Sturmian words: equivalent definitions

Anna FRID

Aix-Marseille Université, September 2020

Anna FRID

Sturmian words

Aix-Marseille Université, September 2020

3

(a)

The *(factor) complexity* $p_{\mathbf{u}}(n)$ of an infinite word \mathbf{u} is the number of its distinct factors of length n.

3

イロト イヨト イヨト イヨト

The *(factor) complexity* $p_{\mathbf{u}}(n)$ of an infinite word \mathbf{u} is the number of its distinct factors of length n.

Theorem (Morse and Hedlund, 1938)

An infinite word **u** either is ultimately periodic, and then its complexity is ultimately constant, or satisfies $p_{\mathbf{u}}(n) \ge n + 1$.

Anna FRID

< 回 > < 回 > < 回 >

The *(factor) complexity* $p_{\mathbf{u}}(n)$ of an infinite word \mathbf{u} is the number of its distinct factors of length n.

Theorem (Morse and Hedlund, 1938)

An infinite word **u** either is ultimately periodic, and then its complexity is ultimately constant, or satisfies $p_{\mathbf{u}}(n) \ge n + 1$.

A word **u** of complexity $p_{\mathbf{u}}(n) = n + 1$ is called *Sturmian*.

Anna FRID

Sturmian words |

Aix-Marseille Université, September 2020

A (10) A (10)

Fibonacci word

Example (Fibonacci morphism)

$$\varphi(0)=01, \varphi(1)=0$$

 $0 \rightarrow 01 \rightarrow 01 \ 0 \rightarrow 010 \ 01 \rightarrow 01001 \ 010 \rightarrow 01001010 \ 01001 \rightarrow \cdots$

Its fixed point is the Fibonacci word

Anna FRID

Sturmian words

Aix-Marseille Université, September 2020

< 回 > < 回 > < 回 >

Fibonacci word

Example (Fibonacci morphism)

$$\varphi(0)=01, \varphi(1)=0$$

 $0 \rightarrow 01 \rightarrow 01 \ 0 \rightarrow 010 \ 01 \rightarrow 01001 \ 010 \rightarrow 01001010 \ 01001 \rightarrow \cdots$

Its fixed point is the Fibonacci word

Lemma

The Fibonacci word is Sturmian.

Anna FRID

Sturmian words |

Aix-Marseille Université, September 2020

< 回 > < 回 > < 回 >

Balanced words

Let $|u|_a$ denote the number of occurrences of a to u

 $|01001|_1 = 2$

Balanced words

Let $|u|_a$ denote the number of occurrences of a to u

 $|01001|_1 = 2$

An infinite word **w** over $\{0, 1\}$ is said to be *balanced* if for every two its factors x and y of the same length we have

 $\delta(x,y) = ||x|_1 - |y|_1| \le 1.$

Balanced words

Let $|u|_a$ denote the number of occurrences of a to u

 $|01001|_1 = 2$

An infinite word **w** over $\{0, 1\}$ is said to be *balanced* if for every two its factors x and y of the same length we have

$$\delta(x, y) = ||x|_1 - |y|_1| \le 1.$$

Example

01001 01001 01001 01001 · · ·

An		

Sturmian words

Theorem

A right infinite word is Sturmian if and only if it is aperiodic and balanced.

Sturmian words

Aix-Marseille Université, September 2020

(人間) シスヨン スヨン

Theorem

A right infinite word is Sturmian if and only if it is aperiodic and balanced.

IDEA OF THE PROOF:

• In a balanced set of factors of length n, there are at most n + 1 elements;

A (10) A (10)

Theorem

A right infinite word is Sturmian if and only if it is aperiodic and balanced.

IDEA OF THE PROOF:

- In a balanced set of factors of length n, there are at most n + 1 elements;
- A set of factors F is not balanced ⇐⇒ there exists a strong bispecial w| 0w0, 1w1 ∈ F.

3

・ 何 ト ・ ヨ ト ・ ヨ ト …

A typical Sturmian word may start for example with

 $0010001001000100100100100100\cdots$

3

A typical Sturmian word may start for example with

 $0010001001000100100100100100\cdots$

Attention:

 $\cdots 000001000000\cdots$

is not considered to be Sturmian, even though its complexity is n + 1. It is two-sided and "half-periodic".

Definition

The *slope* of a finite word x over $\{0,1\}$ is

 $\frac{|x|_1}{|x|}.$

Anna FRID

Sturmian words

Aix-Marseille Université, September 2020

3

・ロト ・ 四ト ・ ヨト ・ ヨト …

Definition

The *slope* of a finite word x over $\{0,1\}$ is

The *slope* of an infinite word \mathbf{w} over $\{0,1\}$ is the limit

$$\pi(\mathbf{w}) = \lim_{n \to \infty} \frac{|\mathbf{w}[0..n-1]|_1}{n}.$$

 $\frac{|x|_1}{|x|}$

Anna FRID

Sturmian words

Aix-Marseille Université, September 2020

(a)

Definition

The *slope* of a finite word x over $\{0,1\}$ is

The *slope* of an infinite word \mathbf{w} over $\{0,1\}$ is the limit

$$\pi(\mathbf{w}) = \lim_{n \to \infty} \frac{|\mathbf{w}[0..n-1]|_1}{n}$$

 $X|_{2}$

Lemma

Every balanced infinite word has a slope.

An	n	а	F	RI	D

Aix-Marseille Université, September 2020

A (10) A (10)

Definition

The *slope* of a finite word x over $\{0,1\}$ is

The *slope* of an infinite word \mathbf{w} over $\{0,1\}$ is the limit

$$\pi(\mathbf{w}) = \lim_{n \to \infty} \frac{|\mathbf{w}[0..n-1]|_1}{n}$$

Lemma

Every balanced infinite word has a slope.

Lemma

A balanced word is periodic if and only if its slope is rational.

Anna FRID

Sturmian words

Aix-Marseille Université, September 2020

Examples

Example

The slope of

01001 01001 01001 01001 · · ·

is 2/5.

Anna FRID

Sturmian words |

Aix-Marseille Université, September 2020

3

イロン イ理 とく ヨン イヨン

Examples

Example

The slope of

01001 01001 01001 01001 · · ·

is 2/5.

Example

The slope of the Fibonacci word 0 1 0 01 010 01001 01001010 \cdots is

$$\lim_{n\to\infty}\frac{|\varphi^n(0)|_1}{|\varphi^n(0)|} = \lim_{n\to\infty}\frac{F_{n-2}}{F_n} = \frac{1}{\tau^2},$$
 where $\tau = (1+\sqrt{5})/2$.

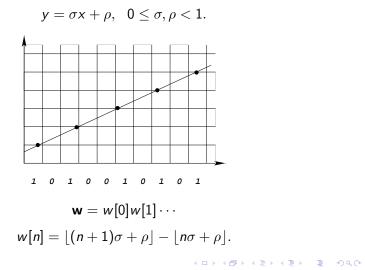
$$\frac{1}{\tau^2}=0,38\cdots.$$

Anna FRID

Sturmian words

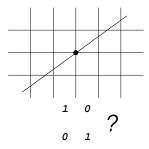
Aix-Marseille Université, September 2020

Mechanical words



Aix-Marseille Université, September 2020

Important choice



$$w[n] = \lfloor (n+1)\sigma + \rho \rfloor - \lfloor n\sigma + \rho \rfloor.$$

or

$$w[n] = \lceil (n+1)\sigma + \rho \rceil - \lceil n\sigma + \rho \rceil.$$

Anna FRID

Sturmian words |

・ロ ・ ・ 日 ・ ・ ヨ ・ ・ ヨ ・ シ ミ ・ つ へ ペ
Aix-Marseille Université, September 2020

Mechanical words

Definition

An infinite word $\mathbf{w} = w[0]w[1]\cdots$ over $\{0,1\}$ is *mechanical*, if for all $n \geq 0$ we have

$$w[n] = \lfloor (n+1)\sigma + \rho \rfloor - \lfloor n\sigma + \rho \rfloor,$$

or

$$w[n] = \lceil (n+1)\sigma + \rho \rceil - \lceil n\sigma + \rho \rceil.$$

Mechanical words

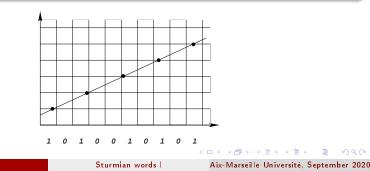
Definition

An infinite word $\mathbf{w} = w[0]w[1]\cdots$ over $\{0,1\}$ is *mechanical*, if for all $n \geq 0$ we have

$$w[n] = \lfloor (n+1)\sigma + \rho \rfloor - \lfloor n\sigma + \rho \rfloor,$$

or

$$w[n] = \lceil (n+1)\sigma + \rho \rceil - \lceil n\sigma + \rho \rceil.$$



Anna FRID

Three equivalent definitions

Theorem

For a right infinite word \boldsymbol{x} over $\{0,1\},$ the following conditions are equivalent:

- $p_{\mathbf{x}}(n) = n+1 \quad \forall n;$
- x is a non-periodic balanced word;
- x is a mechanical word with an irrational slope σ .

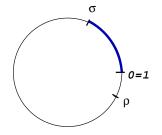
Three equivalent definitions

Theorem

For a right infinite word ${\bf x}$ over $\{0,1\},$ the following conditions are equivalent:

- $p_{\mathbf{x}}(n) = n+1 \quad \forall n;$
- x is a non-periodic balanced word;
- x is a mechanical word with an irrational slope σ .

If any of the conditions holds, the word is Sturmian.



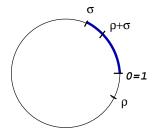
Anna FRID

Sturmian words |

Aix-Marseille Université, September 2020

3

イロト イヨト イヨト イヨト

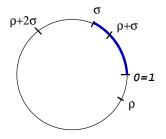


 $w = 1 \cdots$

Anna FRID

Sturmian words |

Aix-Marseille Université, September 2020



 $\mathbf{w} = \mathbf{10} \cdots$

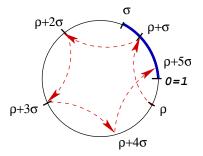
Anna FRID

Sturmian words

Aix-Marseille Université, September 2020

3

イロン イ理 とく ヨン イヨン



 $\mathbf{w} = 10001 \cdots$

Anna FRID

Sturmian words

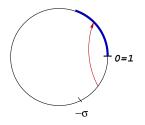
Aix-Marseille Université, September 2020

э

(人間) シスヨン スヨン

Complexity of rotation words

 $w[0] = 1 \Longleftrightarrow 1 - \sigma < \rho < 1$



The first symbol is determined by one of two intervals where ρ is located $p_{\rm w}(1)=2$

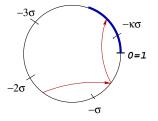
Aix-Marseille Université, September 2020

3

イロト イポト イヨト イヨト

Complexity of rotation words

$$w[k] = 1 \Longleftrightarrow -k\sigma < \rho < -(k+1)\sigma$$



The prefix of length k is determined by one of k+1 intervals where ρ is located

$$p_w(k)=k+1.$$

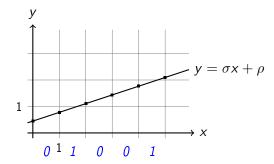
Anna FRID

Aix-Marseille Université, September 2020

э

・ 同 ト ・ ヨ ト ・ ヨ ト

Mechanical vs. billiard definition



Anna FRID

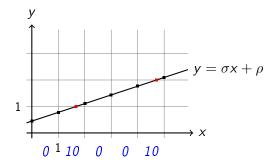
Sturmian words

Aix-Marseille Université, September 2020

3

(a)

Mechanical vs. billiard definition



Anna FRID

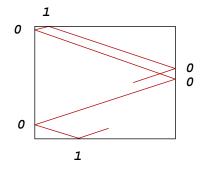
Sturmian words

Aix-Marseille Université, September 2020

3

(a)

Billiards



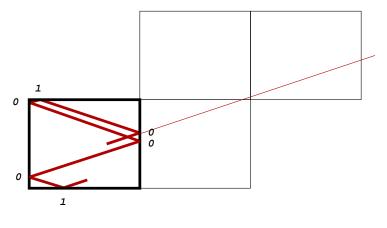
010001 · · ·

A	FRID	
Anna	FRID	

Sturmian words |

<ロ>→ < 団> < ヨ> < ヨ> < ヨ> こ Aix-Marseille Université, September 2020

Billiard words are Sturmian



 $010001\cdots$

Anna FRID

Sturmian words |

Aix-Marseille Université, September 2020

3

イロン イ理 とく ヨン イヨン

Lemma

A Sturmian word is never k-automatic.

Anna FRID

Sturmian words

Aix-Marseille Université, September 2020

3

Lemma

A Sturmian word is never k-automatic.

 P_{ROOF} . The frequency of 1 in a Sturmian word is irrational (and equal to the slope). In a k-automatic word, this frequency is rational.

Anna FRID

Sturmian words

Aix-Marseille Université, September 2020

A (10) A (10)

Lemma

The set of factors of a Sturmian word depends only on its slope.

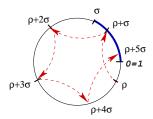
Aix-Marseille Université, September 2020

3

(人間) シスヨン スヨン

Lemma

The set of factors of a Sturmian word depends only on its slope.



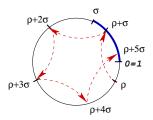
	An	na	F	R	D
--	----	----	---	---	---

Sturmian words

Aix-Marseille Université, September 2020

Lemma

The set of factors of a Sturmian word depends only on its slope.



So, for many arguments we may take $\rho=\sigma.$ Such Sturmian words are characteristic.

Ann	а	FR	ID.
	•		· •

Sturmian words

コ ト イ 日 ト イ ヨ ト イ ヨ ト ー ヨ - つ へ (や Aix-Marseille Université, September 2020

Lemma

The characteristic word c_{σ} of slope σ can be constructed from the continued fraction of σ .

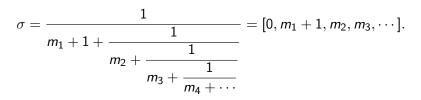
3

・ 何 ト ・ ヨ ト ・ ヨ ト

Lemma

The characteristic word c_{σ} of slope σ can be constructed from the continued fraction of σ .

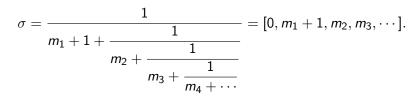
Let



Lemma

The characteristic word c_{σ} of slope σ can be constructed from the continued fraction of σ .

Let



Then $c_{\sigma} = \lim_{n \to \infty} s_n$, where

$$s_{-1} = 1, s_0 = 0, \quad s_n = s_{n-1}^{m_n} s_{n-2}.$$

3

<日

<日</p>

Example: the Fibonacci word

The slope of the Fibonacci word is

$$rac{1}{ au^2} = [0,2,1,1,1,1,\cdots], ext{ where } au = rac{1+\sqrt{5}}{2}.$$

$$s_{-1} = 1$$

$$s_0 = 0$$

$$s_1 = 01$$

$$s_2 = 010$$

$$s_3 = 010 01$$

$$s_4 = 01001 010$$

Aix-Marseille Université, September 2020

Example: the Fibonacci word

The slope of the Fibonacci word is

$$rac{1}{ au^2} = [0,2,1,1,1,1,\cdots], ext{ where } au = rac{1+\sqrt{5}}{2}.$$

$$s_{-1} = 1$$

 $s_0 = 0$
 $s_1 = 01$
 $s_2 = 010$

$$s_3 = 010 01$$

$$s_4 = 01001 010$$

So, it is indeed the Fibonacci word.

Anna FRID

Aix-Marseille Université, September 2020

3