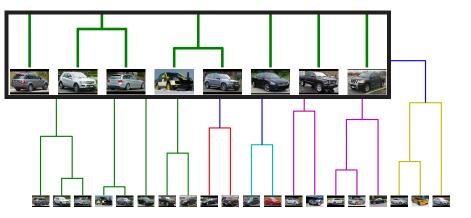
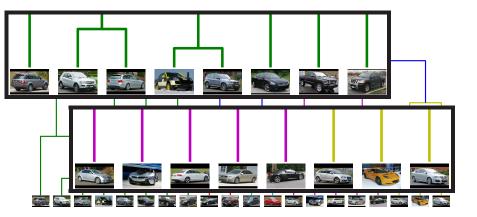


Image: A matrix and a matrix

Example: Cars Dendrogram



Example: Cars Dendrogram



Hierarchical Clustering: Bottom-Up Approach

Algorithm

- Start with clusters containing only one example,
- At each iteration, greedily merge the two clusters which are most similar with respect to a linkage function,
- Stop when all the examples are in the same cluster.

・ 何 ト ・ ヨ ト ・ ヨ ト

Hierarchical Clustering: Bottom-Up Approach

Algorithm

- Start with clusters containing only one example,
- At each iteration, greedily merge the two clusters which are most similar with respect to a linkage function,
- Stop when all the examples are in the same cluster.

Linkage Functions

A function $W: 2^{\mathcal{X}} \times 2^{\mathcal{X}} \to \mathbb{R}$. Given two clusters G_p and G_q :

- Single linkage (SL): $W(G_p, G_q) = \max_{x_i \in G_p, x_j \in G_q} w_{ij}$
- Complete linkage (CL): $W(G_p, G_q) = \min_{x_i \in G_p, x_j \in G_q} w_{ij}$

• Average linkage (AL): $W(G_p, G_q) = \frac{1}{|G_p| |G_q|} \sum_{x_i \in G_p, x_j \in G_q}$

Wii

イロト イロト イヨト イヨト

Hierarchical Clustering: Bottom-Up Approach

Linkage Functions

A function $W: 2^{\mathcal{X}} \times 2^{\mathcal{X}} \to \mathbb{R}$. Given two clusters G_p and G_q :

- Single linkage (SL): $W(G_p, G_q) = \max_{x_i \in G_p, x_j \in G_q} w_{ij}$
- Complete linkage (CL): $W(G_p, G_q) = \min_{x_i \in G_p, x_i \in G_q} w_{ij}$

• Average linkage (AL): $W(G_p, G_q) = \frac{1}{|G_p| |G_q|} \sum_{x_i \in G_p, x_j \in G_q} w$

イロト 不得下 イヨト イヨト

Comparison-Based Hierarchical Clustering

Objective: Comparison-Based Hierarchical Clustering

- Comparison-based linkage functions
- Theoretical results on a planted hierarchical model

Comparison-Based Hierarchical Clustering

Objective: Comparison-Based Hierarchical Clustering

- Comparison-based linkage functions
- Theoretical results on a planted hierarchical model

Assumptions

•
$$\mathcal{X} = {\{\mathbf{x}_i\}}_{i=1}^N$$
 a set of N examples,

- $w : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ an unknown similarity function $(w_{ij} = w(x_i, x_j))$,
- $Q = \{(x_i, x_j, x_k, x_l) : w_{ij} \ge w_{kl} \text{ with } i, j, k, l \in [N] \text{ and } j \ne l\}$ a set of quadruplets associated with \mathcal{X} .

イロト イポト イヨト イヨト

Comparison-Based Learning

Hierarchical Clustering Algorithms

- Theoretical Analysis
- Experiments
- Conclusion

3 Classification

э

3 + 4 = +

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Comparison-Based Single/Complete Linkage

Given K clusters G_1, \ldots, G_K , the two merged clusters are chosen as $G, G' = \underset{G_p, G_q}{\operatorname{arg max}} W(G_p, G_q).$ Standard single linkage (SL): $W(G_p, G_q) = \underset{x_i \in G_p, x_j \in G_q}{\operatorname{max}} w_{ij}$ Standard complete linkage (CL): $W(G_p, G_q) = \underset{x_i \in G_p, x_j \in G_q}{\operatorname{min}} w_{ij}$

Comparison-Based Single/Complete Linkage

Given K clusters G_1, \ldots, G_K , the two merged clusters are chosen as $G, G' = \underset{G_p, G_q}{\operatorname{arg max}} W(G_p, G_q).$ Standard single linkage (SL): $W(G_p, G_q) = \underset{x_i \in G_p, x_j \in G_q}{\operatorname{max}} w_{ij}$ Standard complete linkage (CL): $W(G_p, G_q) = \underset{x_i \in G_p, x_j \in G_q}{\operatorname{min}} w_{ij}$

Idea: Assume that the similarity *w* is **transitive**, finding the two clusters with maximum similarity only requires quadruplet comparisons.

イロト イポト イヨト イヨト 二日

Comparison-Based Single/Complete Linkage

Given K clusters G_1, \ldots, G_K , the two merged clusters are chosen as $G, G' = \underset{G_p, G_q}{\operatorname{arg max}} W(G_p, G_q).$ Standard single linkage (SL): $W(G_p, G_q) = \underset{x_i \in G_p, x_j \in G_q}{\operatorname{max}} w_{ij}$ Standard complete linkage (CL): $W(G_p, G_q) = \underset{x_i \in G_p, x_j \in G_q}{\operatorname{min}} w_{ij}$

Idea: Assume that the similarity *w* is **transitive**, finding the two clusters with maximum similarity only requires quadruplet comparisons.

Single linkage (SL) and complete linkage (CL) are **inherently based on comparisons**.

▲日▶ ▲母▶ ▲ヨ▶ ▲ヨ▶ - ヨー のなの

Comparison-Based Average Linkage

Standard average linkage (AL): $W(G_p, G_q) = \frac{1}{|G_p| |G_q|} \sum_{x_i \in G_p, x_j \in G_q} w_{ij}.$

イロト イポト イヨト イヨト

Comparison-Based Average Linkage

Standard average linkage (AL): $W(G_p, G_q) = \frac{1}{|G_p| |G_q|} \sum_{x_i \in G_p, x_j \in G_q} w_{ij}.$

Idea: Using quadruplets, estimate the relative similarity between two pairs of clusters.

Quadruplets-Based Average Linkage: 4–AL

$$\mathbb{W}_{\mathcal{Q}}(G_1, G_2 || G_3, G_4) = \sum_{x_i \in G_1} \sum_{x_j \in G_2} \sum_{x_k \in G_3} \sum_{x_l \in G_4} \frac{\mathbb{I}_{(x_i, x_j, x_k, x_l) \in \mathcal{Q}} - \mathbb{I}_{(x_k, x_l, x_i, x_j) \in \mathcal{Q}}}{|G_1| |G_2| |G_3| |G_4|},$$

$$W(G_p, G_q) = \sum_{r,s=1, r \neq s}^{K} \frac{\mathbb{W}_{\mathcal{Q}}(G_p, G_q || G_r, G_s)}{K(K-1)}.$$

Comparison-Based Average Linkage Standard average linkage (AL): $W(G_p, G_q) = \frac{1}{|G_p| |G_q|} \sum_{x_i \in G_p, x_j \in G_q} w_{ij}$.

Idea: Using quadruplets, derive a proxy for the similarity score *w*.

Quadruplets Kernel Average Linkage: 4K-AL

• Active comparisons: $w_{i_0j_0}$ is a reference similarity and S is a set of landmarks:

$$\hat{w}_{ij} = \sum_{k \in S \setminus \{i,j\}} \left(\mathbb{I}_{\left(w_{ik} > w_{i_0j_0}\right)} - \mathbb{I}_{\left(w_{ik} < w_{i_0j_0}\right)} \right) \left(\mathbb{I}_{\left(w_{jk} > w_{i_0j_0}\right)} - \mathbb{I}_{\left(w_{jk} < w_{i_0j_0}\right)} \right)$$

• Passive comparisons:

$$\hat{w}_{ij} = \sum_{k,l=1,k$$

Comparison-Based Learning

Hierarchical Clustering Algorithms

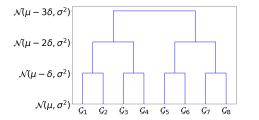
- Theoretical Analysis
- Experiments
- Conclusion

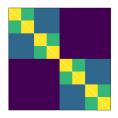
3 Classification

► < ∃ >

э

Planted Hierarchical Model





(日) (周) (日) (日)

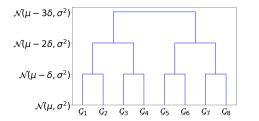
A hierarchy with *L* levels and N_0 objects per cluster: $N = 2^L N_0$. The similarities $\{w_{ij}\}_{1 \le i < j \le N}$ are **random**, **mutually independent**, and,

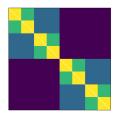
- Normally distributed, $w_{ij} \sim \mathcal{N}(\mu_{ij}, \sigma^2)$,
- Symmetric, $w_{ji} = w_{ij}$,

•
$$w_{ii} = \infty$$
.

The hierarchy is introduced by specifying the means $\mu_{ij} = \mu - (L - \ell)\delta$.

Planted Hierarchical Model





A hierarchy with *L* levels and N_0 objects per cluster: $N = 2^L N_0$. The similarities $\{w_{ij}\}_{1 \le i \le j \le N}$ are **random**, **mutually independent**, and,

- Normally distributed, $w_{ij} \sim \mathcal{N}(\mu_{ij}, \sigma^2)$,
- Symmetric, $w_{ji} = w_{ij}$,

•
$$w_{ii} = \infty$$
.

The hierarchy is introduced by specifying the means $\mu_{ij} = \mu - (L - \ell)\delta$.

Objective: Obtain some **sufficient conditions** under which the different comparison-based algorithms **exactly recover** the hierarchy.

Theoretical Results: Summary

Method	Queries	# queries	Sufficient conditions	Remarks
SL	Active	$\Omega\left(N^2\right)$	$rac{\delta}{\sigma} = \Omega\left(\sqrt{\ln N} ight)$	Tight!
CL	Active	$\Omega\left(N^2\right)$	$\frac{\delta}{\sigma} = \Omega\left(\sqrt{\ln N}\right)$	
4K–AL	Active	$\mathcal{O}(N \ln N)$	$\frac{\delta}{\sigma} = \mathcal{O}(1)$	Near-optimal $\#$ queries.
4K–AL	Passive	$\mathcal{O}\left(N^{\frac{7}{2}}\ln N\right)$	$rac{\delta}{\sigma}=\mathcal{O}\left(1 ight)$	
4–AL	Passive	$\Omega (N^3 \ln N)$	$rac{\delta}{\sigma}=\mathcal{O}\left(1 ight)$	Initial clusters: $\Omega(N_0)$.

Recovery Guarantees (L = O(1))

∃ ⊳

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

э

Comparison-Based Learning

2 Hierarchical Clustering

- Algorithms
- Theoretical Analysis

• Experiments

Conclusion

3 Classification

э

3 + 4 = +

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Planted Model: Setup

Goal: Empirically verify that the proposed approaches are able to recover the planted hierarchy.

Planted model parameters:

- Mean: $\mu = 0.8$,
- Standard deviation: $\sigma = 0.1$,
- Number of levels: L = 3,
- Size of clusters: $N_0 = 30$,

- Separation: $\delta \in \{0.01, 0.02, \dots, 0.2\},\label{eq:separation}$
- Proportion of quadruplets: $p \in \{0.01, \dots, 0.1, 1\}.$

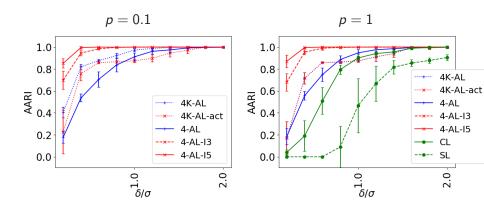
Measure of performance: Given two hierarchies C and C', let C^{ℓ} and ${C'}^{\ell}$ be the partitions at level ℓ . The Averaged Adjusted Rand Index (AARI) is:

$$\mathsf{AARI}\left(\mathcal{C},\mathcal{C}'\right) = \frac{1}{L}\sum_{\ell \in \{1,\dots,L\}}\mathsf{ARI}\left(\mathcal{C}^{\ell},\mathcal{C'}^{\ell}\right)$$

where ARI $\left(\mathcal{C}^{\ell}, \mathcal{C}'^{\ell}\right)$ is the Adjusted Rand Index [Hubert and Arabie, 1985].

Planted Model: Results

Planted model parameters: $\mu = 0.8$, $\sigma = 0.1$, L = 3, $N_0 = 30$, $\delta \in \{0.01, 0.02, \dots, 0.2\}.$



February 21, 2020 20 / 37

Toy Datasets: Experimental Setup

Comparisons: Generated using the cosine similarity,

$$w_{ij} = \frac{\langle x_i, x_j \rangle}{\|x_i\| \, \|x_i\|}.$$

Baselines: Ordinal embedding followed by standard average linkage,

- FORTE [Jain et al., 2016],
- tSTE [Van Der Maaten and Weinberger, 2012].

Measure of performance: A cost function for hierarchies proposed by Dasgupta [2015]:

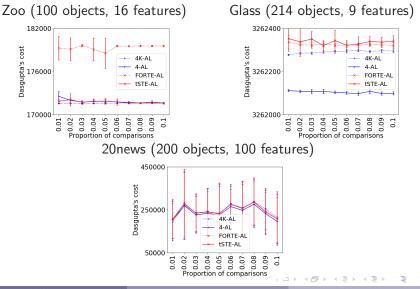
$$\mathsf{cost}(\mathcal{C}, w) = \sum_{x_i, x_j \in \mathcal{X}} w_{ij} \left| \mathcal{C}^{\mathit{lca}}(x_i, x_j) \right|$$

where $C^{lca}(x_i, x_j)$ is the smallest cluster containing both x_i and x_j .

▲日▼ ▲母▼ ▲日▼ ▲日▼ ヨー ろらる

Toy Datasets: Results

Ordinal embedding parameters: D = 2.



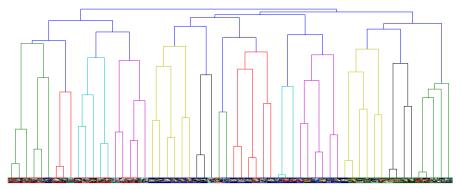
Car Dataset: Experimental Setup

Created by Kleindessner and von Luxburg [2017]:

- 60 car images,
- 6056 statements of the form x_i is most central among (x_i, x_i, x_k) .

In our setting, it corresponds to 12112 quadruplets: $w_{ij} > w_{jk}$ and $w_{ik} > w_{jk}$.

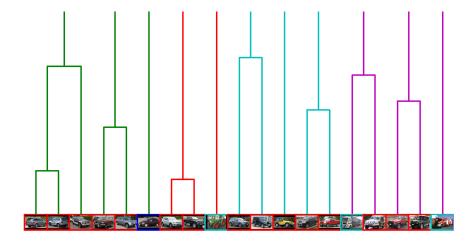
Car Dataset: Results



Cars Dendrogram: 4-AL

イロト イポト イヨト イヨト 二日

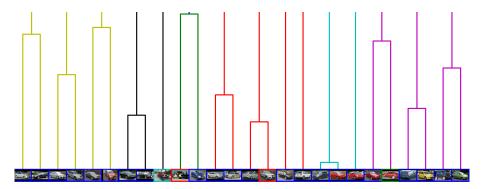
Car Dataset: Results



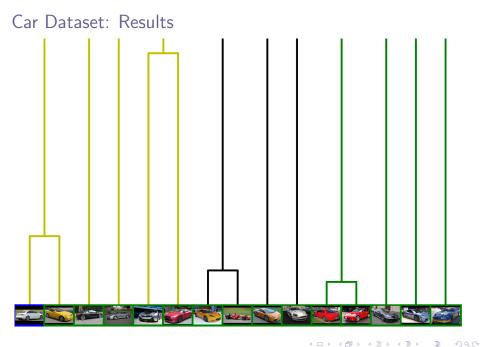
< E ト イ E ト E ク へ (* February 21, 2020 24 / 37

イロト イロト イヨト イヨト

Car Dataset: Results



イロト イヨト イヨト イヨト



Comparison-Based Learning

2 Hierarchical Clustering

- Algorithms
- Theoretical Analysis
- Experiments
- Conclusion

3 Classification

∃ ► < ∃ ►</p>

Image: A matrix

э

Comparison-Based Hierarchical Clustering

- Single linkage and complete linkage are inherently comparison-based,
- Several linkage functions for comparison-based average linkage,
- Recovery guarantees for a planted hierarchical model,
- Empirically well-behaved.

Comparison-Based Hierarchical Clustering

• Single linkage and complete linkage are inherently comparison-based,

イロト イボト イヨト イ

February 21, 2020

26 / 37

- Several linkage functions for comparison-based average linkage,
- Recovery guarantees for a planted hierarchical model,
- Empirically well-behaved.

Main limits

- No necessary conditions (apart for SL),
- Limited to quadruplets,
- Noise only in the similarities.

Comparison-Based Hierarchical Clustering

- Single linkage and complete linkage are inherently comparison-based,
- Several linkage functions for comparison-based average linkage,
- Recovery guarantees for a planted hierarchical model,
- Empirically well-behaved.

Main limits

- No necessary conditions (apart for SL),
- Limited to quadruplets,
- Noise only in the similarities.

ComparisonHC on **GitHub**: https://github.com/mperrot/ComparisonHC

(日) (四) (日) (日) (日)

Comparison-Based Learning

- 2 Hierarchical Clustering
- 3 Classification
 - The TripletBoost Algorithm
 - Theory and Experiments
 - Conclusion

< 47 ▶

Focus: Classification

Joint work with **Ulrike von Luxburg**. Distinguished Paper Award at IJCAI 2019.

Image: A matrix

Comparison-Based Classification

Objective: Comparison-Based Classification

- Boosting algorithm using comparisons
- Theoretical guarantees (generalization, number of triplets)

Comparison-Based Classification

Objective: Comparison-Based Classification

- Boosting algorithm using comparisons
- Theoretical guarantees (generalization, number of triplets)

Assumptions

- (\mathcal{X}, w) a general metric space, \mathcal{Y} a finite label space,
- $S = \{(x_i, y_i)\}_{i=1}^N$ a set of N examples,
- $T = \{(x_i, x_j, x_k) : w_{ij} > w_{ik}, x_j \neq x_k\}$ a set of m (noisy) triplets.

イロト イポト イヨト イヨト

Comparison-Based Classification

Objective: Comparison-Based Classification

- Boosting algorithm using comparisons
- Theoretical guarantees (generalization, number of triplets)

Assumptions

- (\mathcal{X}, w) a general metric space, \mathcal{Y} a finite label space,
- $S = \{(x_i, y_i)\}_{i=1}^N$ a set of N examples,
- $T = \{(x_i, x_k, x_j) : w_{ij} > w_{ik}, x_j \neq x_k\}$ a set of m (noisy) triplets.

(日) (四) (日) (日) (日)

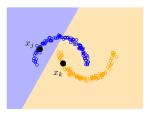
Comparison-Based Learning

- Hierarchical Clustering
- 3 Classification
 - The TripletBoost Algorithm
 - Theory and Experiments
 - Conclusion

∃ > 3

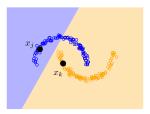
Image: A matrix

Triplet classifier



イロト イロト イヨト イヨト

Triplet classifier



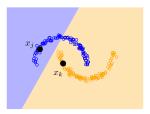
Definition

Let o_i and o_k be sets of labels and ϑ represent abstention,

$$h_{j,k}(x) = \begin{cases} o_j & \text{if } (x, x_j, x_k) \in T, \\ o_k & \text{if } (x, x_k, x_j) \in T, \\ \vartheta & \text{otherwise.} \end{cases}$$

イロト イヨト イヨト イヨト

Triplet classifier



Definition

Let o_i and o_k be sets of labels and ϑ represent abstention,

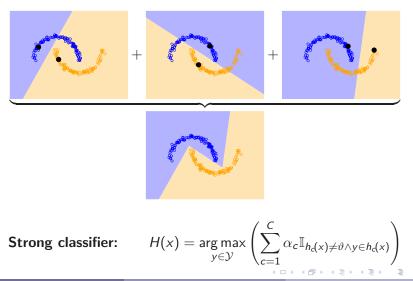
$$h_{j,k}(x) = \begin{cases} o_j & \text{if } (x, x_j, x_k) \in T, \\ o_k & \text{if } (x, x_k, x_j) \in T, \\ \vartheta & \text{otherwise.} \end{cases}$$

Key property for boosting: Individual triplet classifiers are **slightly better than random classifiers**.

イロト 不得下 イヨト イヨト 二日

TripletBoost

Idea: Combine individual triplet classifiers to obtain a strong classifier.



M. Perrot

Comparison-Based Learning

- 2 Hierarchical Clustering
- 3 Classification
 - The TripletBoost Algorithm
 - Theory and Experiments
 - Conclusion

Image: A matrix

Theoretical guarantees

Strong classifier: $H(x) = \underset{y \in \mathcal{Y}}{\arg \max} \left(\sum_{c=1}^{C} \alpha_{c} \mathbb{I}_{h_{c}(x) \neq \vartheta \land y \in h_{c}(x)} \right)$

Boosting based guarantees (upper bounds)

- Reduction of the training error at each meaningful iteration,
- Generalization guarantees based on the margin theory, error drops in $\mathcal{O}\left(\sqrt{\frac{\log N}{N\theta^2}}\right)$.

Theoretical guarantees

Strong classifier: $H(x) = \underset{y \in \mathcal{Y}}{\arg \max} \left(\sum_{c=1}^{C} \alpha_{c} \mathbb{I}_{h_{c}(x) \neq \vartheta \land y \in h_{c}(x)} \right)$

Boosting based guarantees (upper bounds)

- Reduction of the training error at each meaningful iteration,
- Generalization guarantees based on the margin theory, error drops in $\mathcal{O}\left(\sqrt{\frac{\log N}{N\theta^2}}\right)$.

Triplets based guarantee (lower bound)

• At least $\Omega\left(N\sqrt{N}\right)$ passively obtained triplets are necessary to avoid random guessing.

< 47 ▶

MovieLens dataset [Harper and Konstan, 2016]:

- 6040 users,
- 3706 movies,
- 1 million ratings,
- Movies have 1 or several genres (18 in total).

MovieLens dataset [Harper and Konstan, 2016]:

- 6040 users,
- 3706 movies,
- 1 million ratings,
- Movies have 1 or several genres (18 in total).

Goal: classification with respect to the genres

- Use the ratings to generate triplets,
- Use TripletBoost to learn a classifier for the genres,
- Predict the genre of **new movies**.

Movie		Genres
They Made Me a	True	Crime, Drama
Criminal (1939)	Pred	Drama, Comedy, Thriller, Romance, Crime
The Man Who Knew	True	Comedy, Mystery
Too Little (1997)	Pred	Comedy, Romance, Mystery, War, Crime
Heaven and Earth	True	Action, Drama, War
(1993)	Pred	Drama, Romance, Thriller, War, Crime
Planet of the Apes (1968)	True Pred	Action, Sci-Fi Sci-Fi, Action, War, Adventure, Comedy
Fire Down Below	True	Action, Drama, Thriller
(1997)	Pred	Action, Thriller, Adventure, Drama, Mystery

Precision@1: ~83.1%, Recall@5: ~92.9%

イロト イヨト イヨト イヨト

Comparison-Based Learning

Hierarchical Clustering

3 Classification

- The TripletBoost Algorithm
- Theory and Experiments
- Conclusion

э

∃ ► < ∃ ►</p>

Image: A matrix and a matrix

TripletBoost

- A new comparison-based algorithm for classification,
- Works with general metric spaces,
- Uses passively obtained noisy triplets,
- Theoretical guarantees (generalization, number of triplets),
- Behaves well empirically (MovieLens dataset).

TripletBoost

- A new comparison-based algorithm for classification,
- Works with general metric spaces,
- Uses passively obtained noisy triplets,
- Theoretical guarantees (generalization, number of triplets),
- Behaves well empirically (MovieLens dataset).

Limits

No matching upper bound for the number of necessary of triplets,

< ロト < 同ト < ヨト < ヨ

February 21, 2020

37 / 37

• Needs sufficiently many triplets to work well in pratice.

TripletBoost

- A new comparison-based algorithm for classification,
- Works with general metric spaces,
- Uses passively obtained noisy triplets,
- Theoretical guarantees (generalization, number of triplets),
- Behaves well empirically (MovieLens dataset).

Limits

- No matching upper bound for the number of necessary of triplets,
- Needs sufficiently many triplets to work well in pratice.

TripletBoost on GitHub:

https://github.com/mperrot/TripletBoost

(日) (四) (日) (日) (日)

References I

- S. Dasgupta. A cost function for similarity-based hierarchical clustering. *arXiv preprint arXiv:1510.05043*, 2015.
- F. M. Harper and J. A. Konstan. The movielens datasets: History and context. ACM Transactions on Interactive Intelligent Systems, 5(4):19, 2016.
- L. Hubert and P. Arabie. Comparing partitions. *Journal of classification*, 2 (1):193–218, 1985.
- L. Jain, K. G. Jamieson, and R. Nowak. Finite sample prediction and recovery bounds for ordinal embedding. In *Neural Information Processing Systems*, pages 2711–2719, 2016.
- M. Kleindessner and U. von Luxburg. Lens depth function and k-relative neighborhood graph: versatile tools for ordinal data analysis. *The Journal of Machine Learning Research*, 18(1):1889–1940, 2017.
- L. Van Der Maaten and K. Weinberger. Stochastic triplet embedding. In *Machine Learning for Signal Processing*, pages 1–6, 2012.

ヨト イヨト ニヨ

Image: Image:

TripletBoost: Algorithm

Algorithm 1 TripletBoost: boosting with triplet classifiers

Input: $S = \{(x_i, y_i)\}_{i=1}^N$ a set of N examples, $T = \{(x_i, x_j, x_k) : x_j \neq x_k\}$ a set of m triplets.

Output: $H(\cdot)$ a strong classifier.

- 1: Let \mathcal{W}_1 be the empirical uniform distribution: $\forall (x_i, y_i) \in S, \forall y \in \mathcal{Y}, w_{1,x_i,y} = \frac{1}{N|\mathcal{Y}|}$.
- 2: for c = 1, ..., C do
- 3: Choose a triplet classifier h_c according to W_c .
- 4: Compute the weight α_c of h_c according to its performance on \mathcal{W}_c .
- 5: Update the weights of the examples to obtain a new distribution \mathcal{W}_{c+1} .
- 6: end for

7: return
$$H(\cdot) = \arg \max_{y \in \mathcal{Y}} \left(\sum_{c=1}^{C} \alpha_{c} \mathbb{I}_{h_{c}(\cdot) \neq \vartheta \land y \in h_{c}(\cdot)} \right)$$

• Let $r_{u,i}$ be the rating of user u on movie m_i ,

• Let
$$r_{u,i,j} = |r_{u,i} - r_{u,j}|$$
,

• Let $U_{i,j,k}$ be the set of users that rated all three movies.

$$T = \left\{ (m_i, m_j, m_k) : \left(\sum_{u \in U_{i,j,k}} \frac{\mathbb{I}_{r_{u,i,j} < r_{u,i,k}} - \mathbb{I}_{r_{u,i,j} > r_{u,i,k}}}{|U_{i,j,k}|} \right) > 0 \right\}$$

- Each user has only rated a small number of movies,
- Each user might give a high, respectively low, rating to a movie with a genre that he usually rates lower, respectively higher.

We only have access to a **noisy subset** of all the possible triplets.