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Variational formulation of image reconstruction

2

linear
model

noise

H n

s? = argmin ⇥g �Hs⇥22| {z }
data consistency

+ �R(s)| {z }
regularization

Reconstruction as an optimization problem

Linear forward model

s

g = Hs+ n

Ill-posed inverse problem: recover s from noisy measurements g



Classical linear reconstruction 
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Formal linear solution: s = (HTH+ �LTL)�1HTg = R� · g

m L = C�1/2
s : Whitening filter

Quadratic regularization (Tikhonov)

R(s) = kLsk2

Statistical formulation under Gaussian hypothesis

Wiener (LMMSE) solution = Gauss MMSE = Gauss MAP

s? = argmin kg �Hsk22| {z }
data consistency

+ �R(s)| {z }
regularization

Signal covariance: Cs = E{s · sT }

sMAP = argmins
1

�2
kg �Hsk22

| {z }
Data Log likelihood

+ kC�1/2
s sk22| {z }

Gaussian prior likelihood

Sparsity-promoting reconstruction algorithms
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s? = argmin ⇥g �Hs⇥22| {z }
data consistency

+ �R(s)| {z }
regularization

Wavelet-domain regularization

Wavelet expansion: s = Wv (typically, sparse)

Wavelet-domain sparsity-constraint: R(s) = kvk`1 with v = W�1s

Iterated shrinkage-thresholding algorithm (ISTA, FISTA, FWISTA)

`1 regularization (Total variation)

R(s) = kLsk`1 with L: gradient

Iterative reweighted least squares (IRLS) or FISTA



Key research questions
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Generalized sampling
1 Discretization of reconstruction problem

Continuous-domain formulation

2 Formulation of ill-posed reconstruction problem

Sparse stochastic processes

Statistical modeling (beyond Gaussian) 
supporting non-linear reconstruction schemes 
(including CS)

3 Efficient implementation for large-scale imaging problem
FISTA, ADM

Lévy processes
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Constructed by Paul Lévy (circa 1930)

Example: compound Poisson process (piecewise-constant with random jumps)

⇒  Archetype of a “sparse” random signal

Generalization of Brownian motion

Independent increments: i.i.d. infinitely divisible (from Gaussian to heavy tailed)

0.0 0.2 0.4 0.6 0.8 1.0

0 0

0.0 0.2 0.4 0.6 0.8 1.0
0 0

0.0 0.2 0.4 0.6 0.8 1.0

0 0 Compound Poisson

Gaussian: Brownian motion

S↵S (Cauchy)



Haar wavelet analysis of a Lévy process
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�(x)

Poisson; H = 0.50

s(x) D =
d

dx

 Haar(x) = D�(x)

) hs, Haar(·� y0)i = hs,D�(·� y0)i = hD⇤s,�(·� y0)i

Compound Poisson process = piecewise-constant signal

Wavelet as a smoothed derivative

sparse innovations (train of Dirac impulses)

D⇤ = � d
dx (adjoint)

“Sparse derivative” property: Ds(t) =
P

n an�(x� xn) with xn jump locations

K-term approximation of Lévy processes

8

Sparse: Compound Poisson

DCT! Karhunen-Lo

`

eve transform



K-term approximation of Lévy processes
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Gaussian: Brownian motion

DCT! Karhunen-Lo

`

eve transform

K-term approximation of Lévy processes
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Heavy tailed: Lévy flight (Cauchy)
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Arguments for continuous-domain formulation
! The real world is continuous

! Input signal
! Imaging physics

! Principled formulation
! Stochastic differential equations (rather than reverse engineering)
! Invariance to coordinate transformations
! Specification of optimal estimators (MAP, MMSE)

! The power of continuous mathematics
! Full backward compatibility with Gaussian theory, link with TV
! Integral operators, characteristic form
! Derivation of joint PDF in any transformed domain 

(wavelets, gradient, DCT)
! Operational definition of “sparsity” based on existence considerations: 

infinite divisibility  ⇒ processes are either Gaussian or sparse
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OUTLINE
■ Gaussian (Wiener) vs. sparse (Lévy) signals ✔
■ The spline connection

■ L-splines and signals with finite rate of innovation
■ Green functions as elementary building blocks

■ Sparse stochastic processes
■ Generalized innovation model
■ Gelfand’s theory of generalized stochastic processes
■ Statistical characterization of sparse stochastic processes

■ Implications of innovation model
■ Link with regularization
■ Wavelet representation of sparse processes
■ Determination of transform-domain statistics

■ Sparse processes and signal reconstruction
■ MAP estimator
■ MRI examples
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Photo courtesy of Carl De Boor

The spline connection
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Splines: signals with finite rate of innovation

Spline theory: (Schultz-Varga, 1967)

(Vetterli et al., 2002)

FIR signal processing: Innovation variables (2N)

Location of singularities (knots) : {xn}n=1,...,N

Strength of singularities (linear weights): {an}n=1,...,N

an

xn xn+1

L =
d
dx

L{·}: differential operator �(x): Dirac distribution

Definition

The function s(x) is a (non-uniform) L-spline with knots {xn} iff.

L{s}(x) =
NX

n=1

an�(x� xn)



Splines and Green’s functions
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�(x)
L{·} �(x)

L�1{·}
(+ null-space component?)

L�1{·}

Formal integration

⇒

General (non-uniform) L-spline: L{s}(x) =
X

k2Z
ak�(x� xk)

X

k2Z
ak�(x� xk)

Definition

⇢L(x) is a Green function of the shift-invariant operator L iff L{⇢L} = �

⇢L(x) ⇢L(x)

s(x) = pL(x) +
X

k2Z
ak�L(x� xk)

Green function = Impulse response 

Translation invariance 

Linearity 

Example of spline synthesis
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�(x)

�(x� x0)

�(x)
L�1{·}

�

k�Z
a[k]�(x� k)

�(x� x0)

L�1{·}

L�1{·}

s(x) =
�

k�Z
a[k]�(x� k)

L = d
dx = D � L�1: integrator



17

Sparse stochastic
processes

Compound Poisson process (sparse)

18

 

Random jumps with rate � (Poisson point process)

Compound Poisson process

s(x)

L = d
dx

) L�1
: integrator

L�1{·}

random stream of Diracs

r(x) =
X

k

ak�(x� xk)

Jump size distribution: a v p(a)

(Paul Lévy, 1934)

0.0 0.2 0.4 0.6 0.8 1.0

0 0



Brownian motion (Gaussian)
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L�1{·}

Cardinal spline (Schoenberg, 1946)

Gaussian white noise

 

L = d
dx � L�1: integrator

Same higher-level properties as Compound Poisson process

Non-stationary

Self-similar: “1/!” spectral decay

Independent increments = defining property of L

´

evy processes

u[k] = s(k)� s(k � 1): i.i.d. infinitely divisible

Except sparsity !

  Gaussian     

0.0 0.2 0.4 0.6 0.8 1.0

0 0

w(x) s(x)

White noise
 (Gaussian, Poisson or Lévy)

Generalized
stochastic process

L{·}

Shaping filter

(appropriate boundary conditions)

Whitening operator

L�1{·}

What is white noise ?

The problem: Continuous-domain white noise does not have a pointwise interpretation.

Standard stochastic calculus. Statisticians circumvent the difficulty by working with ran-

dom measures (dW (x) = w(x)dx) and stochastic integrals; i.e, s(x) =
R
R ⇢(x, x0)dW (x0)

where ⇢(x, x0) is a suitable kernel.

Innovation model. The white noise interpretation is more appealing for engineers (cf.

Papoulis), but it requires a proper distributional formulation and operator calculus.
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Road map for theory of sparse processes

White noise

Characterization of continuous-domain white noise

Mixing operator

Whitening operator

L�1

L

s = L�1w

w

Characterization of 
generalized stochastic process

Specification of inverse operator

Characterization of 
transform-domain statistics

Multi-scale 
wavelet 
analysis

 i = L⇤�i

Functional analysis solution of SDE

Very easy ! (after solving 1. & 2.)

Easy when:

Higher mathematics: generalized functions (Schwartz)
measures on topological vector spaces

Gelfand’s theory of generalized stochastic processes
Infinite divisibility (Lévy-Khintchine formula)

1

2

4

3
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Step 1: White noise characterization
White noise

Whitening operator

L�1

L

s = L�1ww

Difficulty 2: w is an infinite-dimensional random entity;

its “pdf” can be formally specified by a measure Pw(E) where E � S 0

White noise property: independence at every point + stationarity

0 5 10 15 20

Difficulty 1: w 6= w(x) is too rough to have a pointwise interpretation

) X = hw,'i for any ' 2 S

Infinite-dimensional counterpart of characteristic function (Gelfand, 1955)

Characteristic functional:

dPw(') = E{ejhw,'i} =

Z

S0
ejhs,'iPw(ds), for any ' 2 S



0 5 10 15 20

Defining Gaussian noise: discrete vs. continuous

23

Characteristic functional:

cPs(') = G(') = e

� 1
2k'k2

L2
= exp

✓Z

R
f

�
'(x)

�
dx

◆

Lévy exponent: f(!) = � 1
2!

2

Discrete white Gaussian noise

X = (X1, . . . , XN ) with Xn i.i.d standardized Gaussian

Continuous-domain white Gaussian noise

Infinite-dimensional entity w with generic observations Xn = hw,'ni

Ê Ê
Ê Ê

Ê
Ê

Ê

Ê
Ê
Ê

Ê
Ê Ê

Ê

Ê

Ê

Ê

Ê

Ê Ê

Ê

0 5 10 15 20

p̂Xn(!) = E{ej!hw,'ni} = E{ejhw,!'ni} = cPs(!'n) = e�
1
2!

2k'nk2
L2

Characteristic function: p̂X(!) = g(!) = exp

�PN
n=1 f(!n)

�
= e�

1
2k!k2
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Characteristic form of white “noise” processes

(based on Schoenberg’s correspondence theorem 
+ Minlos-Bochner theorem)

Functional characterization (Gelfand-Vilenkin)

The characteristic form

dPw(') = E{ejhw,'i} = exp

✓Z

Rd

f
�
'(x)

�
dx

◆

defines a white noise w over S 0
(Rd

)

, f(!) is first-order conditionally-positive definite

Bottom line

- WNP uniquely specified by the function f(!) (L

´

evy exponent)



Lévy exponent
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Definition

Example: f(!) = �|!|↵, 0 < ↵  2

Schoenberg’s correspondence theorem

The function e⌧f(!)
is positive-definite for any ⌧ > 0 if and only if f(!) is conditionally

positive-definite of order one ; i.e.,

NX

m=1

NX

n=1

f(!m � !n)⇠m⇠n � 0

under the condition

PN
m=1 ⇠m = 0 for every possible choice of !1, . . . ,!N 2 R, ⇠1, . . . , ⇠N 2

C and N 2 Z+
.

, p̂X(!) = ef(!)
is the characteristic function of an infinitely divisible random variable

A continuous, complex-valued function f : R ! C such that f(0) = 0 is a valid Lévy

exponent if and only if p̂X⌧ (!) = e⌧f(!)
is a valid characteristic function for any ⌧ > 0.

White noise: canonical distribution
Continuous-domain white noise is highly singular; its points values are undefined 

A given brand uniquely specified by pid(x) = F�1{ef(�)}(x)

Interpretation: noise observation through a rectangular window

dPw

�
� rect(x)

�
= ef(�) ⇥ pid(x) = pXid(x) with Xid = ⇤rect(·� k), w⌅ (i.i.d.)

Special cases

f(!) = � 1
2 |!|

2 , pid(x): normalized Gaussian

f(!) = �|!|↵ with ↵ 2 (0, 2] , pid(x): Symmetric-↵-stable (S↵S)

Also allowed: compound Poisson, Beta, Student, Cauchy, etc. (typically heavy tailed)



Examples of id noise distributions
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�4 �2 2 4
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(a) Gaussian

(b) Laplace

(c) Compound Poisson

(d) Cauchy (stable)

2000

�5

5
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5

2000

�5

5

2000

�5

5

Sparser f(⇥) = �
R
R(e

jx� � 1)p(x)dx

f(�) = log

⇣
1

1+!2

⌘

pid(x)

Complete mathematical characterization:

dPw(�) = exp

✓Z

Rd

f
�
�(x)

�
dx

◆

f(!) = � 1
2�2

0
|!|2

f(!) = �s|!|

Complete characterization of id distributions
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Definition: A random variable X with generic pdf pid(x) is infinitely divisible (id) iff.,

for any N 2 Z+
, there exist i.i.d. random variables X1, . . . , XN such that X has the

same distribution as X1 + · · ·+XN .

Theoretical relevance: one-to-one correspondence between a 
“classical” id PDF and a white noise processes

L

´

evy-Khinchine theorem

pid(x) is an infinitely divisible (id) PDF iff. its characteristic function can be written as

p̂id(!) =

Z

R
pid(x)e

j!xdx = e

f(!)

with L

´

evy exponent

f(!) = jb1! � b2!
2

2
+

Z

R\{0}

�
e

ja! � 1� ja! {|a|<1}(a)
�
V (da)

where b1 2 R and b2 2 R+
are some constants, and where V is some (positive)

Borel measure such that

R
R min(a2, 1)V (da) < 1.



Impulsive Poisson noise and random splines
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) L�1w� is a L-spline with random knots

Impulsive Poisson noise

w�(x) =
X

k2Z
ak�(x� xk)

xk: random point locations in Rd
with Poisson density �

ak: i.i.d. random variables with amplitude pdf pA(a)

Theorem [U.-Tafti, IEEE-SP 2011]

The characteristic form of impulsive Poisson noise is

cPw�(') = E{ejhw�,'i} = exp

✓Z

Rd

f
Poisson

�
'(x)

�
dx

◆

with L

´

evy exponent

f
Poisson

(!) = �

Z

R
(eja! � 1)pA(a)da = �(p̂A(!)� 1).
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Steps 2 + 3: Characterization of sparse process

White noise

Whitening operator

L�1

L

s = L�1w

w

Abstract formulation of innovation model

s = L�1w � ⇤� ⇥ S, ⌅�, s⇧ = ⌅�,L�1w⇧ = ⌅L�1⇤�| {z }, w⇧

) cPs(') = E{ejhs,'i} =

dPw(L
�1⇤') = exp

✓Z

Rd

f
�
L

�1⇤'(x)
�
dx

◆

Mathematical conditions on L�1⇤
?



Existence result
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Implication for innovation model

Find an acceptable (Lp stable) inverse operator: T = L�1⇤

Theorem [U.-Tafti-Sun, preprint]

Let f is a valid L

´

evy exponent and T is a linear operator acting on ' 2 S(Rd
) such

that any one of the conditions below is met:

1. T is a continuous map from S(Rd
) into itself or, by extension, R(Rd

),

2. |f(!)|+ |!| · |f 0
(!)|  B|!|p for some 1  p < 1 and for all ! 2 R, and

kT'kLp  Ck'kLp for all ' 2 S(Rd
).

Then,

cPs(') = E{ejhs,'i} = exp

�R
R f

�
T'(t)

�
dt
�

is the characteristic form of a

generalized stochastic process over S 0
(Rd

).

T = L�1⇤

Concrete example: (f)Brownian motion
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Ds = w

s = D�1
0 w � ⇤� ⇥ S, ⌅�, s⇧ = ⌅D�1⇤

0 �, w⇧

(by Parseval)

L2-stable anti-derivative: D�1⇤
0 ⇤(x) =

Z

R

⇤̂(⇥)� ⇤̂(0)

�j⇥
ej�x d⇥

2�

(Blu-U., IEEE-SP 2007)

D�s = w

Stabilization ⇔ non-stationary behavior

Characteristic form of fractional Brownian motion

cPs(') = exp

 
�1

2

Z

R

����
'̂(!)� '̂(0)

|!|�

����
2
d!

2⇡

!

(unstable SDE !)

Characteristic form of Brownian motion (a.k.a. Wiener process)

cPs(') = exp

✓
�1

2

kD�1⇤
0 'k2L2

◆

= exp

 
�1

2

Z

R

����
'̂(!)� '̂(0)

j!

����
2
d!

2⇡

!



Self-similar processes (TS-invariant)
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fBm; H = 0.50

fBm; H = 0.75

fBm; H = 1.25

fBm; H = 1.50

Poisson; H = 0.50

Poisson; H = 0.75

Poisson; H = 1.25

Poisson; H = 1.50

H=.5
H=.75

H=1.25
H=1.5

L F ! (j!)H+ 1
2 ) L�1

: fractional integrator

Sparse (generalized Poisson)Gaussian
Fractional Brownian motion (Mandelbrot, 1968) (U.-Tafti, IEEE-SP 2010)

2D generalization: the Mondrian process

34

� = 30

L = DxDy
F�⇥ (j�x)(j�y)
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Scale- and rotation-invariant operators

(Duchon, 1979)Invariant Green functions (a.k.a. RBF)

⇥(x) =

�
⇥x⇥��d log ⇥x⇥, if � � d is even
⇥x⇥��d, otherwise

Invariance theorem
The complete family of real, scale- and rotation-invariant
convolution operators is given by the fractional Laplacians

(��)
�
2

F⇥⇤ ⌅�⌅�

Definition: An operator L is scale- and rotation-invariant iff.

⇥s(x), L{s(·)}(R�x/a) = Ca · L{s(R� · /a)}(x)
where R� is an arbitrary d� d unitary matrix and Ca a constant

Inverse operators: fractional calculus
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(Sun-U., 2012)

(U.-Tafti, 2011)

L ⌅ = L�1⇥ L�1⌃ L�1⇤⌃

D� x��1
+

�(�)

Z

R

ej⇤x � 1

(j⇧)�
⌃̂(⇧)

d⇧

2⇤

Z

R
ej⇤x ⌃̂(⇧)� ⌃̂(0)

(�j⇧)�
d⇧

2⇤

⌥�
⇥

|x|��1

�(�)

�
A�,⇥ +B�,⇥ sign(x)

�
,

� /⇥ N

Z

R

ej⇤x � 1

(�j⇧)
�
2 �⇥ (j⇧)

�
2 +⇥

⌃̂(⇧)
d⇧

2⇤

Z

R
ej⇤x ⌃̂(⇧)� ⌃̂(0)

(j⇧)
�
2 �⇥ (�j⇧)

�
2 +⇥

d⇧

2⇤

(�⇥)
�
2 C�⇤x⇤��d, � � d /⇥ 2N

Z

Rd

ejhx,�i � 1

⇤�⇤� ⌃̂(�)
d�

(2⇤)d

Z

Rd

ejhx,�i ⌃̂(�)� ⌃̂(0)

⇤�⇤�
d�

(2⇤)d

0 < � < 1 + d/2

Theorem (Generalized Riesz potentials)

Unique left-inverse of L⇤ = (��)
�
2

that is Lp-stable and scale-invariant:

I�p⇥(x) =

Z

Rd

ejhx,�i ⇤̂(�)�
P⇥��d+ d

p
⇤

|k|=0
⇤̂(k)(0)�k

k!

k�k�
d�
(2⇥)d = L�1⇤⇥(x)

⇧⇥ ⌅ S(Rd), ⌃I�p⇥⌃Lp(Rd) < C · ⌃⇥⌃Lp(Rd)

for � ⌅ R+\Z+
and 1 ⇥ p ⇥ +⇤.



Scale- and rotation-invariant processes
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H=.5 H=.75 H=1.25 H=1.75

Stochastic partial differential equation : (��)
H+1

2 s(x) = w(x)

Gaussian

Sparse (generalized Poisson)

(U.-Tafti, IEEE-SP 2010)

Powers of ten: from astronomy to biology

38



39

IMPLICATION OF INNOVATION MODEL
■ Optimized analysis tools = B-splines
■ Decoupling sparse
■ Wavelet analysis
■ Link with regularization
■ Signal reconstruction algorithm (MAP)
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Recap on infinite-dimensional innovation model 

1 3

dPw(�) = exp

✓Z

Rd

f
�
�(x)

�
dx

◆
cPs(') = dPw(L

�1⇤')

White noise

Whitening operator

L�1

L

s = L�1w

w

2

Generic test function ' � S plays the role of index variable

Regularization operator vs. wavelet analysis

4 Analysis step

Solution of SDE

White “noise” signature: pid(x) = F�1{ef(�)}(x)



Optimized analysis tools = B-splines
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Ls = w

s = L�1w

Whitening operator L

Discrete version of operator

Lds(x) =
X

k2Zd

d[k]s(x� k)

Generalized B-spline

�L(x) = LdL
�1⇥(x) =

X

k2Zd

d[k]⇤L(x� k)

Green function ⇢L(x) such that L⇢L = �

) �L should be well-defined

�
�L 2 L1(Rd)

�
and maximally localized (short support)

Quality of discrete approximation:

Lds(x) = Ld L
�1L| {z }
Id

s(x) = �L ⇤ Ls(x)

Optimized analysis tools: introductory example
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Whitening operator D

Ds(x) = w(x)

s(x) =

Z
x

0
w(y)dyFinite difference operator

Dds(x) = s(x)� s(x� 1)

SDE for Lévy process

B-spline of minimal support: �(0)(x) 2 Lp(R) for p > 0

Piecewise-constant B-spline

�(0)(x) = 1+(x)� 1+(x� 1) = rect(x� 1

2
)

Green function ⇢D(x) = 1+(x) (unit step)



Decoupling sparse processes
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Innovation model (SDE)

Generalized increment process

Ls = w

s = L�1w

u = Lds = LdL
�1w = �L ⇤ w

hu,⇥i = h�L ⇤ w,⇥i = hw,�_
L ⇤ ⇥i with �_

L (x) = �L(�x)

=) dPu(') = dPw(�
_
L ⇤ ')

= exp

✓Z

Rd

f
�
�_
L ⇤ '(x)

�
dx

◆

f(!): Lévy exponent of innovation process

Infinite-divisibility of discrete innovation
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Signal decoupling: discrete version of operator

u(x) = Lds(x) , u = Ls (matrix notation)

Statistical implications

u = Lds is stationary and infinitely divisible

Characteristic function of X = hu,'i with ' = �:

p̂X(!) = E{ej!X} =

dPu(!�) = exp

✓Z

Rd

f
�
!�L(�x)

�
dx

◆

Quality of decoupling depends upon support of B-spline �L(x)

Characteristic form of u = �L ⇤ w

E{ejhu,'i} =

dPu(') = exp

✓Z

Rd

f
�
�_
L ⇤ '(x)

�
dx

◆



and Wavelets ...
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Wavelet analysis of sparse processes

46

Innovation model (SDE) Ls = w

s = L�1w
Operator-like wavelet:  i = L⇤�i

Wavelet analysis

�i: smoothing kernel at wavelet scale i

vi(x) = ⇥⇥i(·� x), s⇤ = ⇥L⇤�i(·� x),L�1w⇤ = ⇥�i(·� x), w⇤

Statistical implications

Wavelet coefficients vi are stationary with characteristic function

dPw(⇥�i)

Quality of decoupling depends upon support of wavelet/smoothing kernel �i

=) dPvi(') = dPw(�i ⇤ ')
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Finale Finale: sparse processes
 and signal reconstruction

Signal reconstruction: MAP formulation

48

s� = argmin
⇣

1
2 kg �Hsk22 + �2

P
n �X([Ls]n)

⌘
Maximum a posteriori (MAP) estimator for AWN

Statistical characterization

- X = [u]n identically distributed (approx. independent)

- Probability density function: pX(x) = F�1{dPw(⇥�_
L )}(x)

- Potential function: �X(x) = � log pX(x)

Innovation model

u = Ls (matrix notation)

Ls = w

s = L�1w
Discretization



MAP estimator: special cases
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-30 -20 -10 0 10 20 30
0
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30

Student potentials: r = 2, 4, 8, 32 (fixed variance)

Sparser

s� = argmin
⇣

1
2 kg �Hsk22 + �2

P
n �X([Ls]n)

⌘

Gaussian: pX(x) = 1⇥
2⇥⇤0

e�x2/(2⇤2
0) � �X(x) = 1

2⇤2
0
x2

Laplace: pX(x) = �
2 e

��|x| � �X(x) = �|x|

Student: pX(x) =
1

B
�
r, 1

2

�
✓

1

x2 + 1

◆r+ 1
2

� �X(x) =
�
r +

1

2

�
log(1 + x2)

Reconstruction algorithms

50

FWISTA (Guerquin-Kern TMI 2011),  IRWL1 (Candès) 

Auxiliary innovation variable: u = Ls

Constrained optimization formulation

s⇤ = argmin
s

 
1

2
kg �Hsk22 + �2

X

n

�X([u]n)

!
s.t. u = Ls

AL/ADM (Ramani-Fessler TMI 2011) Augmented Lagrangian

Innovation variable: u = Ls

LA(s,u,↵) =
1

2
⇥g �Hs⇥22+�

 
X

n

�X([u]n) +↵T (Ls� u) +
µ

2
⇥Ls� u⇥22

!



Alternating direction method (ADM)
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↵k+1 = ↵k � µ
�
uk+1 � Lsk+1

�

Linear inverse problem:

Nonlinear denoising:

sk+1 � arg min
s�RN

LA(s,u
k,↵k)

uk+1 � arg min
u�RN

LA(s
k+1,u,↵k)

sk+1 =
�
HTH+ µLTL

��1 �
HTy + zk+1

�

with zk+1 = LT
�
µuk+1 �↵

�

uk+1
= prox�X

�
Lsk +↵k

;�µ�1
�

-4 -2 0 2 4

-3

-2

-1

0

1

2

3

Cauchy prior with increasing s

LA(s,u,↵) =
1

2
kg �Hsk22+�

 
X

n

�X([u]n) +↵T (Ls� u) +
µ

2
kLs� uk22

!

Sequential minimization

Proximal operator taylored to stochastic model

prox�X
(y;�) = argmin

u

1

2

|y � u|2 + ��X(u)

Original SL Phantom Fourier Sampling Pattern
12 Angles

Student prior (log)

L : gradient

Optimized parameters

Laplace prior (TV)

MRI: Shepp-Logan phantom



Original Phantom
(Guerquin-Kern TMI 2012)

Gaussian prior (Tikhonov)
SER =17.69 dB

Laplace prior (TV)
SER = 21.37 dB

Student prior
SER = 27.22 dB

L : gradient

Optimized parameters
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MRI phantom: Spiral sampling in k-space

Real T2 Brain Image MR Angiography Image k-space sampling pattern

40 radial lines

Gaussian Estimator Laplace Estimator Student’s Estimator

T2 brain Image 8.71 16.08 15.79

MR Angiography Image 6.31 14.48 14.97

Reconstruction results in dB

L : gradient

Optimized parameters
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MRI reconstruction



Astrocytes cells bovine pulmonary artery cells human embryonic stem cells

Gaussian Estimator Laplace Estimator Student’s Estimator
Astrocytes cells 12.18 10.48 10.52
Pulmonary cells 16.90 19.04 18.34

Stem cells 15.81 20.19 20.50

Deconvolution results in dB
L : gradient

Optimized parameters

Disk shaped PSF (7x7)

2D deconvolution experiment
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CONCLUSION
! Unifying continuous-domain innovation model

! Backward compatibility with classical Gaussian theory
! Operator-based formulation: Lévy-driven SDEs or SPDEs
! Gaussian vs. sparse (generalized Poisson, student, SαS)
! Focus on unstable SDEs ⇒ non-stationary, self-similar processes

! Regularization
! Central role of B-spline
! Sparsification via “operator-like” behavior

! Theoretical framework for sparse signal recovery
! New statistically-founded sparsity priors
! Analytical determination of PDF in any transformed domain
! Derivation of optimal estimators (MAP, MMSE)
! Guide for the development of novel algorithms
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