--------------------
- Expression d'un facteur epsilon de paire par une formule intégrale arxiv link

Auteur(s): Beuzart-Plessis Raphaël

(Document sans référence bibliographique) 2012-12-04


Ref HAL: hal-00761080_v2
Ref Arxiv: 1212.1082
Ref. & Cit.: NASA ADS
Exporter : BibTex | endNote
Résumé:

Let $E/F$ be a quadratic extension of $p$-adic fields and let $d$, $m$ be nonnegative integers of distinct parities. Fix admissible irreducible tempered representations $\pi$ and $\sigma$ of $GL_d(E)$ and $GL_m(E)$ respectively. We assume that $\pi$ and $\sigma$ are conjugate-dual. That is to say $\pi\simeq \pi^{\vee,c}$ and $\sigma\simeq \sigma^{\vee,c}$) where $c$ is the non trivial $F$-automorphism of $E$. This implies, we can extend $\pi$ to an unitary representation $\tilde{\pi}$ of a nonconnected group $GL_d(E)\rtimes \{1,\theta\}$. Define $\tilde{\sigma}$ the same way. We state and prove an integral formula for $\epsilon(1/2,\pi\times \sigma,\psi_E)$ involving the characters of $\tilde{\pi}$ and $\tilde{\sigma}$. This formula is related to the local Gan-Gross-Prasad conjecture for unitary groups.



Commentaires: 58p.