Institut de Mathématiques de Marseille, UMR 7373


Accueil >

26 février 2018: 2 événements


  • Agenda ERC IChaos

    Du 15 au 26 février - Alexander BUFETOV

    Seminars & scientific collaboration in Australia

    Résumé : 1) Talk on the Vershirk-Kerov conjecture concerning typical dimensions of representations of finite symmetric groups at Sydney University
    2) School of Mathematics & Statistics at Melbourne

    Lieu : Sydney & Melbourne - Australie

    Exporter cet événement

En savoir plus : Agenda ERC IChaos

  • Agenda ERC IChaos

    Du 26 février au 15 mars - Alexander BUFETOV

    Collaboration scientique avec A.DYMOV & P.NIKITIN

    Résumé : Work on the infinite dimensional stochastic differential équations & work on Pfaffian processes

    Lieu : Steklov Institute (Moscou&St.Pétersbourg)

    Exporter cet événement

    En savoir plus : Agenda ERC IChaos

  • 26 février 2018: 1 événement

    Manifestation scientifique

    • Manifestations scientifiques (colloques, écoles,...)

      Du 26 février au 2 mars -

      Structure of 3-manifold groups

      Résumé : MOIS THÉMATIQUE
      Structure of 3-manifold Groups.
      Every finitely presented group is the group of a closed 4-manifold. However, 3-manifold groups are special. Part of the goal of this conference will be to understand how special they are. The Wall conjecture asserts that the fundamental groups of closed 3-manifolds are the same as groups which satisfy 3-dimensional Poincaré duality (PD(3) groups). Three-manifolds decompose along spheres and tori and this translates to decompositions of their fundamental groups. There have been very fruitful analogs of this decomposition for more general groups.
      The conference will focus on the structure of 3-manifold groups as well as structures on groups inspired by structures on 3-manifolds, such as PD (3) groups, relatively hyperbolic groups and buildings.
      We will aim to address some of the following topics, as well as new topics which may arise.
      - Which of certain classes of groups, for example limit groups, are 3-manifold groups ?
      - Are hyperbolic 3-manifold groups determined by their profinite completions ?
      - How are the isometry groups of buildings similar to three-manifold groups ?
      - What can the boundaries of hyperbolic buildings tell us about these groups ?
      - Can one algorithmically decide if a group is the group of a 3-manifold with boundary ?
      - When are relatively hyperbolic groups the fundamental groups of 3-manifolds ?
      - How can a surface subgroup inside a group inform us about the structure of that group ?
      - Which group-theoretic properties of 3-manifold groups (such as residual finiteness) hold for more general classes of groups ?
      5ème semaine. fifth week.

      Site web du colloque
      JPEG - 33.4 ko

      Autre lien : Mois thématique CIRM

      Lieu : CIRM - 163 avenue de Luminy
      Case 916
      13288 Marseille - Cedex 9

      Exporter cet événement
      Document(s) associé(s) :

      En savoir plus : Manifestations scientifiques (colloques, écoles,...)