Combinatorics on words: Factor complexity

Anna FRID

Aix-Marseille Université, September 2020

Definition

The (factor) complexity $p_{\mathbf{u}}(n)$ of an infinite word \mathbf{u} is the number of its distinct factors of length n.

Definition

The (factor) complexity $p_{\mathbf{u}}(n)$ of an infinite word \mathbf{u} is the number of its distinct factors of length n.

$01101001100101100110 \ldots$

Definition

The (factor) complexity $p_{\mathbf{u}}(n)$ of an infinite word \mathbf{u} is the number of its distinct factors of length n.

$01101001100101100110 \ldots$

No factors $000,111 \Longrightarrow p_{\mathbf{u}}(3)=6$.

Definition

The (factor) complexity $p_{\mathbf{u}}(n)$ of an infinite word \mathbf{u} is the number of its distinct factors of length n.

$01101001100101100110 \ldots$

No factors $000,111 \Longrightarrow p_{\mathbf{u}}(3)=6$.
The factor complexity has almost nothing to do with the Kolmogorov complexity which is the "shortest possible description of the string".

Properties of factor complexity

Let \mathbf{u} be an infinite word over k letters.

Properties of factor complexity

Let \mathbf{u} be an infinite word over k letters.

- $1 \leq p_{\mathbf{u}}(n) \leq k^{n}$;

Properties of factor complexity

Let \mathbf{u} be an infinite word over k letters.

- $1 \leq p_{\mathbf{u}}(n) \leq k^{n}$;
- $p_{\mathbf{u}}(n+1) \geq p_{\mathbf{u}}(n)$;

Properties of factor complexity

Let \mathbf{u} be an infinite word over k letters.

- $1 \leq p_{\mathbf{u}}(n) \leq k^{n}$;
- $p_{\mathbf{u}}(n+1) \geq p_{\mathbf{u}}(n)$;
- If $p_{\mathbf{u}}(n+1)=p_{\mathbf{u}}(n)$, then \mathbf{u} is ult. periodic.

Morse-Hedlund theorem

Theorem (Morse and Hedlund,1938)
An infinite word \mathbf{u} either is ultimately periodic, and then its complexity is ultimately constant, or satisfies $p_{\mathbf{u}}(n) \geq n+1$.

Morse-Hedlund theorem

Theorem (Morse and Hedlund,1938)
An infinite word \mathbf{u} either is ultimately periodic, and then its complexity is ultimately constant, or satisfies $p_{\mathbf{u}}(n) \geq n+1$.

A word \mathbf{u} of complexity $p_{\mathbf{u}}(n) \geq n+1$ is called Sturmian.

Fibonacci word

Example (Fibonacci morphism)

$$
\begin{gathered}
\varphi(0)=01, \varphi(1)=0 \\
0 \rightarrow 01 \rightarrow 010 \rightarrow 01001 \rightarrow 01001010 \rightarrow 0100101001001 \rightarrow \cdots
\end{gathered}
$$

Its fixed point is the Fibonacci word

$$
\varphi^{\omega}(0)=0100101001001010010100100101001001 \cdots
$$

Fibonacci word

Example (Fibonacci morphism)

$$
\begin{gathered}
\varphi(0)=01, \varphi(1)=0 \\
0 \rightarrow 01 \rightarrow 010 \rightarrow 01001 \rightarrow 01001010 \rightarrow 0100101001001 \rightarrow \cdots
\end{gathered}
$$

Its fixed point is the Fibonacci word

$$
\varphi^{\omega}(0)=0100101001001010010100100101001001 \cdots
$$

Lemma
The Fibonacci word is Sturmian.
(The proof will follow.)

Special factors

Consider the set of factors $\mathrm{Fac}_{\mathbf{u}}(n)$ of an infinite word \mathbf{u}.
For a factor w of \mathbf{u}, denote by $L(w)(R(w))$ the set of symbols a such that aw (wa) is also a factor of \mathbf{u}.
$\# L(w)=I(w)$,
$\# R(w)=r(w)$.
We say that w is a left (right) special factor of \mathbf{u} if $I(w) \neq 1(r(w) \neq 1)$.

Special words

Denote by $R S_{\mathbf{u}}(n)$ the set of all right special factors of \mathbf{u} of length n.

Special words

Denote by $R S_{\mathbf{u}}(n)$ the set of all right special factors of \mathbf{u} of length n.
Then the first differences

$$
d_{\mathbf{u}}(n)=p_{\mathbf{u}}(n+1)-p_{\mathbf{u}}(n)=\sum_{w \in \mathrm{Fac}_{\mathbf{u}}(n)}(r(w)-1)=\sum_{w \in R S_{\mathbf{u}}(n)}(r(w)-1) .
$$

Bispecial words

A word is bispecial if it is left and right special. The set of bispecial words $B_{\mathbf{u}}(n)$.

Bispecial words

A word is bispecial if it is left and right special. The set of bispecial words $B_{\mathbf{u}}(n)$.
Bispeciality degree:

$$
b(v)=\#\{(a, b) \mid a, b \in \Sigma, a v b \in F\}-I(v)-r(v)+1
$$

Bispecial words

A word is bispecial if it is left and right special. The set of bispecial words $B_{\mathbf{u}}(n)$.
Bispeciality degree:

$$
b(v)=\#\{(a, b) \mid a, b \in \Sigma, a v b \in F\}-I(v)-r(v)+1
$$

Second differences

$$
s_{\mathbf{u}}(n)=p_{\mathbf{u}}(n+2)-2 p_{\mathbf{u}}(n+1)+p_{\mathbf{u}}(n)=\sum_{v \in \mathrm{Fac}_{\mathbf{u}}(n)} b(v)=\sum_{v \in B_{\mathbf{u}}(n)} b(v) .
$$

Bispeciality graph

$$
b(v)=\# \text { edges }-I(v)-r(v)+1
$$

Cassaigne, 1994

Fibonacci word is Sturmian

$$
\begin{gathered}
\varphi(0)=01, \varphi(1)=0 \\
\mathbf{f}=\varphi^{\omega}(0)=0100101001001010010100100101001001 \cdots
\end{gathered}
$$

- It is not periodic since

$$
\frac{\left|\varphi^{n}(0)\right|_{0}}{\left|\varphi^{n}(0)\right|}=\frac{F_{n+1}}{F_{n+2}} \rightarrow \frac{1}{\theta},
$$

where $\theta=\frac{1+\sqrt{5}}{2}$ is the golden mean.

Fibonacci word is Sturmian

- $p_{f}(1)=2 \quad(0,1)$

$$
p_{\mathrm{f}}(2)=3 \quad(00,01,10)
$$

Suppose n is the shortest s.t. $d_{\mathbf{f}}(n+1)>1$.

Fibonacci word is Sturmian

- $p_{f}(1)=2 \quad(0,1)$

$$
p_{\mathrm{f}}(2)=3 \quad(00,01,10)
$$

Suppose n is the shortest s.t. $d_{\mathbf{f}}(n+1)>1$.

So, Sturmian words exist and the Fibonacci word is one of them.

Complexity of automatic words

Lemma

Let \mathbf{u} be a k-automatic word. Then for every n we have

$$
p_{\mathbf{u}}(k n+1) \leq k p_{\mathbf{u}}(n+1) .
$$

Complexity of automatic words

Lemma

Let u be a k-automatic word. Then for every n we have

$$
p_{\mathbf{u}}(k n+1) \leq k p_{\mathbf{u}}(n+1) .
$$

Corollary
The complexity of a k-automatic word grows at most linearly.

Complexity of morphic words

- The complexity of a fixed point of a morphism can grow as $O\left(n^{2}\right)$, $O(n \log n), O(n \log \log n), O(n)$ or $O(1)$ [Pansiot 1984].

Complexity of morphic words

- The complexity of a fixed point of a morphism can grow as $O\left(n^{2}\right)$, $O(n \log n), O(n \log \log n), O(n)$ or $O(1)$ [Pansiot 1984].
- The complexity of a morphic word $\psi\left(\varphi^{\omega}(a)\right)$ grows as $O\left(n^{1+1 / k}\right)$ for some k or at most as $O(n \log n)$ [Devyatov, 2008, preprint].

Further directions

- Characterizations of words of low complexity;

Further directions

- Characterizations of words of low complexity;
- Constructing word with given complexity growth;

Further directions

- Characterizations of words of low complexity;
- Constructing word with given complexity growth;
- Complexity of given words;

Further directions

- Characterizations of words of low complexity;
- Constructing word with given complexity growth;
- Complexity of given words;
- Complexity of languages (e. g. square-free words);

Further directions

- Characterizations of words of low complexity;
- Constructing word with given complexity growth;
- Complexity of given words;
- Complexity of languages (e. g. square-free words);
- General properties of the complexity function;

Further directions

- Characterizations of words of low complexity;
- Constructing word with given complexity growth;
- Complexity of given words;
- Complexity of languages (e. g. square-free words);
- General properties of the complexity function;
- Modifications of the definition.

