--------------------
- Index realization for automorphisms of free groups arxiv link

Auteur(s): Coulbois T., Lustig M.

(Document sans référence bibliographique) 2015-06-16


Ref HAL: hal-01318380_v1
Ref Arxiv: 1506.04536
Ref. & Cit.: NASA ADS
Exporter : BibTex | endNote
Résumé:

For any surface $\Sigma$ of genus $g \geq 1$ and (essentially) any collection of positive integers $i_1, i_2, \ldots, i_\ell$ with $i_1+\cdots +i_\ell = 4g-4$ Masur and Smillie have shown that there exists a pseudo-Anosov homeomorphism $h:\Sigma \to \Sigma$ with precisely $\ell$ singularities $S_1, \ldots, S_\ell$ in its stable foliation $\cal L$, such that $\cal L$ has precisely $i_k+2$ separatrices raying out from each $S_k$. In this paper we prove the analogue of this result for automorphisms of a free group $F_N$, where "pseudo-Anosov homeomorphism" is replaced by "fully irreducible automorphism" and the Gauss-Bonnet equality $i_1+\cdots +i_\ell = 4g-4$ is replaced by the index inequality $i_1+\cdots +i_\ell \leq 2N-2$ from Gaboriau, Jaeger, Levitt and Lustig.



Commentaires: 19 pages, 3 figures, 1 table