Factor-balanced S-adic languages

Léo Poirier and Wolfgang Steiner
arXiv:2211.14076

ENS Lyon IRIF, CNRS, Université Paris Cité
One World Combinatorics on Words Seminar, March 6, 2023

Balancedness

language \mathcal{L} over a finite alphabet A is

- C-balanced w.r.t. $v \in A^{*}$:

$$
|w|_{v}-\left|w^{\prime}\right|_{v} \leq C \quad \text { for all } w, w^{\prime} \in \mathcal{L} \text { with }|w|=\left|w^{\prime}\right|
$$

($|w|_{v}$ denotes the number of occurrences of v in $w,|w|$ the length of w)

- balanced w.r.t. $v \in A^{*}: C$-balanced w.r.t. $v \in A^{*}$ for some $C \geq 0$
- (C-)balanced for length $n:\left(C\right.$-)balanced for all $v \in A^{n}$
- letter-(C-)balanced: (C-)balanced for length 1
- factor-(C-)balanced: (C-)balanced for all lengths $n \geq 1$ factor-balanced \Longleftrightarrow balanced w.r.t. all $v \in A^{*}$
\Leftrightarrow factor- C-balanced for some $C \geq 1$

Examples of (factor-)balanced languages

Morse-Hedlund '40:
language of a Sturmian word is letter-1-balanced
Fagnot-Vuillon '02:
language of a Sturmian word is factor-balanced, more precisely $|v|$-balanced w.r.t. all v, factor- C-balanced for some $C \geq 1$ if (and only if) the slope has bounded partial quotients
language of the Thue-Morse word is letter-2-balanced
(if $|w|=2 n+1$, then $\left(|w|_{0},|w|_{1}\right) \in\{(n, n+1),(n+1, n)\}$;
if $|w|=2 n$, then $\left.\left(|w|_{0},|w|_{1}\right) \in\{(n, n),(n-1, n+1),(n+1, n-1)\}\right)$
Berthé-Cecchi Bernales '19:
language of the Thue-Morse word is NOT balanced for length 2
Berthé-Cecchi Bernales-Durand-Leroy-Perrin-Petite '21: For S-adic languages defined by sequences of (left or right) proper unimodular morphisms, factor-balancedness is equivalent to letter-balancedness.

Frequency vector, factorial languages

Proposition 1 (cf. Berthé-Tijdeman '02, Adamczewski '03) If there is a (frequency) vector $\left(f_{a}\right)_{a \in A}$ such that $\left\|\left.w\right|_{a}-f_{a} \mid w\right\| \leq C$ for all $a \in A, w \in \mathcal{L}$, then \mathcal{L} is letter-(2C)-balanced.
If \mathcal{L} is an infinite letter- C-balanced factorial language, then there exists $\left(f_{a}\right)_{a \in A}$ such that $\left\|\left.w\right|_{a}-f_{a} \mid w\right\| \leq C$ for all $a \in A, w \in \mathcal{L}$.
(\mathcal{L} is factorial if $\mathcal{F}(\mathcal{L})=\mathcal{L}$, where $\mathcal{F}(\mathcal{L})$ denotes the set of factors of words in \mathcal{L})

n-coding

the n-coding of a word $a_{1} a_{2} \cdots a_{N} \in A^{N}$ is the word over the alphabet A^{n} defined by
$\left(a_{1} a_{2} \cdots a_{N}\right)^{(n)}=\left(a_{1} \cdots a_{n}\right)\left(a_{2} \cdots a_{n+1}\right) \cdots\left(a_{N-n+1} \cdots a_{N}\right) \in\left(A^{n}\right)^{N-n+1}$,
$\left(a_{1} a_{2} \cdots a_{N}\right)^{(n)}$ is the empty word if $n>N$

$$
|w|_{v}=\left|w^{(n)}\right|_{v} \text { if } v \in A^{n}
$$

\mathcal{L} balanced for length $n \Leftrightarrow\left\{w^{(n)}: w \in \mathcal{L}\right\}$ letter-balanced (alphabet A^{n})

Morphisms preserve letter-balancedness

σ morphism (or substitution): $\sigma(v w)=\sigma(v) \sigma(w)$
Proposition 2
If $\mathcal{L} \subset A^{*}$ is a letter-balanced factorial language and $\sigma: A^{*} \rightarrow B^{*}$ a morphism, then $\mathcal{F}(\sigma(\mathcal{L}))$ is letter-balanced.

Proof: If \mathcal{L} is letter- C-balanced, then for $w, w^{\prime} \in \mathcal{F}(\sigma(\mathcal{L})),|w|=\left|w^{\prime}\right|$,

$$
w=x \sigma(y) z, \quad w^{\prime}=x^{\prime} \sigma\left(y^{\prime}\right) z^{\prime}
$$

with $y, y^{\prime} \in \mathcal{L},|y|=\left|y^{\prime}\right|,|x z|,\left|x^{\prime} z^{\prime}\right| \leq(2+C \# A) \max _{a \in A}|\sigma(a)|$, and

$$
|\sigma(y)|_{b}-\left|\sigma\left(y^{\prime}\right)\right|_{b} \leq\left.\sum_{a \in A}| | y\right|_{a}-\left.\left|y^{\prime}\right|_{a}| | \sigma(a)\right|_{b} \leq C \# A \max _{a \in A}|\sigma(a)|
$$

Proposition 3
If $\mathcal{L} \subset A^{*}$ is a factorial language, $\sigma: A^{*} \rightarrow B^{*}$ a morphism with invertible incidence matrix \mathcal{M}_{σ} and $\mathcal{F}(\sigma(\mathcal{L}))$ is letter-balanced, then \mathcal{L} is letter-balanced.
(incidence matrix $\mathcal{M}_{\sigma}=\left(|\sigma(b)|_{a}\right)_{a \in A, b \in B}$)
Proof: Use Proposition 1.

Non-erasing morphisms preserve balancedness for length n, proper morphisms increase length for balancedness

Proposition 4

If $\mathcal{L} \subset A^{*}$ is a factorial language that is balanced for length n, $\sigma: A^{*} \rightarrow B^{*}$ a morphism, $u \in B^{*}$ a (possibly empty) word that is a prefix of $\sigma(a) u$ for all $a \in A$ (or a suffix of $u \sigma(a)$ for all $a \in A$), then $\mathcal{F}(\sigma(\mathcal{L}))$ is balanced for length $\min _{w \in A^{n-1} \cap \mathcal{L}}|\sigma(w)|+|u|+1$. In particular,

- $\mathcal{F}(\sigma(\mathcal{L}))$ is balanced for length n if σ is non-erasing,
- $\mathcal{F}(\sigma(\mathcal{L}))$ is balanced for length $n+1$ if σ is left or right proper.
(σ is left (resp. right) proper if $\sigma(a)$ starts (resp. ends) with the same letter for all $a \in A$)

Proof: case $n=1, \sigma(a)$ starts with $u \in B$ for all $a \in A$:
morphism $\hat{\sigma}: A^{*} \rightarrow\left(B^{2}\right)^{*}, w \mapsto(\sigma(w) u)^{(2)}$

$\hat{\sigma}\left(w_{1}\right)$	$\hat{\sigma}\left(w_{2}\right)$	$\hat{\sigma}\left(w_{3}\right)$	
$u \quad 1$	u_{1}	u_{1}	u^{\prime}
$\sigma\left(w_{1}\right)$	$\sigma\left(w_{2}\right)$	$\sigma\left(w_{3}\right)$	

If \mathcal{L} is letter-balanced, then $\mathcal{F}(\hat{\sigma}(\mathcal{L}))$ is letter-balanced, thus $\mathcal{F}(\sigma(\mathcal{L}))$ is balanced for length 2 .

In general, for $m \leq \min _{w \in A^{n-1} \cap \mathcal{L}}|\sigma(w)|+|u|+1$, we can define a morphism $\hat{\sigma}:\left(A^{n} \cap \mathcal{L}\right)^{*} \rightarrow\left(B^{m}\right)^{*}$ mapping n-codings of \mathcal{L} to m-codings of $\mathcal{F}(\sigma(\mathcal{L}))$ by

$$
\hat{\sigma}\left(a_{1} a_{2} \cdots a_{n}\right)=\left(\sigma\left(a_{1}\right) \operatorname{pref}_{m-1}\left(\sigma\left(a_{2} \cdots a_{n}\right) u\right)\right)^{(m)}
$$

Then $(\sigma(w) u)^{(m)}=\hat{\sigma}\left(w^{(n)}\right)\left(\sigma\left(\text { suff }_{n-1}(w)\right) u\right)^{(m)}$ for all $w \in \mathcal{L}$. Since \mathcal{L} is balanced for length n, the set $\mathcal{L}^{(n)}$ of n-codings of words in \mathcal{L} is letter-balanced, $\mathcal{F}\left(\hat{\sigma}\left(\mathcal{L}^{(n)}\right)\right)$ is letter-balanced, thus $\mathcal{F}(\sigma(\mathcal{L}))$ is balanced for length m.

Morphisms preserve factor-balancedness

Theorem 1
If $\mathcal{L} \subset A^{*}$ is a factor-balanced factorial language and $\sigma: A^{*} \rightarrow B^{*}$ a morphism, then $\mathcal{F}(\sigma(\mathcal{L}))$ is factor-balanced.

For non-erasing morphisms, this is a corollary of Proposition 4.
For morphisms with erasing letters, use Propositions 1 and 4.

S-adic languages

sequence of morphisms $\sigma=\left(\sigma_{k}\right)_{k \geq 0}, \sigma_{k}: A_{k+1}^{*} \rightarrow A_{k}^{*}$,

$$
\sigma_{[k, n)}=\sigma_{k} \circ \sigma_{k+1} \circ \cdots \circ \sigma_{n-1}
$$

language of σ :

$$
\mathcal{L}_{\sigma}=\left\{w \in A_{0}^{*}: w \in \mathcal{F}\left(\sigma_{[0, n)}\left(A_{n}\right)\right) \text { for infinitely many } n\right\}
$$

language of σ at level k :

$$
\begin{aligned}
\mathcal{L}_{\sigma}^{(k)} & =\left\{w \in A_{k}^{*}: w \in \mathcal{F}\left(\sigma_{[k, n)}\left(A_{n}\right)\right) \text { for infinitely many } n\right\} \\
& =\mathcal{F}\left(\sigma_{[k, n)}\left(\mathcal{L}_{\sigma}^{(n)}\right)\right) \quad \text { for all } n \geq k
\end{aligned}
$$

$\left(\sigma_{k}\right)_{k \geq 0}$ is left (resp. right) proper if $\forall k \geq 0 \exists n>k$ such that $\sigma_{[k, n)}$ is left (resp. right) proper
$\left(\sigma_{k}\right)_{k \geq 0}$ is everywhere growing if $\lim _{k \rightarrow \infty} \min _{a \in A_{k}}\left|\sigma_{[0, k)}(a)\right|=\infty$

Factor-balanced S-adic and substitutive languages

Theorem 2

- If $\boldsymbol{\sigma}$ is a left or right proper sequence of morphisms and $\mathcal{L}_{\sigma}^{(k)}$ is letter-balanced for infinitely many k, then $\mathcal{L}_{\boldsymbol{\sigma}}$ is factor-balanced.
- If $\boldsymbol{\sigma}=\left(\sigma_{k}\right)_{k \geq 0}$ is left or right proper, $\mathcal{L}_{\boldsymbol{\sigma}}$ is letter-balanced and the incidence matrices $\mathcal{M}_{\sigma_{k}}$ are invertible, then $\mathcal{L}_{\boldsymbol{\sigma}}$ is factor-balanced.
- If $\boldsymbol{\sigma}$ is everywhere growing and $\mathcal{L}_{\boldsymbol{\sigma}}^{(k)}$ is balanced for length 2 for infinitely many k, then $\mathcal{L}_{\boldsymbol{\sigma}}$ is factor-balanced.
- If $\sigma: A^{*} \rightarrow A^{*}$ is a morphism such that σ^{k} is left or right proper for some $k \geq 1$ and \mathcal{L}_{σ} is letter-balanced, then \mathcal{L}_{σ} is factor-balanced.
- If $\sigma: A^{*} \rightarrow A^{*}$ is an everywhere growing morphism and \mathcal{L}_{σ} is balanced for length 2, then \mathcal{L}_{σ} is factor-balanced. (cf. Queffélec '87, Adamczewski '03, '04)
(for $\sigma: A^{*} \rightarrow A^{*}, \mathcal{L}_{\sigma}=\left\{w \in A^{*}: w \in \mathcal{F}\left(\sigma^{n}(A)\right)\right.$ for infinitely many $\left.n\right\}$)

Thue-Morse-Sturmian languages

$$
\begin{aligned}
& L: 0 \mapsto 0, \quad M: 0 \mapsto 01, \quad R: 0 \mapsto 01, \\
& 1 \mapsto 10, \quad 1 \mapsto 10, \quad 1 \mapsto 1,
\end{aligned}
$$

\mathcal{L}_{M} is the language of the Thue-Morse word, for $\boldsymbol{\sigma} \in\{L, R\}^{\infty}$ not ending with L^{∞} or $R^{\infty}, \mathcal{L}_{\boldsymbol{\sigma}}$ is Sturmian
Proposition 5
For all $\boldsymbol{\sigma} \in\{L, M, R\}^{\infty}, \mathcal{L}_{\boldsymbol{\sigma}}$ is letter-2-balanced.
Theorem 3
For $\boldsymbol{\sigma}=\left(\sigma_{k}\right)_{k \geq 0} \in\{L, M, R\}^{\infty}, \mathcal{L}_{\boldsymbol{\sigma}}$ is factor-balanced if and only if $\sigma_{k} \neq M$ for infinitely many k.
$\mathcal{F}\left(\sigma \circ L\left(\mathcal{L}_{M}\right)\right)$ is balanced for length $|\sigma(0)|+1$ for any morphism σ but $\mathcal{F}\left(\sigma \circ L\left(\mathcal{L}_{M}\right)\right)$ is not balanced w.r.t. $\sigma(01010)$ for $\sigma \in\{L, M, R\}^{*}$.

Theorem 3

For $\boldsymbol{\sigma}=\left(\sigma_{k}\right)_{k \geq 0} \in\{L, M, R\}^{\infty}, \mathcal{L}_{\boldsymbol{\sigma}}$ is factor-balanced
if and only if $\sigma_{k} \neq M$ for infinitely many k.
Proof: If $\sigma_{k} \in\{L, R\}$ for infinitely many k, then $\boldsymbol{\sigma}$ is right proper, hence $\mathcal{L}_{\boldsymbol{\sigma}}$ is factor-balanced by Proposition 5 and Theorem 2.
Otherwise, $\mathcal{L}_{\boldsymbol{\sigma}}=\mathcal{F}\left(\sigma\left(\mathcal{L}_{M}\right)\right)$ for some $\sigma \in\{L, M, R\}^{*}$.
By Berthé-Cecchi Bernales '19, \mathcal{L}_{M} is not balanced w.r.t. 11
(because its frequency is $\frac{1}{6}$ and $6 \backslash 2^{n}=\left|M^{n}(1)\right|$ for all n).
Also, u_{n}, u_{n}^{\prime} defined by

$$
\begin{array}{lll}
u_{1}=00, & M^{2}\left(u_{2 n-1}\right)=0 u_{2 n} 0, & M^{2}\left(u_{2 n}\right)=1 u_{2 n+1} 1 \\
u_{1}^{\prime}=01, & M^{2}\left(u_{2 n-1}^{\prime}\right)=u_{2 n}^{\prime} 01, & M^{2}\left(u_{2 n}^{\prime}\right)=u_{2 n+1}^{\prime} 10,
\end{array}
$$

are in \mathcal{L}_{M} for all n, and
$\left|u_{2 n}\right|_{00}-\left|u_{2 n}^{\prime}\right|_{00}=\left|u_{2 n}^{\prime}\right|_{01}-\left|u_{2 n}\right|_{01}=\left|u_{2 n}^{\prime}\right|_{10}-\left|u_{2 n}\right|_{10}=\left|u_{2 n}\right|_{11}-\left|u_{2 n}^{\prime}\right|_{11}=n$.
For all $\sigma \in\{L, M, R\}^{*}, w \in \mathcal{L}_{M}$, we have $|\sigma(w)|_{\sigma(011)}=|w|_{011}$, thus $\left|\sigma\left(u_{2 n}\right)\right|_{\sigma(011)}-\left|\sigma\left(u_{2 n}^{\prime}\right)\right|_{\sigma(011)}=\left|u_{2 n}\right|_{011}-\left|u_{2 n}^{\prime}\right|_{011}=\left|u_{2 n}\right|_{11}-1-\left|u_{2 n}^{\prime}\right|_{11}=n-1$.

Therefore, σ is not factor-balanced if σ ends with M^{∞}.

Letter-balancedness of (primitive) S-adic languages

Necessary conditions:

$$
\begin{gathered}
\bigcap_{n \geq 0} M_{\sigma_{[0, n)}} \mathbb{R}_{+}^{\# A_{n}}=\mathbb{R}_{+}\left(f_{a}\right)_{a \in A_{0}} \\
\left\{\left|\sigma_{[0, n)}(b)\right|_{a}-f_{a}\left|\sigma_{[0, n)}(b)\right|: a \in A_{0}, b \in A_{n}, n \geq 0\right\} \quad \text { bounded }
\end{gathered}
$$

not always sufficient: see Cassaigne-Ferenczi-Zamboni '00, Cassaigne-Ferenczi-Messaoudi '08 and Berthé-Cassaigne-Steiner '13 for Arnoux-Rauzy words, Delecroix-Hejda-Steiner '13 for Brun words, Andrieu '18 for Cassaigne words

