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Variational formulation of image reconstruction

m Linear forward model

noise
g=Hs+n
inear ‘ i
model AN h \I
H n

lll-posed inverse problem: recover s from noisy measurements g

m Reconstruction as an optimization problem

s* = argmin ||g — Hs|2 + AR(s)
—_——— ~——

data consistency regularization




Classical linear reconstruction

s* =argmin |g— Hs|| + AR(s)
N — N——

data consistency regularization

m Quadratic regularization (Tikhonov)
R(s) = ||Ls|?

Formal linear solution: s = (H'H +A\L'L)"'H'g =R, - g

§ L= Cs_l/z: Whitening filter

m Statistical formulation under Gaussian hypothesis

Wiener (LMMSE) solution = Gauss MMSE = Gauss MAP

1 -
swap = argming —[lg — Hs|3+  |C7'/*s|3
—_——

Data Log likelinood Gaussian prior likelihood

Signal covariance: C; = E{s - s}

Sparsity-promoting reconstruction algorithms

s* = argmin ||g — Hs||; + AR(s)
—_————— ——v

data consistency regularization

m Wavelet-domain regularization

Wavelet expansion: s = Wv  (typically, sparse)
Wavelet-domain sparsity-constraint: ~ R(s) = ||v|l,, with v=W~ls

Iterated shrinkage-thresholding algorithm (ISTA, FISTA, FWISTA)

m /, regularization (Total variation)
R(s) = ||Ls||¢, with L: gradient

lterative reweighted least squares (IRLS) or FISTA




Key research questions

(1) Discretization of reconstruction problem
Continuous-domain formulation Generalized sampling

(2) Formulation of ill-posed reconstruction problem

Statistical modeling (beyond Gaussian)
supporting non-linear reconstruction schemes
(including CS)
Sparse stochastic processes

@ Efficient implementation for large-scale imaging problem
FISTA, ADM

Lévy processes Constructed by Paul Lévy (circa 1930)

0 0
W Gaussian: Brownian motion

00 02 04 0.6 08 1.0

0 JJ—{ I—/\__,ﬁﬁ—uj ,  Compound Poisson
00 02 04 06 08 1.0
m Sa$ (Cauchy)

0 0

00 02 04 0.6 08 1.0

m Generalization of Brownian motion

m Independent increments: i.i.d. infinitely divisible (from Gaussian to heavy tailed)

Example: compound Poisson process (piecewise-constant with random jumps)

= Archetype of a “sparse” random signal




Haar wavelet analysis of a Lévy process

m Compound Poisson process = piecewise-constant signal

[ T T T T T T T T T ] D _
s(z) dx
w D* = _% (adjOInt)

“Sparse derivative” property: Ds(t) = ) and(x — x,) with ,, jump locations

m Wavelet as a smoothed derivative

¢Haar (ZL’) = DQS(.T)

= <S71/}Haar(' - y0)> = <37D¢( - y0)> = <D*37¢( - y0)>

/

sparse innovations (train of Dirac impulses)

- EF

K-term approximation of Lévy processes

DCT— Karhunen-Loéve transform
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Sparse: Compound Poisson




K-term approximation of Lévy processes

DCT— Karhunen-Loéve transform

Identity| "
— KLT |
—— Haar |[:i

10°? 10" 10°

k/n

Gaussian: Brownian motion

K-term approximation of Lévy processes

: — Identity | :
L KT |
— Haar
: — DCT

k/n

Heavy tailed: Lévy flight (Cauchy)
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Arguments for continuous-domain formulation

= The real world is continuous
Input signal
Imaging physics

= Principled formulation
Stochastic differential equations (rather than reverse engineering)
Invariance to coordinate transformations
Specification of optimal estimators (MAP, MMSE)

= The power of continuous mathematics
Full backward compatibility with Gaussian theory, link with TV
Integral operators, characteristic form

Derivation of joint PDF in any transformed domain
(wavelets, gradient, DCT)

Operational definition of “sparsity” based on existence considerations:

infinite divisibility = processes are either Gaussian or sparse
11

OUTLINE

Gaussian (Wiener) vs. sparse (Lévy) signals v/

The spline connection

L-splines and signals with finite rate of innovation
Green functions as elementary building blocks

Sparse stochastic processes

Generalized innovation model
Gelfand’s theory of generalized stochastic processes
Statistical characterization of sparse stochastic processes

Implications of innovation model

Link with regularization
Wavelet representation of sparse processes
Determination of transform-domain statistics

Sparse processes and signal reconstruction

MAP estimator
MRI examples




Splines: signals with finite rate of innovation

L{-}: differential operator d(z): Dirac distribution

Definition
The function s(x) is a (non-uniform) L-spline with knots {z,, } iff.

L{sHz) =Y and(z — z,)

Spline theory: (Schultz-Varga, 1967) L= 4
an;ﬁ dz
Tn Tn41

m FIR signal processing: Innovation variables (2V)
= Location of singularities (knots) : {xy, }n=1,... ~

= Strength of singularities (linear weights): {ay }n=1,.. ..~

(Vetterli et al., 2002)




Splines and Green’s functions

Definition
pL(x) is a Green function of the shift-invariant operator L iff L{p,} = §
pL(z) 5(@) S(z) (@)

(+ null-space component?)

m General (non-uniform) L-spline: L{s}(x) = Z agd(x — xk)
keZ

Formal integration

Zak5(w—wk) — L_l{.} — s(:c)sz(w)-i-Zaka(w—in)

keZ kEZ

Example of spline synthesis
L=L =D = L~!:integrator

§() ) [ o(a)
—L Y} —

A

v

>

Green function = Impulse response

Translation invariance N

d(x — xo) p(z — xo)
— ! {} |,

|

—
v
—>

v

S alks(x — k) Linearity s(@) =Y alklp(z — k)

keZ . kez
4 ) . e TN




Sparse stochastic
processes N

Compound Poisson process (sparse)

L=4 = L-!:integrator

r(x) = Zaké(:z: —Tp) — L_l{.} — s(xz)
k

random stream of Diracs Compound Poisson process

Random jumps with rate \ (Poisson point process)

Jump size distribution: a « p(a)
(Paul Lévy, 1934)




Brownian motion (Gaussian)
L=4 = L' integrator

Gaussian white noise

— L—l{.} |,
0Ff - 10
00 02 04 06 08 1.0
m Same higher-level properties as Compound Poisson process
= Non-stationary . :
m Self-similar: “1/w” spectral decay Except SparSIty :

m Independent increments = defining property of Lévy processes
ulk] = s(k) — s(k—1): iid. Gaussian

Shaping filter

White noise L_l {}

Generalized
(Gaussian, Poisson or Lévy)

stochastic process

(appropriate boundary conditions)

| fl t B L{} N _\_{4—1_

m What is white noise ?

= The problem: Continuous-domain white noise does not have a pointwise interpretation.

= Standard stochastic calculus. Statisticians circumvent the difficulty by working with ran-
dom measures (AW (z) = w(x)dx) and stochastic integrals; i.e, s(x) = [, p(z,2")dW (')
where p(z, ') is a suitable kernel.

= Innovation model. The white noise interpretation is more appealing for engineers (cf.
Papoulis), but it requires a proper distributional formulation and operator calculus.




Road map for theory of sparse processes

@ Specification of inverse operator

. @ Characterization of
Functional analysis solution of SDE

generalized stochastic process

Very easy ! (after solving 1. & 2.)

s=L"1w _W [—
Whlte n0|se |xmg operator

! Multi-scale

wavelet

1 L — analysis

\
@ Characterization of continuous-domain white noise o
@ Characterization of
Higher mathematics: generalized functions (Schwartz) transform-domain statistics

measures on topological vector spaces .
Easy when: ; = L*¢;

Gelfand’s theory of generalized stochastic processes

Infinite divisibility (Lévy-Khintchine formula)
21

Step 1: White noise characterization

White noise w 1
— L —_——

—-
—

A

m Difficulty 1: w # w(x) is too rough to have a pointwise interpretation

= X=(w,p)foranypes

m Difficulty 2: w is an infinite-dimensional random entity;
its “pdf” can be formally specified by a measure &,,(F) where E C S’

m Infinite-dimensional counterpart of characteristic function (Gelfand, 1955)

Characteristic functional: 22, () = E{el (")} = / 9 P, (ds),  foranyp e S
S/

m White noise property: independence at every point + stationarity

22




Defining Gaussian noise: discrete vs. continuous

Lévy exponent:  f(w) = —1w?

m Discrete white Gaussian noise NI PR I & S .

.
LY 5 10 15 . 20

X = (Xy,...,Xn) with X, i.i.d standardized Gaussian

Characteristic function: px (w) = g(w) = exp (X0, f(wn)) = e zll”

m Continuous-domain white Gaussian noise WMWMWMWW

Infinite-dimensional entity w with generic observations X,, = (w, ¢,,)

Characteristic functional: 2, (¢) = G(p) = e 2191 = exp (/ f(ap(x))dm)
R

—

Px, (w) = E{erewen} = E{eI e} = F,(wp,) = ¢~ 3¢ lenli,

23

Characteristic form of white “noise” processes

m Functional characterization (Gelfand-Vilenkin)

The characteristic form

i) 210} o ]

Rd

f(ol@)dz )
defines a white noise w over S’ (R%)

< f(w) is first-order conditionally-positive definite

(based on Schoenberg’s correspondence theorem
+ Minlos-Bochner theorem)

m Bottom line

- WNP uniquely specified by the function f(w) (Lévy exponent)

24




Lévy exponent

m Definition

A continuous, complex-valued function f : R — C such that f(0) = 0 is a valid Lévy
exponent if and only if px_(w) = e™/(“) is a valid characteristic function for any 7 > 0.

& px(w) = ef@ is the characteristic function of an infinitely divisible random variable

Schoenberg’s correspondence theorem
The function e™/(“) is positive-definite for any 7 > 0 if and only if f(w) is conditionally
positive-definite of order one ;i.e.,

N N B
Z Z f(wm - Wn)gmgn Z 0

m=1n=1
under the condition Eﬁzl & = 0 for every possible choice of wy,...,wxy € R, &, ..., &N €
Cand N € Z*.
Example: f(w) = —|w|* 0<a<2

25

White noise: canonical distribution
Continuous-domain white noise is highly singular; its points values are undefined

A given brand uniquely specified by piq(z) = F~H{ef @)} (2)

m Interpretation: noise observation through a rectangular window

ﬁw(w rect(x)) = @ o pu(x) =px,(z) with Xiq = (rect(- — k), w) (i.id.)

m Special cases
s f(w)=—3w? < pia(z): normalized Gaussian
= f(w) = —|w|*witha € (0,2] < pia(r): Symmetric-a-stable (SasS)

= Also allowed: compound Poisson, Beta, Student, Cauchy, etc. (typically heavy tailed)




Examples of id noise distributions
pia(z)

(a) Gaussian

(b) Laplace

(c) Compound Poisson

Jesiedg

(d) Cauchy (stable)

Complete mathematical characterization: 22, () = exp (/ f(cp(m))dm)
R4
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Complete characterization of id distributions

Definition: A random variable X with generic pdf pia(z) is infinitely divisible (id) iff.,
forany N € Z*, there exist i.i.d. random variables X1, ..., Xy such that X has the
same distribution as X7 + - -+ + Xy.

Léevy-Khinchine theorem
pia(x) is an infinitely divisible (id) PDF iff. its characteristic function can be written as

Pia(w) = /pid(w)ej“’zdx — of(W)
R
with Lévy exponent
. bZUJ2 jaw .
flw) = jbiw — 5 + (e —-1- ]aw1{|a‘<1}(a)) V(da)
R\{0}

where b; € R and b, € Rt are some constants, and where V is some (positive)
Borel measure such that [, min(a?, 1)V (da) < cc.

Theoretical relevance: one-to-one correspondence between a
“classical” id PDF and a white noise processes

28




Impulsive Poisson noise and random splines

m Impulsive Poisson noise

ws(x) = Zaké(w —x)

kEZ

= L~lw; is a L-spline with random knots

x,: random point locations in R with Poisson density A

ay: i.i.d. random variables with amplitude pdf p4(a)

Theorem [U.-Tafti, IEEE-SP 2011]
The characteristic form of impulsive Poisson noise is

Fas() = (70} = ex ([ fovtaon () )

with Lévy exponent

Froisson(@) = A /R (€% — 1)pa(a)da = A(pa(w) — 1).

29

Steps 2 + 3: Characterization of sparse process

L—l

White noise
—-
v — H>—
L« L <«

m Abstract formulation of innovation model

s=L7'w & VpeS, (ps)=(p,L7w)=(L""p,w)
——

= Ple) =B} = Fu ) —em ([ 7L p(e)a)

Mathematical conditions on L=1* ?

30




Existence result T =L 1

Theorem [U.-Tafti-Sun, preprint]
Let f is a valid Lévy exponent and T is a linear operator acting on ¢ € S(R%) such
that any one of the conditions below is met:

1. Tis a continuous map from S(R?) into itself or, by extension, R(R?),

2. |f(w)|+ |w| - |f(w)] < Blw|P forsome 1 < p < co and for all w € R, and
ITellz, < Cligllz, forallp € S(RY).

Then, Z,(p) = E{el®9)} = exp ([, f(Tp(t))dt) is the characteristic form of a
generalized stochastic process over S’ (R9).

m Implication for innovation model

Find an acceptable (L, stable) inverse operator: T = L1

31

Concrete example: (f)Brownian motion
Ds=w (unstable SDE !) DYs = w
s=Dy'w & VpeS, (ps)= (D" w)

@(w) 1 @(0) ejwm dw
—jw 27

Lo-stable anti-derivative: Dy ' ¢ (x) = /
R

m Characteristic form of Brownian motion (a.k.a. Wiener process)

— 1. . Stabilization < non-stationary behavior
i) = o (305"l '

_ L[ |éw) —¢(0)|* dw

= eXp( 5 /R I o (by Parseval)

m Characteristic form of fractional Brownian motion

Fie) = (; [[Ee—c0 dw>

|w] 2

(Blu-U., IEEE-SP 2007)
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Self-similar processes (TS-invariant)

L <& (jw)f*t: = L-1:fractional integrator
W%w
NIW
I

Gaussian Sparse (generalized Poisson)

SL

=H

gc't

b

Fractional Brownian motion (Mandelbrot, 1968) (U.-Tafti, IEEE-SP 2010) a3

2D generalization: the Mondrian process

F . .
L=D;Dy = (jws)(jwy)

34




Scale- and rotation-invariant operators

Definition: An operator L is scale- and rotation-invariant iff.
Vs(x), L{s(-)}(Rox/a) = Co - L{s(Ry - /a)}(x)
where Ry is an arbitrary d x d unitary matrix and C,, a constant
= Invariance theorem

The complete family of real, scale- and rotation-invariant
convolution operators is given by the fractional Laplacians

ol F
(=A)> — el

= Invariant Green functions (a.k.a. RBF) (Duchon, 1979)

[|"~%log |||, ify— diseven
||| 74, otherwise

plx) =

35

Inverse operators: fractional calculus

L p=L"15 L7t L™t 0<y<1+d/2
27t elvr 1 dw ww P(w) — &(0) dw
D + / : 5wy /e.yw:£%7
o) e G P L ey 2
e~ i v 1 dw H(w)—@(0)  dw
a7 I'(y) (Aﬂ{'r +va731gn(:;:))_, /ﬁ@(u})* /e‘iw%*
v¢N R (—jw)? 7 (jw)z 1T 2r Jr (Jw)rTT(—jw)z T 2w
3 j(x,w) _ 2 A
A2 y—d . _ ¢ 1. ) dw jaw) P(w) — (0) dw
(o alerta-den [ SE g [ PIENNCE

(U.-Tafti, 2011)

Theorem (Generalized Riesz potentials)

Unique left-inverse of L* = (—A)? that is L,-stable and scale-invariant:

ly—d+4 ] ke
Y e I O 1
Iggo(w) = Ad€]< w) L] ”?"’H’y k (%:)d =L i (,O(w)

Vo € S(RY), D¢l ®ey < C-llellL,®ey

fory e RT\ZT and 1 < p < +o0.

(Sun-U., 2012)

36




Scale- and rotation-invariant processes

Stochastic partial differential equation : (—A)%s(zc) = w(x)

s

H=.5 H=.75 H=1.25 H=1.75

A
F.

(U.-Tafti, IEEE-SP2010) 37

Gaussian

Powers of ten: from astronomy to biology

* ©1986 Jeriy Lodriguss and John Martinez
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IMPLICATION OF INNOVATION MODEL

= Optimized analysis tools = B-splines

= Decoupling sparse

Wavelet analysis

Link with regularization

= Signal reconstruction algorithm (MAP)

39

Recap on infinite-dimensional innovation model

Generic test function ¢ € S plays the role of index variable

Solution of SDE

Pulp) = exp </Rd f(w(w))dw) @ Py(p) = Pu(L™ )
— Lt
@ White noise s=L"1w _’—\_l_‘_ @
Lo o o)
White “noise” signature:  pia(z) = F~{ef @)} (x) @ Analysis step

Regularization operator vs. wavelet analysis

40




Optimized analysis tools = B-splines

m Whitening operator L

Green function py,(x) such that Lo, = ¢ Ls — w
. . _ -1
m Discrete version of operator s = LTw
Las(z) = Y _ dlk]s(z — k)
kczd

m Generalized B-spline

B(x) = Lal~'é(x) = dlk]pv(z — k)

keZd

Quality of discrete approximation:

Las(x) = L L7 'L s(x) = 1 * Ls(x)
Id

= f should be well-defined (1, € L1(R?)) and maximally localized (short support)

41

Optimized analysis tools: introductory example

m Whitening operator D SDE for Lévy process

Green function pp(x) = 14 () (unit step)
Ds(z) = w(x)

m Finite difference operator s(z) = /xw(y)dy
0

Dgs(z) = s(z) — s(x — 1)

m Piecewise-constant B-spline

Bo(x) = 14(2) = Ly — 1) = rect(z — 1)

E.

B-spline of minimal support: 3 (z) € L,(R) forp > 0

42




Decoupling sparse processes

m Innovation model (SDE) Ls = w
s = Llw
m Generalized increment process
w=DLqs =LgL™'w = B, xw

(u, o) = (BL *w, ) = (w, By *p) with B (z) = fr(—=)

—_—

— Do) = Pu(BY * )

—ep ([ 161 v ole))a)

f(w): Lévy exponent of innovation process

43

Infinite-divisibility of discrete innovation
m Signal decoupling: discrete version of operator

u(x) = Las(x) = u = Ls (matrix notation)
m Characteristic form of u = £, x w

B!} = o) = exp ([ 1(61 xo(@)a)

m Statistical implications
s u = Lgs is stationary and infinitely divisible
= Characteristic function of X = (u, ) with ¢ = 9:

) = E(e5} = Pult) = xp [ (b (-a))de)

= Quality of decoupling depends upon support of B-spline Sy, ()

44




Wavelet analysis of sparse processes
m Innovation model (SDE) Ls

s = L7lw
m Operator-like wavelet: 1); = L*¢;

¢;: smoothing kernel at wavelet scale ¢
m Wavelet analysis
vi(@) = (Yi(- — @), 5) = (L*s(- — ), L7 w) = (- — ), w)

= Pulp) = Puldi * )

m Statistical implications

= Wavelet coefficients v; are stationary with characteristic function ﬁw(wgzsi)

= Quality of decoupling depends upon support of wavelet/smoothing kernel ¢;
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Finale: sparse processes
and signal reconstruction

Signal reconstruction: MAP formulation

m Innovation model

Ls =
v Discretization u = Ls (matrix notation)
s = L7lw

m Statistical characterization

- X = [u],, identically distributed (approx. independent)
- Probability density function: px(x) = F‘l{@\w(wﬁﬁ’)}(az)

- Potential function: ®x(z) = —logpx ()

m Maximum a posteriori (MAP) estimator for AWN

s* = argmin (§ |lg — Hs|3 + 0 ¥, @x(([Ls].))

48




MAP estimator: special cases

. 2
s* = argmin (§ g — Hs||] + 0% 3, ®x([Ls],))

= Gaussian: px(z) = \/271 Oe_x2/(203) = Bx(z) = SLpa?
o o2
= Laplace: px(z) = 5e Al = Bx(x) = A2
Student: px (z) = —— LY L e = (4 D log(1 4 42)
] - Px - B (T, %) 22 +1 X — 9 g

Jesiedg

=30 -20 -10 0 10 20 30

Student potentials: r = 2,4, 8, 32 (fixed variance)
49

Reconstruction algorithms

FWISTA (Guerquin-Kern TMI 2011), IRWL1 (Candés)

m Constrained optimization formulation

Auxiliary innovation variable: u = Ls
n

. (1 2
s = argmin (2 g — Hs||; + o? Z @X([u]n)) st. u=1Ls

m Augmented Lagrangian AL/ADM (Ramani-Fessler TMI 2011)

Innovation variable: u = Ls

1
La(s,u,0) = 5 [lg — Hs|3+) (Z @x([u]n) +aT(Ls —u) + £ |Ls - uua)

50




Alternating direction method (ADM)

1
Lals,u,0) = ;g — Hs| 3\ <Z @x([ula) + a (Ls — u) + 5 [Ls - u|§)

Sequential minimization

-

)

sF+t1 « arg min L4(s, u”, o)
seRN

w1 arg min L£4(s*1, u, )

ueR™N

oftl — o — M(uk-H _ Lsk+1)

Linear inverse problem:

Nonlinear denoising:

m Proximal operator taylored to stochastic model

1
pros, (4 A) = argmin [y — uf? + A (u)

u" ™! = proxg  (Ls® + a®; Ap™t)

gh+1l — (HTH_._MLTL)*l (HTy +Zk+1)

with  zFF1 = LT (pubt! — )

-4

MRI: Shepp-Logan phantom

Original SL Phantom

N

Laplace prior (TV)

Fourier Sampling Pattern
12 Angles

L : gradient

Student prior (log)

=2 o 2
Cauchy prior with increasing s

Optimized parameters




MRI phantom: Spiral sampling in k-space

Original Phantom
(Guerquin-Kern TMI 2012)

Laplace prior (TV)
SER =21.37 dB

Gaussian prior (Tikhonov)
SER =17.69 dB

Student prior
SER =27.22 dB

L : gradient

Optimized parameters
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MRI reconstruction

Real T2 Brain Image

Reconstruction results in dB

MR Angiography Image

k-space sampling pattern

40 radial lines

L : gradient

Optimized parameters

Gaussian Estimator

Laplace Estimator

Student’s Estimator

T2 brain Image

8.71

16.08

15.79

MR Angiography Image

6.31

14.48

14.97
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2D deconvolution experiment

human embryonic stem cells

Astrocytes cells bovine pulmonary artery cells

Disk shaped PSF (7x7)
L : gradient

Deconvolution results in dB Optimized parameters

Gaussian Estimator Laplace Estimator [ Student’s Estimator
Astrocytes cells 12.18 10.48 10.52
Pulmonary cells 16.90 19.04 18.34
Stem cells 15.81 20.19 20.50
CONCLUSION

= Unifying continuous-domain innovation model
Backward compatibility with classical Gaussian theory
Operator-based formulation: Lévy-driven SDEs or SPDEs
vs. sparse (generalized Poisson, student, Sa.S)
Focus on unstable SDEs = non-stationary, self-similar processes

= Regularization
Central role of B-spline
Sparsification via “operator-like” behavior

= Theoretical framework for sparse signal recovery
New statistically-founded sparsity priors
Analytical determination of PDF in any transformed domain
Derivation of optimal estimators (MAP, MMSE)
Guide for the development of novel algorithms
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duction to sparse stochastic processes

Michael Unser and Pouya Tafti

November 1, 2012

Abstract

Sparse stochastic processes are continuous-domain processes that admit a
parsimonious representation in some matched wavelet-like basis. Such models
are relevant forimage compression, compressed sensing, and, more generally,
for the derivation of statistical algorithms for solving ill-posed inverse problems.

This book introduces an extended family of sparse processes that are specified
by a generic (non-Gaussian) innovation model or, equivalently, as solutions of

introd UCUOH linear stochastic differential equations driven by white Lévy noise. It presents the

mathematical tools for their characterization. The two leading threads that

J[O Sparse underly the exposition are

S'I:OChaSUC » the statistical property of infinite divisibility, which induces two distinct

processes types of behavior—Gaussian vs. sparse—at the exclusion of any other;

the structural link between linear stochastic processes and spline functions
Michael Unse Tafti which is exploited to simplify the mathematics.

The last chapter is devoted to the use of these models for the derivation of
algorithms that recover sparse signals. This leads to a Bayesian reinterpretation
of popular sparsity-promoting processing schemes—such as total-variation
denoising, LASSO, and wavelet shrinkage—as MAP estimators for specific
types of Lévy processes.

The book, which is mostly self-contained, is targeted to an audience of graduate
students and researchers with an interest in signallimage processing,
compressed sensing, approximation theory, machine learning, or statistics.

Audio: Sparve vs. Gaussian Chapter by chapter

All the three signals have the same spectral contents Cover
(a-minor chord)
Introduction
Sparse a-stable (wav file)
Road map to the monograph
Sparse Poisson (wav file)

M. ical and backg

iPhone Apps

» Get iMondrian App
in iTunes (free)

Screen Saver

Pseudo-color display of a
realization of a Mondrian
process

.

|
» Download the
Mondriaan Screen
Saver Mac 0SX 10.7
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