BINOMIAL³

COEFFICIENTS, EQUIVALENCE, COMPLEXITY...

Michel Rigo

http://www.discmath.ulg.ac.be/ joint work with Marie Lejeune and Matthieu Rosenfeld

One World Seminar on Combinatorics on Words 13th July 2020

The *binomial coefficient* of two finite words $x=x_1\cdots x_p$ and $y=y_1\cdots y_q$ counts occurrences of subsequences

$$\binom{x}{y} = \#\{(j_1, \dots, j_q) \mid 1 \le j_1 < \dots < j_q \le p \land x_{j_1} \dots x_{j_q} = y\}.$$

$$\binom{011010}{010} =$$

Over a 1-letter alphabet

$$\begin{pmatrix} \mathtt{a}^p \\ \mathtt{a}^q \end{pmatrix} = \begin{pmatrix} p \\ q \end{pmatrix}, \quad p,q \in \mathbb{N}.$$

The *binomial coefficient* of two finite words $x=x_1\cdots x_p$ and $y=y_1\cdots y_q$ counts occurrences of subsequences

$$\begin{pmatrix} x \\ y \end{pmatrix} = \#\{(j_1, \dots, j_q) \mid 1 \le j_1 < \dots < j_q \le p \land x_{j_1} \cdots x_{j_q} = y\}.$$

$$\binom{011010}{010} =$$

Over a 1-letter alphabet

$$\binom{\mathtt{a}^p}{\mathtt{a}^q} = \binom{p}{q}, \quad p,q \in \mathbb{N}.$$

The *binomial coefficient* of two finite words $x=x_1\cdots x_p$ and $y=y_1\cdots y_q$ counts occurrences of subsequences

$$\binom{x}{y} = \#\{(j_1, \dots, j_q) \mid 1 \le j_1 < \dots < j_q \le p \land x_{j_1} \dots x_{j_q} = y\}.$$

$$\binom{011010}{010} = 6$$

Over a 1-letter alphabet

$$\binom{\mathtt{a}^p}{\mathtt{a}^q} = \binom{p}{q}, \quad p,q \in \mathbb{N}.$$

Binomial coefficients of words have a long fascinating history:

- ▶ in Lothaire's book, Sakarovitch and Simon's chapter
- reconstruction problem: Let $k, n \in \mathbb{N}$. Words of length n are k-reconstructible whenever the multiset of scattered factors of length k (or k-deck) uniquely determines any word of length n [Kalashnik, Schützenberger 1973, Krasikov–Roditty 1997, Dudik–Schulman 2003,...]
- appear inside Parikh matrices
- ▶ link with piecewise testable languages [Simon 1975]
- noncommutative extension of Mahler's theorem on interpolation series [Pin–Silva 2014]
- generalized Pascal triangles [Leroy–R.–Stipulanti 2016]

Abelian equivalence (Erdős 1957)

 $astronomers \sim moonstarers \sim nomorestars^1$

$$\Psi(\texttt{0110100}) = \binom{4}{3} = \Psi(\texttt{0101010}).$$

- Karhumäki 1980 : Generalized Parikh mappings and homomorphisms
- ▶ k-abelian equivalence counts factors of length up to k

	0	1	00	01	10	11
0110100	4	3	1	2	2	1
0101010	4	3	0	3	3	0

[Huova, Karhumäki, Saarela, Whiteland, Zamboni, . . .]

DEFINITIONS

Let $k \ge 1$. Two finite words x, y are k-binomially equivalent if

$$x \sim_k y:$$
 $\begin{pmatrix} x \\ u \end{pmatrix} = \begin{pmatrix} y \\ u \end{pmatrix}, \quad \forall u \in A^{\leq k}.$

They have the same k-spectrum (formal polynomial introduced by Salomaa).

[Dudik-Schulman 2003]

if
$$|x| \ge k \ge |u|$$
, $\binom{|x| - |u|}{k - |u|} \binom{x}{u} = \sum_{t \in A^k} \binom{x}{t} \binom{t}{u}$.

Corollary: Let $x, y \in A^{\geq k}$, $x \sim_k y$ if and only if

$$\binom{x}{u} = \binom{y}{u}, \quad \forall u \in A^k.$$

DEFINITIONS

- $x \sim_1 y$ iff x and y are abelian equivalent
- **ightharpoonup** consecutive refinements: $x \sim_{k+1} y$ implies $x \sim_k y$

Let w be an infinite word and $\operatorname{Fac}_n(\mathbf{w})$ be its set of factors of length n. The k-binomial complexity function is

$$\mathsf{b}_{k,\mathbf{w}}: n \mapsto \#\left(\mathrm{Fac}_n(\mathbf{w})/\!\sim_k\right)$$
$$\mathsf{b}_{1,\mathbf{w}}(n) \le \dots \le \mathsf{b}_{k,\mathbf{w}}(n) \le \mathsf{b}_{k+1,\mathbf{w}}(n) \le \dots \le \mathsf{p}_{\mathbf{w}}(n)$$

AN EXAMPLE

The twelve factors of length 5 of the Thue–Morse word:

$$\begin{pmatrix} u \\ \mathrm{aa} \end{pmatrix} = \begin{pmatrix} |u|_{\mathrm{a}} \\ 2 \end{pmatrix}, \quad \begin{array}{c|ccccc} & \begin{pmatrix} \cdot \\ 0 \end{pmatrix} & \begin{pmatrix} \cdot \\ 1 \end{pmatrix} & \begin{pmatrix} \cdot \\ 01 \end{pmatrix} & \begin{pmatrix} \cdot \\ 01 \end{pmatrix} \\ \hline 11010 & 2 & 3 & 1 & 5 \\ \hline 10110 & 2 & 3 & 2 & 4 \\ \hline 11001 & 2 & 3 & 2 & 4 \\ \hline 01101 & 2 & 3 & 4 & 2 \\ \hline 10011 & 2 & 3 & 4 & 2 \\ \hline 01011 & 2 & 3 & 5 & 1 \\ \hline 10100 & 3 & 2 & 1 & 5 \\ \hline 01100 & 3 & 2 & 2 & 4 \\ \hline 10010 & 3 & 2 & 2 & 4 \\ \hline 00101 & 3 & 2 & 4 & 2 \\ \hline 01001 & 3 & 2 & 4 & 2 \\ \hline 00101 & 3 & 2 & 5 & 1 \\ \hline \end{array}$$

$$b_{2,\mathbf{t}}(5) = 8 < p_{2,\mathbf{t}}(5) = 12.$$

Some results on binomial complexity

R.-Salimov TCS 2015

▶ Let s be a Sturmian word, then

$$b_{2,\mathbf{s}}(n) = n+1, \quad \forall n \geq 0.$$

Hence, $b_{k,s}(n) = n + 1$ for all $k \ge 2$ and all $n \ge 0$.

► A Parikh constant morphism f is such that

$$\Psi(f(\mathtt{a})) = \Psi(f(\mathtt{b}))$$
 for all letters $\mathtt{a},\mathtt{b}.$

Let $k \geq 1$. If \mathbf{w} is a fixed point of f, then there exists a constant C_k such that

$$b_{k,\mathbf{w}}(n) \le C_k, \quad \forall n \ge 0.$$

This is one of the few cases, with arithmetical complexity, where Sturmian words don't have minimal complexity among aperiodic words.

Some results on binomial complexity

Lejeune-Leroy-R. JCTA 2020

For the Thue–Morse word \mathbf{t} , we know the constant C_k (as a function of k). Let $k \geq 1$.

Short factors. For all $n \leq 2^k - 1$, we have

$$\mathsf{b}_{k,\mathbf{t}}(n) = \mathsf{p}_{\mathbf{t}}(n).$$

Longer factors. For all $n \geq 2^k$, we have

$$\mathsf{b}_{k,\mathbf{t}}(n) = \begin{cases} 3 \cdot 2^k - 3, & \text{if } n \equiv 0 \pmod{2^k}; \\ 3 \cdot 2^k - 4, & \text{otherwise.} \end{cases}$$

Example : $b_{2,t}(5) = 8$.

$$f^k(0) \sim_k f^k(1)$$
 but $f^k(0) \not\sim_{k+1} f^k(1)$ [Ochsenschläger 1981]

Some results on binomial complexity

Lejeune-R.-Rosenfeld AAM 2020

▶ Let T be the Tribonacci word 010201001 · · · then

$$\mathsf{b}_{2,\mathbf{T}}(n) = 2n + 1, \quad \forall n \ge 0.$$

Hence,
$$b_{k,T}(n) = 2n + 1$$
 for all $k \geq 2$ and all $n \geq 0$.

We adapt a notion of *template* and *ancestor* [Aberkane, Currie, Rampersad, . . .]

EQUIVALENCE CLASSES

From the paper *The binomial equivalence classes of finite words*, Lejeune–R.–Rosenfeld, IJAC 2020, arXiv: 2001.11732.

Take a finite alphabet A, what can be said about A^*/\sim_k ? How look like the k-binomial equivalence classes?

R.-Salimov, for a binary alphabet:

$$\# (\{0,1\}^n/\sim_2) = \frac{n^3 + 5n + 6}{6} = \binom{n+1}{3} + n + 1$$

$$\text{A000125} = 1, 2, 4, 8, 15, 26, 42, 64, 93, 130, 176, \dots$$

Cake numbers: maximal number of pieces resulting from n planar cuts through a cube

and, for an arbitrary k: polynomial growth of the number of classes

$$\#(\{0,1\}^n/\sim_k) \in \mathcal{O}(n^{2((k-1)2^k+1)})$$

EQUIVALENCE CLASSES

an equivalence class: $[w]_{\sim} = \{u \in A^* \mid u \sim w\}$

In Whiteland's thesis, for k-abelian equivalence, study of

► The language made of *lexicographically least element* of each equivalence class

$$\mathsf{LL}(\sim, A) = \{ w \in A^* \mid \forall u \in [w]_\sim : w \leq_{lex} u \}.$$

Note that
$$\underbrace{\#(\mathrm{LL}(\sim,A)\cap A^n)}_{\mathrm{pick\ one\ word\ of\ each\ class}}=\#(A^n/\sim).$$

▶ The language made of *singleton classes*

$$Sing(\sim, A) = \{ w \in A^* \mid \#[w]_\sim = 1 \}.$$

EQUIVALENCE CLASSES

[Whiteland's thesis] Let $k \geq 1$. For the k-abelian equivalence, $\mathsf{LL}(\sim_{k,ab},A)$ and $\mathsf{Sing}(\sim_{k,ab},A)$ are regular languages.

[Karhumäki–Puzynina–Rao–Whiteland TCS 2017] Study of singleton k-abelian classes: connections with cycle decompositions of the de Bruijn graph, necklaces and Gray codes.

What can we learn for k-binomial equivalence?

2-BINOMIAL EQUIVALENCE OVER A BINARY ALPHABET

Example, for $A = \{0, 1\}$ and k = 2: Among the 32 words of length 5 in $\{0, 1\}^*$

- ▶ 20 give rise to a singleton class and,
- ▶ there are 6 classes of size 2 for the 2-binomial equivalence :

```
{10110; 11001}, {01110; 10101}, {01101; 10011}, {01100; 10010}, {01010; 10001}, {00110; 01001}.
```

It is easy to see that $x01y10z \sim_2 x10y01z$.

So

$$\#(\mathsf{Sing}(\sim_2, \{0,1\}) \cap \{0,1\}^5) = 20$$

and

$$\#(LL(\sim_2, \{0, 1\}) \cap \{0, 1\}^5) = 26.$$

2-BINOMIAL EQUIVALENCE OVER A BINARY ALPHABET

From a result of Fossé and Richomme (2004):

They introduced a *switch* (*equivalence*) *relation* \equiv such that $x01y10z \equiv x10y01z$ and its reflexive and transitive closure \equiv^* .

The following assertions are equivalent:

- $u,v\in\{0,1\}^*$ are 2-binomially equivalent, $u\sim_2 v$,
- $lackbox{} u,v$ have the same Parikh matrix,
- $u \equiv^* v$.

Corollary: $Sing(\sim_2, \{0, 1\})$ is a regular language

$$0^*1^* + 1^*0^* + 0^*10^* + 1^*01^* + 0^*101^* + 1^*010^*$$

and, from a DFA, we can easily find the growth function of this language (and thus $\#(\{0,1\}^n/\sim_2)$).

2-BINOMIAL EQUIVALENCE OVER LARGER ALPHABETS

It's more complicated over a larger alphabet:

$$1223312 \sim_2 2311223$$

but there is no sequence of "switches" from one word to the other. Otherwise stated

 $u \equiv^{\star} v \Rightarrow u \sim_2 v$ but the converse does not hold.

We have computed the first few values of

$$\#(\{1,2,3\}^n/\sim_2)$$

$$\texttt{A140348} = 1, 3, 9, 27, 78, 216, 568, 1410, \dots.$$

OF INTEGER SEQUENCES ®

founded in 1964 by N. J. A. Sloane

1 3 9 27	7, 78, 216, 568, 1410 Search Hints	
	from The On-Line Encyclopedia of Integer Sequences!)	
Search: sec	q:1,3,9,27,78,216,568,1410	
	1-1 of 1 result found. page wance references number modified created Format: long short data	e 1
A140348	Growth function for the submonoid generated by the generators of the free nil-2 group on three generators.	+30
1, 3, 9, format) OFFSET COMMENTS	, 27, 78, 216, 568, 1410, 3309, 7307, 15303 (list; graph; refs; listen; history; text; internal 0,2 The process of expressing a word in generators as a sorted word in generators and commutators is Marshall Hall's 'collection process'. Since this monoid 'lives in' a nilpotent group, it inherits the growth restriction of a nilpotent group. So according to a result of Bass, a(n) = 0(n'8). It seems this is the correct growth rate. This sequence may well have a rational generating function, though, according to a result of M Stoll, the growth function of a nilpotent group need not be rational, or even algebraic. Computations on a free nilpotent group, or on submonoids, may be aided by using matricies. I. D. MacDonald describes how to do this in an American Mathematical Monthly article and he gives a recipe explicitly for the nil-2, 3 generator case.	

NIL-2 GROUP

Let (G, \cdot) be a multiplicative group.

The commutator of 2 elements : $[x, y] = x^{-1}y^{-1}xy$

$$xy = yx[x, y] \quad \forall x, y \in G.$$

Note that
$$[x, y]^{-1} = [y, x]$$
.

A *nil-2 group*: the commutators belong to the center Z(G), i.e.,

$$(\bullet): [x,y]z = z[x,y] \quad \forall x,y,z \in G.$$

Let $\Sigma=\{1,\ldots,m\}$ be a set of m generators. The *free nil-2 group* on Σ is the quotient of the free monoid $(\Sigma\cup\Sigma^{-1})^*$ under the relations $xx^{-1}=\varepsilon$ and (ullet).

$$12321 = (12[2,1])[1,2]321 = 21[1,2]321 = 213(21[1,2]) = 21312.$$

natural projection on the quotient: $\pi(12321)=\pi(21312)$.

NIL-2 GROUP

Theorem:

Let $\Sigma=\{1,\ldots,m\}$. The monoid Σ^*/\sim_2 is isomorphic to the submonoid, generated by Σ , of the nil-2 group $N_2(\Sigma)$.

Otherwise stated, if $r\in N_2(\Sigma)$, $\pi^{-1}(r)\cap \Sigma^*$ is an equivalence class for \sim_2 ; and conversely.

Two possible questions:

- ▶ Given two words u,v, decide whether or not $u\sim_k v$ (Freydenberger, Gawrychowski, Karhumäki, Manea, Rytter 2015)
 - deterministic polynomial time algorithm (based on NFA)
 - ▶ Monte-Carlo algorithm with running time $\mathcal{O}(|u|k^2 + k^4)$
- ▶ Given a word u, list the words in $[u]_{\sim_k}$

Here, we explain how to list words in $[u]_{\sim_2}$ for an arbitrary alphabet

A "switching" algorithm on words:

Input: a finite word w=1223312 Output: a particular sequence of words ℓ_0,ℓ_1,\ldots,w

- > starting from the lexicographically least element $\ell_0=1122233$ in the abelian class of w
- ▶ at each step, perform a single switch $ab \mapsto ba$, with a < b
- ightharpoonup the longest common prefix with w is non-decreasing:

$$|\ell_i \wedge w| \leq |\ell_{i+1} \wedge w|$$

▶ we have $\ell_i = p c x$ and w = p d y with c < d; consider the leftmost occurrence of d in x: $cx = \underline{cud}v$ and proceed to |u| + 1 switches to bring d in front.

```
w = 1223312
\ell_0 = 1122233 common prefix with w: 1; c = 1 < d = 2
                                            4 D > 4 B > 4 B > 4 B > 9 Q P
```

```
w = 1223312
\ell_0 = 1122233 common prefix with w: 1; c = 1 < d = 2
perform a switch 12 \mapsto 21
w = 1223312
\ell_1 = 1212233 common prefix with w: 12; c = 1 < d = 2
                                           4D > 4B > 4B > 4B > B 900
```

```
w = 1223312
\ell_0 = 1122233 common prefix with w: 1; c = 1 < d = 2
perform a switch 12 \mapsto 21
w = 1223312
\ell_1 = 1212233 common prefix with w: 12; c = 1 < d = 2
perform a switch 12 \mapsto 21
w = 1223312
\ell_2 = 1221233 common prefix with w: 122;; c = 1 < d = 3
```

```
w = 1223312
\ell_0 = 1122233 common prefix with w: 1; c = 1 < d = 2
perform a switch 12 \mapsto 21
w = 1223312
\ell_1 = 1212233 common prefix with w: 12; c = 1 < d = 2
perform a switch 12 \mapsto 21
w = 1223312
\ell_2 = 1221233 common prefix with w: 122;; c = 1 < d = 3
perform two switches 23 \mapsto 32 and 13 \mapsto 31
w = 1223312
\ell_3 = 1221323
\ell_4 = 1223123 , common prefix with w: 1223 ; c = 1 < d = 3
```

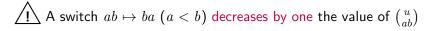
```
w = 1223312
\ell_0 = 1122233 common prefix with w: 1; c = 1 < d = 2
perform a switch 12 \mapsto 21
w = 1223312
\ell_1 = 1212233 common prefix with w: 12; c = 1 < d = 2
perform a switch 12 \mapsto 21
w = 1223312
\ell_2 = 1221233 common prefix with w: 122;; c = 1 < d = 3
perform two switches 23 \mapsto 32 and 13 \mapsto 31
w = 1223312
\ell_3 = 1221323
\ell_4 = 1223123, common prefix with w: 1223; c = 1 < d = 3
perform two switches 23 \mapsto 32 and 13 \mapsto 31
\ell_5 = 1223132
\ell_6 = 1223312 = w
```

The lexicographically least element has the largest vector

$$\begin{pmatrix} \begin{pmatrix} \ell_0 \\ 12 \end{pmatrix} & \begin{pmatrix} \ell_0 \\ 13 \end{pmatrix} & \begin{pmatrix} \ell_0 \\ 23 \end{pmatrix} \end{pmatrix}$$

(for lexicographic order on \mathbb{N}^3)

ℓ_i	$\binom{\cdot}{12}$	$\binom{\cdot}{13}$	$\binom{\cdot}{23}$
$1\underline{12}2233$	6	4	6
$12\underline{12}233$	5	4	6
$1221\underline{23}3$	4	4	6
$122\underline{13}23$	4	4	5
$12231\underline{23}$	4	3	5
$1223\underline{13}2$	4	3	4
1223312	4	2	4



Some remarks:

▶ The \sim_2 -equivalence class of a word u is completely determined by

$$\left(\binom{w}{1},\binom{w}{2},\binom{w}{3},\binom{w}{12},\binom{w}{13},\binom{w}{23}\right).$$

- $ightharpoonup u \sim_2 v$ implies that u, v are abelian equivalent
- ▶ In particular, if two words are abelian equivalent, they are 2-binomially equivalent if they agree on

$$\left(\binom{\cdot}{12},\binom{\cdot}{13},\binom{\cdot}{23}\right)$$
.

Two abelian equivalent words are 2-binomially equivalent if and only if the total number of exchanges of $ab \mapsto ba$ (a < b) when applying the algorithm, is the same.

ℓ_i	$\binom{\cdot}{12}$	$\binom{\cdot}{13}$	$\binom{\cdot}{23}$	ℓ_i	$\binom{\cdot}{12}$	$\binom{\cdot}{13}$	$\binom{\cdot}{23}$
$1\underline{12}2233$	6	4	6	$1\underline{12}2233$	6	4	6
$\underline{12}12233$	5	4	6	$12\underline{12}233$	5	4	6
$2112\underline{23}3$	4	4	6	$1221\underline{23}3$	4	4	6
$211\underline{23}23$	4	4	5	$122\underline{13}23$	4	4	5
$21\underline{13}223$	4	4	4	$12231\underline{23}$	4	3	5
$2\underline{13}1223$	4	3	4	$1223\underline{13}2$	4	3	4
2311223	4	2	4	1223312	4	2	4

2 switches of each of the three types

To determine all the words in $[1223312]_{\sim_2}$, we have to

- ▶ list all the words that can be obtained from 1122233
- ▶ when applying 2 switches of each of the three types $12 \mapsto 21$, $13 \mapsto 31$ and $23 \mapsto 32$.

Remark:

The number of switches $ab \mapsto ba$, a < b, is given by

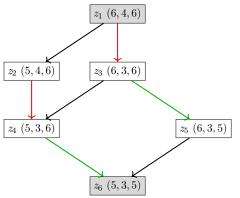
$$\binom{\ell_0}{ab} - \binom{w}{ab} = \binom{w}{ba}.$$

$$\binom{1223312}{21} = \binom{1223312}{31} = \binom{1223312}{32} = 2.$$

▶ edges black : $12 \mapsto 21$; red : $13 \mapsto 31$; green $23 \mapsto 32$

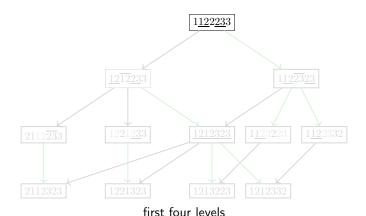
► Since *w* is given, limited number of edges of any given color. For instance, if no more red edge is available:

Two paths with the same origin and destination must use the same number of edges of any given color.

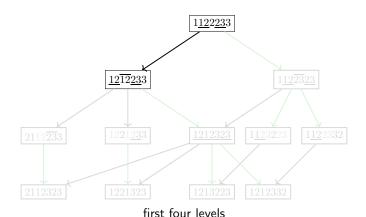


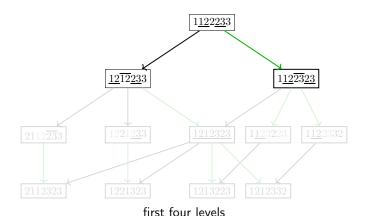
▶ There is always the path coming from the algorithm.

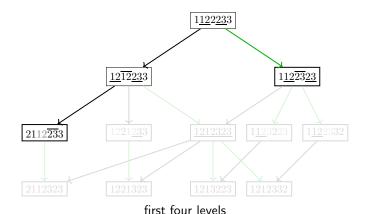
Ex. cont. Building a graph (then reduced to a tree) with edges in black : $12 \mapsto 21$; red : $13 \mapsto 31$; green $23 \mapsto 32$ no more than 2 black/red/green edges on each path going downwards

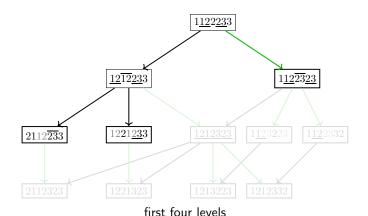


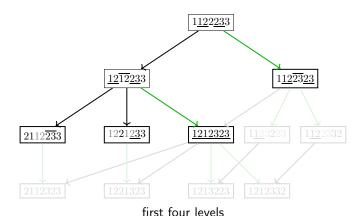
Ex. cont. Building a graph (then reduced to a tree) with edges in black : $12 \mapsto 21$; red : $13 \mapsto 31$; green $23 \mapsto 32$ no more than 2 black/red/green edges on each path going downwards

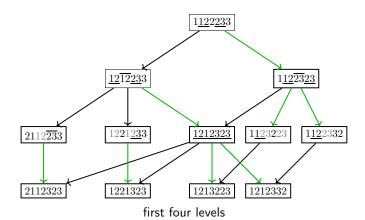




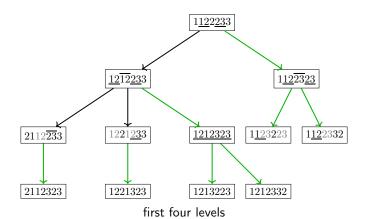




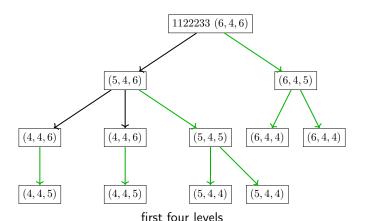




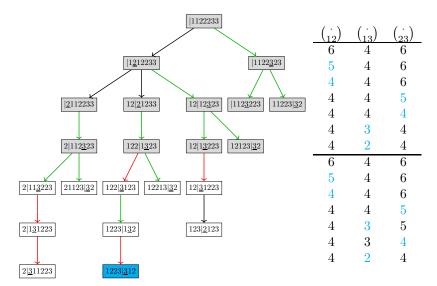
Ex. cont. Building a graph (then reduced to a tree) with edges in black : $12 \mapsto 21$; red : $13 \mapsto 31$; green $23 \mapsto 32$ If there are more than one path from the root to a vertex, keep the one corresponding to the algorithm.



Ex. cont. Building a graph (then reduced to a tree) with edges in black : $12 \mapsto 21$; red : $13 \mapsto 31$; green $23 \mapsto 32$ We can keep track of the coefficients for 12, 13, 23 the total sum decreases by one on each level.



black : $12 \mapsto 21$; red : $13 \mapsto 31$; green $23 \mapsto 32$



To prove the result about the nil-2 group, we have introduced generalized binomial coefficients to the free group

For all words u over the alphabet $\Sigma \cup \Sigma^{-1}$ and $v \in \Sigma^t$

$$\begin{bmatrix} u \\ v \end{bmatrix} = \sum_{(e_1, \dots, e_t) \in \{-1, 1\}^t} \quad \left(\prod_{i=1}^t e_i \right) \quad \binom{u}{v_1^{e_1} \cdots v_t^{e_t}}.$$

Example:

$$\begin{bmatrix} aba^{-1}b \\ ab \end{bmatrix} = \underbrace{\begin{pmatrix} aba^{-1}b \\ ab \end{pmatrix}}_2 - \underbrace{\begin{pmatrix} aba^{-1}b \\ a^{-1}b \end{pmatrix}}_1 - \underbrace{\begin{pmatrix} aba^{-1}b \\ ab^{-1} \end{pmatrix}}_0 + \underbrace{\begin{pmatrix} aba^{-1}b \\ a^{-1}b^{-1} \end{pmatrix}}_0.$$

If two words u,v over $\Sigma\cup\Sigma^{-1}$ are such that $\pi(u)=\pi(v)$, i.e. they represent the same element of the nil-2 group, then

$$\begin{bmatrix} u \\ x \end{bmatrix} = \begin{bmatrix} v \\ x \end{bmatrix}$$

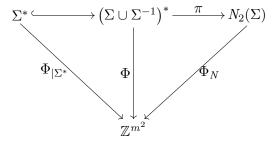
for x = 1, 2, 3, 12, 13, 21, 23, 31, 32.

$$\Phi(w) := \left(\begin{bmatrix} w \\ 1 \end{bmatrix}, \begin{bmatrix} w \\ 2 \end{bmatrix} \begin{bmatrix} w \\ 3 \end{bmatrix}, \begin{bmatrix} w \\ 12 \end{bmatrix}, \begin{bmatrix} w \\ 13 \end{bmatrix}, \begin{bmatrix} w \\ 21 \end{bmatrix}, \begin{bmatrix} w \\ 23 \end{bmatrix}, \begin{bmatrix} w \\ 31 \end{bmatrix}, \begin{bmatrix} w \\ 32 \end{bmatrix} \right)$$

If $u, x \in \Sigma^*$, then

$$\begin{bmatrix} u \\ x \end{bmatrix} = \begin{pmatrix} u \\ x \end{pmatrix}.$$

Corollary: if $u, v \in \Sigma^*$ are such that $\pi(u) = \pi(v)$, then $u \sim_2 v$.



For the converse, if $u,v\in \Sigma^*$ are such that $u\sim_2 v$, we have to prove that $\pi(u)=\pi(v)\leadsto$ we make use of the algorithm.

GROWTH ORDER

- Salimov–R. bounds for binary alphabet
- \bullet In Lejeune's master thesis: $A=\{1,\ldots,m\}$ be an alphabet of size $m\geq 2$

$$\#(A^n/\sim_k) \in \mathcal{O}\left(n^{\frac{m}{(m-1)^2}(1+m^k(km-k-1))}\right).$$

ullet Let $A=\{1,\ldots,m\}$ be an alphabet of size $m\geq 2$ and $k\geq 1$

$$\#(A^n/\sim_k) \in \mathcal{O}\left(n^{k^2m^k}\right)$$

$$\#(A^n/\sim_2) \in \Theta\left(n^{m^2-1}\right)$$

when n tends to infinity.

Non context-freeness

In comparison with Witheland's result, we get:

For any alphabet A of size at least 3 and for any $k \geq 2$, the languages $\mathsf{LL}(\sim_k, A)$ and $\mathsf{Sing}(\sim_k, A)$ are not context-free.

• From the previous slide, we have a polynomial bound

$$\#(\operatorname{Sing}(\sim_k, A) \cap A^n) \le \#(\operatorname{LL}(\sim_k, A) \cap A^n) = \#(A^n/\sim_k) \le P(n).$$

• [Ginsburg–Spanier] A context-free language L is bounded, $L \subseteq w_1^* w_2^* \cdots w_\ell^*$, if and only if it has a polynomial growth, $\#(L \cap A^n) \leq Q(n)$.

 \rightsquigarrow it is enough to show that $LL(\sim_k, A)$ and $Sing(\sim_k, A)$ are not bounded.

NON CONTEXT-FREENESS

If L is bounded and $M \subseteq L$, then M is bounded:

$$M \subseteq L \subseteq w_1^* w_2^* \cdots w_\ell^*$$

Hence, M not bounded implies L not bounded.

Strategy: define a particular (sub)family of singletons

$$\underbrace{\{\rho_{p,n}\mid p,n\in\mathbb{N}\}}_{\text{not bounded}}\subseteq \operatorname{Sing}(\sim_k,A)\subseteq \operatorname{LL}(\sim_k,A).$$

$$\rho_{p,n} := 1^p 2^{s_{n-1}} 3^{s_{n-2}} 1^{s_{n-3}} \cdots a^{s_1}$$

over $\{1,2,3\}$, where $a \equiv n \pmod 3$, and we take $s_n = 2 \times 8^{8^n}$

NON CONTEXT-FREENESS

If L is bounded and $M \subseteq L$, then M is bounded:

$$M \subseteq L \subseteq w_1^* w_2^* \cdots w_\ell^*$$

Hence, M not bounded implies L not bounded.

Strategy: define a particular (sub)family of singletons

$$\underbrace{\{\rho_{p,n}\mid p,n\in\mathbb{N}\}}_{\text{not bounded}}\subseteq \operatorname{Sing}(\sim_k,A)\subseteq \operatorname{LL}(\sim_k,A).$$

$$\rho_{p,n} := 1^p 2^{s_{n-1}} 3^{s_{n-2}} 1^{s_{n-3}} \cdots a^{s_1}$$

over $\{1,2,3\}$, where $a \equiv n \pmod 3$, and we take $s_n = 2 \times 8^{8^n}$.

Conclusions

k-binomial equivalence \sim_k

- ▶ #A = 2, k = 2, switch equivalence everything is fine
- ▶ $\#A \ge 3$, k=2, algorithm and algebraic description of \sim_2 -equivalence classes
- ▶ $\#A \ge 3$, k=2, no simple operation corresponding to switch equivalence is known.
- ▶ $\#A \ge 3$, $k \ge 3$, extension of the above results?
- #A = 2, k = 2, $LL(\sim_2, A)$ is context-free
- ▶ $\#A \ge 3$, $k \ge 2$, LL(\sim_k, A) is not context-free, what about its descriptional complexity, automaticity?
- ▶ #A = 2, $k \ge 3$, LL(\sim_k, A) conjecture: not context-free, one needs to find an unbounded set of singletons...

CONCLUSIONS

Similar intricate "problems" for Parikh matrices/equivalence over larger alphabets; see for instance A. C. Atanasiu, *Parikh Matrix Mapping and Amiability over a ternary alphabet*

Open question : give some (geometrical) interpretation of k-binomial equivalence/complexity

Some references

- ▶ J. Cassaigne, J. Karhumäki, S. Puzynina, and M. A. Whiteland, *k*-abelian equivalence and rationality, *Fund. Infor.* **154** (2017).
- S. Fossé, G. Richomme, Some characterizations of Parikh matrix equivalent binary words, *Inform. Process. Lett.* 92 (2004).
- ▶ D. D. Freydenberger, P. Gawrychowski, J. Karhumäki, F. Manea, W. Rytter, Testing k-binomial equivalence, in Multidisciplinary Creativity: homage to Gheorghe Paun on his 65th birthday, 239–248, Ed. Spandugino, Bucharest, Romania (2015).
- ▶ M. Lejeune, J. Leroy, M. Rigo, Computing the *k*-binomial complexity of the Thue–Morse word, *J. Comb. Theory, ser. A* **176** (2020).
- ▶ M. Lejeune, M. Rigo, M. Rosenfeld, Templates for the *k*-binomial complexity of the Tribonacci word, *Adv. Appl. Math.* **112** (2020).

Some references

- M. Lejeune, M. Rigo, M. Rosenfeld, On the binomial equivalence classes of finite words, to appear in IJAC, arXiv:2001.11732
- M. Rigo, P. Salimov, Another generalization of abelian equivalence: binomial complexity of infinite words, *Theoret. Comput. Sci.* 601 (2015).
- ▶ M. A. Whiteland, *On the k-Abelian Equivalence Relation of Finite Words*, Ph.D. Thesis, TUCS Dissertations **241**, Univ. of Turku (2019).