Factor-balanced S-adic languages

Léo Poirier and Wolfgang Steiner arXiv:2211.14076

ENS Lyon IRIF, CNRS, Université Paris Cité

One World Combinatorics on Words Seminar, March 6, 2023

Balancedness

language \mathcal{L} over a finite alphabet A is

• C-balanced w.r.t. $v \in A^*$:

 $|w|_v - |w'|_v \le C$ for all $w, w' \in \mathcal{L}$ with |w| = |w'|

 $(|w|_v$ denotes the number of occurrences of v in w, |w| the length of w)

- ▶ balanced w.r.t. $v \in A^*$: C-balanced w.r.t. $v \in A^*$ for some $C \ge 0$
- (C-)balanced for length n: (C-)balanced for all $v \in A^n$
- letter-(C-)balanced: (C-)balanced for length 1
- ► factor-(C-)balanced: (C-)balanced for all lengths $n \ge 1$ factor-balanced \iff balanced w.r.t. all $v \in A^*$

 \iff factor-*C*-balanced for some $C \ge 1$

Examples of (factor-)balanced languages

Morse-Hedlund '40:

language of a Sturmian word is letter-1-balanced

Fagnot–Vuillon '02:

language of a Sturmian word is factor-balanced, more precisely |v|-balanced w.r.t. all v, factor-C-balanced for some $C \ge 1$ if (and only if) the slope has bounded partial quotients

language of the Thue-Morse word is letter-2-balanced (if |w| = 2n + 1, then $(|w|_0, |w|_1) \in \{(n, n+1), (n+1, n)\};$ if |w| = 2n, then $(|w|_0, |w|_1) \in \{(n, n), (n-1, n+1), (n+1, n-1)\})$

Berthé-Cecchi Bernales '19:

language of the Thue-Morse word is NOT balanced for length $2\,$

Berthé–Cecchi Bernales–Durand–Leroy–Perrin–Petite '21: For *S*-adic languages defined by sequences of (left or right) proper unimodular morphisms, factor-balancedness is equivalent to letter-balancedness. Proposition 1 (cf. Berthé–Tijdeman '02, Adamczewski '03) If there is a (frequency) vector $(f_a)_{a \in A}$ such that $||w|_a - f_a|w|| \le C$ for all $a \in A$, $w \in \mathcal{L}$, then \mathcal{L} is letter-(2*C*)-balanced.

If \mathcal{L} is an infinite letter-C-balanced factorial language, then there exists $(f_a)_{a \in A}$ such that $||w|_a - f_a|w|| \leq C$ for all $a \in A$, $w \in \mathcal{L}$.

 $(\mathcal{L} \text{ is factorial if } \mathcal{F}(\mathcal{L}) = \mathcal{L}, \text{ where } \mathcal{F}(\mathcal{L}) \text{ denotes the set of factors of words in } \mathcal{L})$

n-coding

the *n*-coding of a word $a_1a_2\cdots a_N\in A^N$ is the word over the alphabet A^n defined by

$$(a_1a_2\cdots a_N)^{(n)} = (a_1\cdots a_n)(a_2\cdots a_{n+1})\cdots (a_{N-n+1}\cdots a_N) \in (A^n)^{N-n+1},$$
$$(a_1a_2\cdots a_N)^{(n)} \text{ is the empty word if } n > N$$
$$|w|_v = |w^{(n)}|_v \text{ if } v \in A^n$$

 \mathcal{L} balanced for length $n \Leftrightarrow \{w^{(n)} : w \in \mathcal{L}\}$ letter-balanced (alphabet A^n)

Morphisms preserve letter-balancedness

 σ morphism (or substitution): $\sigma(vw) = \sigma(v)\sigma(w)$

Proposition 2

If $\mathcal{L} \subset A^*$ is a letter-balanced factorial language and $\sigma : A^* \to B^*$ a morphism, then $\mathcal{F}(\sigma(\mathcal{L}))$ is letter-balanced.

Proof: If \mathcal{L} is letter-C-balanced, then for $w, w' \in \mathcal{F}(\sigma(\mathcal{L}))$, |w| = |w'|, $w = x \sigma(y) z$, $w' = x' \sigma(y') z'$,

with $y, y' \in \mathcal{L}$, |y| = |y'|, $|x z|, |x'z'| \le (2 + C \# A) \max_{a \in A} |\sigma(a)|$, and $|\sigma(y)|_b - |\sigma(y')|_b \le \sum_{a \in A} ||y|_a - |y'|_a| |\sigma(a)|_b \le C \# A \max_{a \in A} |\sigma(a)|.$

Proposition 3

If $\mathcal{L} \subset A^*$ is a factorial language, $\sigma : A^* \to B^*$ a morphism with invertible incidence matrix \mathcal{M}_{σ} and $\mathcal{F}(\sigma(\mathcal{L}))$ is letter-balanced, then \mathcal{L} is letter-balanced.

(incidence matrix $\mathcal{M}_{\sigma} = (|\sigma(b)|_{a})_{a \in A, b \in B})$

Proof: Use Proposition 1.

Non-erasing morphisms preserve balancedness for length n, proper morphisms increase length for balancedness

Proposition 4

If $\mathcal{L} \subset A^*$ is a factorial language that is balanced for length n, $\sigma : A^* \to B^*$ a morphism, $u \in B^*$ a (possibly empty) word that is a prefix of $\sigma(a)u$ for all $a \in A$ (or a suffix of $u\sigma(a)$ for all $a \in A$), then $\mathcal{F}(\sigma(\mathcal{L}))$ is balanced for length $\min_{w \in A^{n-1} \cap \mathcal{L}} |\sigma(w)| + |u| + 1$. In particular,

• $\mathcal{F}(\sigma(\mathcal{L}))$ is balanced for length n if σ is non-erasing,

• $\mathcal{F}(\sigma(\mathcal{L}))$ is balanced for length n+1 if σ is left or right proper.

(σ is *left* (resp. *right*) *proper* if $\sigma(a)$ starts (resp. ends) with the same letter for all $a \in A$)

Proof: case n = 1, $\sigma(a)$ starts with $u \in B$ for all $a \in A$:

morphism $\hat{\sigma} : A^* \to (B^2)^*, \ w \mapsto (\sigma(w)u)^{(2)}$

If \mathcal{L} is letter-balanced, then $\mathcal{F}(\hat{\sigma}(\mathcal{L}))$ is letter-balanced, thus $\mathcal{F}(\sigma(\mathcal{L}))$ is balanced for length 2.

In general, for $m \leq \min_{w \in A^{n-1} \cap \mathcal{L}} |\sigma(w)| + |u| + 1$, we can define a morphism $\hat{\sigma} : (A^n \cap \mathcal{L})^* \to (B^m)^*$ mapping *n*-codings of \mathcal{L} to *m*-codings of $\mathcal{F}(\sigma(\mathcal{L}))$ by

 $\hat{\sigma}(a_1a_2\cdots a_n) = (\sigma(a_1)\operatorname{pref}_{m-1}(\sigma(a_2\cdots a_n)u))^{(m)}.$ Then $(\sigma(w)u)^{(m)} = \hat{\sigma}(w^{(n)}) (\sigma(\operatorname{suff}_{n-1}(w))u)^{(m)}$ for all $w \in \mathcal{L}$. Since \mathcal{L} is balanced for length n, the set $\mathcal{L}^{(n)}$ of n-codings of words in \mathcal{L} is letter-balanced, $\mathcal{F}(\hat{\sigma}(\mathcal{L}^{(n)}))$ is letter-balanced, thus $\mathcal{F}(\sigma(\mathcal{L}))$ is balanced for length m.

Theorem 1

If $\mathcal{L} \subset A^*$ is a factor-balanced factorial language and $\sigma : A^* \to B^*$ a morphism, then $\mathcal{F}(\sigma(\mathcal{L}))$ is factor-balanced.

For non-erasing morphisms, this is a corollary of Proposition 4. For morphisms with erasing letters, use Propositions 1 and 4.

S-adic languages

sequence of morphisms $\sigma = (\sigma_k)_{k \geq 0}$, $\sigma_k : A^*_{k+1} \to A^*_k$,

$$\sigma_{[k,n)} = \sigma_k \circ \sigma_{k+1} \circ \cdots \circ \sigma_{n-1}$$

language of σ :

$$\mathcal{L}_{\boldsymbol{\sigma}} = \left\{ w \in A_0^* : w \in \mathcal{F}(\sigma_{[0,n)}(A_n)) \text{ for infinitely many } n \right\}$$

language of $\boldsymbol{\sigma}$ at level k :

$$egin{aligned} \mathcal{L}^{(k)}_{m{\sigma}} &= ig\{ w \in A^*_k \,:\, w \in \mathcal{F}(\sigma_{[k,n)}(A_n)) ext{ for infinitely many } n ig\} \ &= \mathcal{F}ig(\sigma_{[k,n)}(\mathcal{L}^{(n)}_{m{\sigma}})ig) & ext{ for all } n \geq k \end{aligned}$$

 $(\sigma_k)_{k\geq 0}$ is left (resp. right) proper if $\forall k \geq 0 \exists n > k$ such that $\sigma_{[k,n)}$ is left (resp. right) proper

 $(\sigma_k)_{k\geq 0}$ is everywhere growing if $\lim_{k\to\infty} \min_{a\in A_k} |\sigma_{[0,k)}(a)| = \infty$

Factor-balanced S-adic and substitutive languages

Theorem 2

- If σ is a left or right proper sequence of morphisms and L_σ^(k) is letter-balanced for infinitely many k, then L_σ is factor-balanced.
- If $\sigma = (\sigma_k)_{k\geq 0}$ is left or right proper, \mathcal{L}_{σ} is letter-balanced and the incidence matrices \mathcal{M}_{σ_k} are invertible, then \mathcal{L}_{σ} is factor-balanced.
- If σ is everywhere growing and $\mathcal{L}_{\sigma}^{(k)}$ is balanced for length 2 for infinitely many k, then \mathcal{L}_{σ} is factor-balanced.
- If σ : A^{*} → A^{*} is a morphism such that σ^k is left or right proper for some k ≥ 1 and L_σ is letter-balanced, then L_σ is factor-balanced.

• If $\sigma : A^* \to A^*$ is an everywhere growing morphism and \mathcal{L}_{σ} is balanced for length 2, then \mathcal{L}_{σ} is factor-balanced. (cf. Queffélec '87, Adamczewski '03, '04)

(for $\sigma: A^* \to A^*$, $\mathcal{L}_{\sigma} = \{ w \in A^* : w \in \mathcal{F}(\sigma^n(A)) \text{ for infinitely many } n \}$)

Thue–Morse–Sturmian languages

 \mathcal{L}_{M} is the language of the Thue–Morse word, for $\sigma \in \{L, R\}^{\infty}$ not ending with L^{∞} or R^{∞} , \mathcal{L}_{σ} is Sturmian Proposition 5 For all $\sigma \in \{L, M, R\}^{\infty}$, \mathcal{L}_{σ} is letter-2-balanced.

Theorem 3

For $\sigma = (\sigma_k)_{k \ge 0} \in \{L, M, R\}^{\infty}$, \mathcal{L}_{σ} is factor-balanced if and only if $\sigma_k \neq M$ for infinitely many k.

 $\mathcal{F}(\sigma \circ L(\mathcal{L}_M))$ is balanced for length $|\sigma(0)|+1$ for any morphism σ but $\mathcal{F}(\sigma \circ L(\mathcal{L}_M))$ is not balanced w.r.t. $\sigma(01010)$ for $\sigma \in \{L, M, R\}^*$.

Theorem 3

For $\sigma = (\sigma_k)_{k \ge 0} \in \{L, M, R\}^{\infty}$, \mathcal{L}_{σ} is factor-balanced if and only if $\sigma_k \neq M$ for infinitely many k.

Proof: If $\sigma_k \in \{L, R\}$ for infinitely many k, then σ is right proper, hence \mathcal{L}_{σ} is factor-balanced by Proposition 5 and Theorem 2.

Otherwise, $\mathcal{L}_{\sigma} = \mathcal{F}(\sigma(\mathcal{L}_M))$ for some $\sigma \in \{L, M, R\}^*$. By Berthé–Cecchi Bernales '19, \mathcal{L}_M is not balanced w.r.t. 11 (because its frequency is $\frac{1}{6}$ and $6/2^n = |M^n(1)|$ for all n). Also, u_n, u'_n defined by

$$u_1 = 00, \quad M^2(u_{2n-1}) = 0 \ u_{2n} 0, \quad M^2(u_{2n}) = 1 \ u_{2n+1} 1,$$

 $u'_1 = 01, \quad M^2(u'_{2n-1}) = u'_{2n} 01, \quad M^2(u'_{2n}) = u'_{2n+1} 10,$

are in \mathcal{L}_M for all n, and

 $\begin{aligned} |u_{2n}|_{00} - |u'_{2n}|_{00} &= |u'_{2n}|_{01} - |u_{2n}|_{01} = |u'_{2n}|_{10} - |u_{2n}|_{10} = |u_{2n}|_{11} - |u'_{2n}|_{11} = n. \\ \text{For all } \sigma \in \{L, M, R\}^*, \ w \in \mathcal{L}_M, \ \text{we have } |\sigma(w)|_{\sigma(011)} &= |w|_{011}, \ \text{thus} \\ |\sigma(u_{2n})|_{\sigma(011)} - |\sigma(u'_{2n})|_{\sigma(011)} &= |u_{2n}|_{011} - |u'_{2n}|_{011} = |u_{2n}|_{11} - 1 - |u'_{2n}|_{11} = n - 1. \\ \text{Therefore, } \sigma \text{ is not factor-balanced if } \sigma \text{ ends with } M^{\infty}. \end{aligned}$

Letter-balancedness of (primitive) S-adic languages

Necessary conditions:

$$\bigcap_{n\geq 0} M_{\sigma_{[0,n]}} \mathbb{R}^{\#A_n}_+ = \mathbb{R}_+ (f_a)_{a\in A_0}$$

$$\{ |\sigma_{[0,n)}(b)|_{a} - f_{a} |\sigma_{[0,n)}(b)| : a \in A_{0}, b \in A_{n}, n \ge 0 \}$$
 bounded

not always sufficient: see Cassaigne–Ferenczi–Zamboni '00, Cassaigne–Ferenczi–Messaoudi '08 and Berthé–Cassaigne–Steiner '13 for Arnoux–Rauzy words, Delecroix–Hejda–Steiner '13 for Brun words, Andrieu '18 for Cassaigne words