
Binomial3

coefficients, equivalence, complexity. . .

Michel Rigo

http://www.discmath.ulg.ac.be/

joint work with Marie Lejeune and Matthieu Rosenfeld

One World Seminar on Combinatorics on Words
13th July 2020

Background

The binomial coefficient of two finite words x = x1 · · · xp and
y = y1 · · · yq counts occurrences of subsequences

(
x

y

)

= #{(j1, . . . , jq) | 1 ≤ j1 < · · · < jq ≤ p ∧ xj1 · · · xjq = y}.

(
011010

010

)

=

Over a 1-letter alphabet

(
a
p

aq

)

=

(
p

q

)

, p, q ∈ N.

Background

The binomial coefficient of two finite words x = x1 · · · xp and
y = y1 · · · yq counts occurrences of subsequences

(
x

y

)

= #{(j1, . . . , jq) | 1 ≤ j1 < · · · < jq ≤ p ∧ xj1 · · · xjq = y}.

(
011010

010

)

=

Over a 1-letter alphabet

(
a
p

aq

)

=

(
p

q

)

, p, q ∈ N.

Background

The binomial coefficient of two finite words x = x1 · · · xp and
y = y1 · · · yq counts occurrences of subsequences

(
x

y

)

= #{(j1, . . . , jq) | 1 ≤ j1 < · · · < jq ≤ p ∧ xj1 · · · xjq = y}.

(
011010

010

)

= 6

Over a 1-letter alphabet

(
a
p

aq

)

=

(
p

q

)

, p, q ∈ N.

Background

Binomial coefficients of words have a long fascinating history:

◮ in Lothaire’s book, Sakarovitch and Simon’s chapter

◮ reconstruction problem: Let k ,n ∈ N. Words of length n are
k -reconstructible whenever the multiset of scattered factors of
length k (or k -deck) uniquely determines any word of length n

[Kalashnik, Schützenberger 1973, Krasikov–Roditty 1997,

Dudik–Schulman 2003,. . .]

◮ appear inside Parikh matrices

◮ link with piecewise testable languages [Simon 1975]

◮ noncommutative extension of Mahler’s theorem on
interpolation series [Pin–Silva 2014]

◮ generalized Pascal triangles [Leroy–R.–Stipulanti 2016]

Background

◮ Abelian equivalence (Erdős 1957)

astronomers ∼ moonstarers ∼ nomorestars1

Ψ(0110100) =

(
4
3

)

= Ψ(0101010).

◮ Karhumäki 1980 : Generalized Parikh mappings and
homomorphisms

◮ k -abelian equivalence counts factors of length up to k

0 1 00 01 10 11

0110100 4 3 1 2 2 1
0101010 4 3 0 3 3 0

[Huova, Karhumäki, Saarela, Whiteland, Zamboni, . . .]

1
wordsmith.org Internet Anagram Server

Definitions

Let k ≥ 1. Two finite words x , y are k -binomially equivalent if

x ∼k y :

(
x

u

)

=

(
y

u

)

, ∀u ∈ A≤k .

They have the same k -spectrum (formal polynomial introduced by
Salomaa).

[Dudik–Schulman 2003]

if |x | ≥ k ≥ |u|,

(
|x | − |u|

k − |u|

)(
x

u

)

=
∑

t∈Ak

(
x

t

)(
t

u

)

.

Corollary: Let x , y ∈ A≥k , x ∼k y if and only if

(
x

u

)

=

(
y

u

)

, ∀u ∈ Ak .

Definitions

◮ x ∼1 y iff x and y are abelian equivalent

◮ consecutive refinements: x ∼k+1 y implies x ∼k y

Let w be an infinite word and Facn(w) be its set of factors of
length n. The k -binomial complexity function is

bk ,w : n 7→ #(Facn(w)/∼k)

b1,w(n) ≤ · · · ≤ bk ,w(n) ≤ bk+1,w(n) ≤ · · · ≤ pw(n)

An example

The twelve factors of length 5 of the Thue–Morse word:

(
u

aa

)

=

(
|u|a
2

)

,

(
·
0

) (
·
1

) (
·
01

) (
·
10

)

11010 2 3 1 5

10110 2 3 2 4
11001 2 3 2 4

01101 2 3 4 2
10011 2 3 4 2

01011 2 3 5 1

10100 3 2 1 5

01100 3 2 2 4
10010 3 2 2 4

00110 3 2 4 2
01001 3 2 4 2

00101 3 2 5 1

b2,t(5) = 8 < p2,t(5) = 12.

Some results on binomial complexity

R.–Salimov TCS 2015

◮ Let s be a Sturmian word, then

b2,s(n) = n + 1, ∀n ≥ 0.

Hence, bk ,s(n) = n + 1 for all k ≥ 2 and all n ≥ 0.

◮ A Parikh constant morphism f is such that

Ψ(f (a)) = Ψ(f (b)) for all letters a, b.

Let k ≥ 1. If w is a fixed point of f , then there exists a
constant Ck such that

bk ,w(n) ≤ Ck , ∀n ≥ 0.

◮ This is one of the few cases, with arithmetical complexity,
where Sturmian words don’t have minimal complexity among
aperiodic words.

Some results on binomial complexity

Lejeune–Leroy–R. JCTA 2020

◮ For the Thue–Morse word t, we know the constant Ck

(as a function of k). Let k ≥ 1.

Short factors. For all n ≤ 2k − 1, we have

bk ,t(n) = pt(n).

Longer factors. For all n ≥ 2k , we have

bk ,t(n) =

{

3 · 2k − 3, if n ≡ 0 (mod 2k);

3 · 2k − 4, otherwise.

Example : b2,t(5) = 8.

f k (0) ∼k f k (1) but f k (0) 6∼k+1 f
k (1) [Ochsenschläger 1981]

Some results on binomial complexity

Lejeune–R.–Rosenfeld AAM 2020

◮ Let T be the Tribonacci word 010201001 · · · then

b2,T(n) = 2n + 1, ∀n ≥ 0.

Hence, bk ,T(n) = 2n + 1 for all k ≥ 2 and all n ≥ 0.

We adapt a notion of template and ancestor [Aberkane, Currie,
Rampersad, . . .]

Equivalence classes

From the paper The binomial equivalence classes of finite words,
Lejeune–R.–Rosenfeld, IJAC 2020, arXiv:2001.11732.

Take a finite alphabet A, what can be said about A∗/∼k ?
How look like the k -binomial equivalence classes ?

R.–Salimov, for a binary alphabet:

#({0, 1}n/∼2) =
n3 + 5n + 6

6
=

(
n + 1

3

)

+ n + 1

A000125 = 1, 2, 4, 8, 15, 26, 42, 64, 93, 130, 176, . . .

Cake numbers: maximal number of pieces resulting from n planar cuts

through a cube

and, for an arbitrary k : polynomial growth of the number of classes

#({0, 1}n/∼k) ∈ O(n2((k−1)2k+1))

Equivalence classes

an equivalence class: [w]∼ = {u ∈ A∗ | u ∼ w}

In Whiteland’s thesis, for k -abelian equivalence, study of

◮ The language made of lexicographically least element of each
equivalence class

LL(∼,A) = {w ∈ A∗ | ∀u ∈ [w]∼ : w ≤lex u} .

Note that #(LL(∼,A) ∩ An)
︸ ︷︷ ︸

pick one word of each class

= #(An/∼).

◮ The language made of singleton classes

Sing(∼,A) = {w ∈ A∗ | #[w]∼ = 1} .

Equivalence classes

[Whiteland’s thesis] Let k ≥ 1. For the k -abelian equivalence,
LL(∼k ,ab,A) and Sing(∼k ,ab ,A) are regular languages.

[Karhumäki–Puzynina–Rao–Whiteland TCS 2017]

Study of singleton k -abelian classes: connections with cycle
decompositions of the de Bruijn graph, necklaces and Gray codes.

What can we learn for k -binomial equivalence?

2-binomial equivalence over a binary alphabet

Example, for A = {0, 1} and k = 2 :
Among the 32 words of length 5 in {0, 1}∗

◮ 20 give rise to a singleton class and,

◮ there are 6 classes of size 2 for the 2-binomial equivalence :

{10110; 11001}, {01110; 10101}, {01101; 10011},

{01100; 10010}, {01010; 10001}, {00110; 01001}.

It is easy to see that x01y10z ∼2 x10y01z .

So
#(Sing(∼2, {0, 1}) ∩ {0, 1}5) = 20

and
#(LL(∼2, {0, 1}) ∩ {0, 1}5) = 26.

2-binomial equivalence over a binary alphabet

From a result of Fossé and Richomme (2004):

They introduced a switch (equivalence) relation ≡ such that
x01y10z ≡ x10y01z and its reflexive and transitive closure ≡⋆.

The following assertions are equivalent:

◮ u, v ∈ {0, 1}∗ are 2-binomially equivalent, u ∼2 v ,

◮ u, v have the same Parikh matrix,

◮ u ≡⋆ v .

Corollary: Sing(∼2, {0, 1}) is a regular language

0
∗
1
∗ + 1

∗
0
∗ + 0

∗
10

∗ + 1
∗
01

∗ + 0
∗
101

∗ + 1
∗
010

∗

and, from a DFA, we can easily find the growth function of this
language (and thus #({0, 1}n/∼2)).

2-binomial equivalence over larger alphabets

It’s more complicated over a larger alphabet:

1223312 ∼2 2311223

but there is no sequence of “switches” from one word to the other.
Otherwise stated

u ≡⋆ v ⇒ u ∼2 v but the converse does not hold.

We have computed the first few values of

#({1, 2, 3}n/∼2)

A140348 = 1, 3, 9, 27, 78, 216, 568, 1410,

Nil-2 group

Let (G , ·) be a multiplicative group.

The commutator of 2 elements :[x , y] = x−1y−1xy

xy = yx [x , y] ∀x , y ∈ G .

Note that [x , y]−1 = [y , x].

A nil-2 group: the commutators belong to the center Z (G), i.e.,

(•) : [x , y]z = z [x , y] ∀x , y , z ∈ G .

Let Σ = {1, . . . ,m} be a set of m generators. The free nil-2 group
on Σ is the quotient of the free monoid (Σ ∪Σ−1)∗ under the
relations xx−1 = ε and (•).

12321 = (12[2, 1])[1, 2]321 = 21[1, 2]321 = 213(21[1, 2]) = 21312.

natural projection on the quotient: π(12321) = π(21312).

Nil-2 group

Theorem:
Let Σ = {1, . . . ,m}. The monoid Σ∗/∼2 is isomorphic to the
submonoid, generated by Σ, of the nil-2 group N2(Σ).

Otherwise stated, if r ∈ N2(Σ), π
−1(r) ∩ Σ∗ is an equivalence

class for ∼2 ; and conversely.

Generating the ∼2-class of a word

Two possible questions:

◮ Given two words u, v , decide whether or not u ∼k v
(Freydenberger, Gawrychowski, Karhumäki, Manea, Rytter 2015)

◮ deterministic polynomial time algorithm (based on NFA)
◮ Monte-Carlo algorithm with running time O(|u|k2 + k4)

◮ Given a word u, list the words in [u]∼k

Here, we explain how to list words in [u]∼2 for an arbitrary alphabet

Generating the ∼2-class of a word

A“switching”algorithm on words:

Input: a finite word w = 1223312
Output: a particular sequence of words ℓ0, ℓ1, . . . ,w

◮ starting from the lexicographically least element ℓ0 = 1122233
in the abelian class of w

◮ at each step, perform a single switch ab 7→ ba, with a < b

◮ the longest common prefix with w is non-decreasing:

|ℓi ∧ w | ≤ |ℓi+1 ∧ w |

◮ we have ℓi = pcx and w = pdy with c < d ;
consider the leftmost occurrence of d in x : cx = cudv and
proceed to |u|+ 1 switches to bring d in front.

Generating the ∼2-class of a word

w = 1223312
ℓ0 = 1122233 common prefix with w : 1 ; c = 1 < d = 2

perform a switch 12 7→ 21
w = 1223312
ℓ1 = 1212233 common prefix with w : 12 ; c = 1 < d = 2

perform a switch 12 7→ 21
w = 1223312
ℓ2 = 1221233 common prefix with w : 122 ; ; c = 1 < d = 3

perform two switches 23 7→ 32 and 13 7→ 31
w = 1223312
ℓ3 = 1221323
ℓ4 = 1223123 , common prefix with w : 1223 ; c = 1 < d = 3

perform two switches 23 7→ 32 and 13 7→ 31
ℓ5 = 1223132
ℓ6 = 1223312 = w

Generating the ∼2-class of a word

w = 1223312
ℓ0 = 1122233 common prefix with w : 1 ; c = 1 < d = 2

perform a switch 12 7→ 21
w = 1223312
ℓ1 = 1212233 common prefix with w : 12 ; c = 1 < d = 2

perform a switch 12 7→ 21
w = 1223312
ℓ2 = 1221233 common prefix with w : 122 ; ; c = 1 < d = 3

perform two switches 23 7→ 32 and 13 7→ 31
w = 1223312
ℓ3 = 1221323
ℓ4 = 1223123 , common prefix with w : 1223 ; c = 1 < d = 3

perform two switches 23 7→ 32 and 13 7→ 31
ℓ5 = 1223132
ℓ6 = 1223312 = w

Generating the ∼2-class of a word

w = 1223312
ℓ0 = 1122233 common prefix with w : 1 ; c = 1 < d = 2

perform a switch 12 7→ 21
w = 1223312
ℓ1 = 1212233 common prefix with w : 12 ; c = 1 < d = 2

perform a switch 12 7→ 21
w = 1223312
ℓ2 = 1221233 common prefix with w : 122 ; ; c = 1 < d = 3

perform two switches 23 7→ 32 and 13 7→ 31
w = 1223312
ℓ3 = 1221323
ℓ4 = 1223123 , common prefix with w : 1223 ; c = 1 < d = 3

perform two switches 23 7→ 32 and 13 7→ 31
ℓ5 = 1223132
ℓ6 = 1223312 = w

Generating the ∼2-class of a word

w = 1223312
ℓ0 = 1122233 common prefix with w : 1 ; c = 1 < d = 2

perform a switch 12 7→ 21
w = 1223312
ℓ1 = 1212233 common prefix with w : 12 ; c = 1 < d = 2

perform a switch 12 7→ 21
w = 1223312
ℓ2 = 1221233 common prefix with w : 122 ; ; c = 1 < d = 3

perform two switches 23 7→ 32 and 13 7→ 31
w = 1223312
ℓ3 = 1221323
ℓ4 = 1223123 , common prefix with w : 1223 ; c = 1 < d = 3

perform two switches 23 7→ 32 and 13 7→ 31
ℓ5 = 1223132
ℓ6 = 1223312 = w

Generating the ∼2-class of a word

w = 1223312
ℓ0 = 1122233 common prefix with w : 1 ; c = 1 < d = 2

perform a switch 12 7→ 21
w = 1223312
ℓ1 = 1212233 common prefix with w : 12 ; c = 1 < d = 2

perform a switch 12 7→ 21
w = 1223312
ℓ2 = 1221233 common prefix with w : 122 ; ; c = 1 < d = 3

perform two switches 23 7→ 32 and 13 7→ 31
w = 1223312
ℓ3 = 1221323
ℓ4 = 1223123 , common prefix with w : 1223 ; c = 1 < d = 3

perform two switches 23 7→ 32 and 13 7→ 31
ℓ5 = 1223132
ℓ6 = 1223312 = w

Generating the ∼2-class of a word

The lexicographically least element has the largest vector

((
ℓ0
12

) (
ℓ0
13

) (
ℓ0
23

))

(for lexicographic order on N
3)

ℓi
(·
12

) (·
13

) (·
23

)

1122233 6 4 6
1212233 5 4 6
1221233 4 4 6
1221323 4 4 5
1223123 4 3 5
1223132 4 3 4
1223312 4 2 4

! A switch ab 7→ ba (a < b) decreases by one the value of
(
u
ab

)

Generating the ∼2-class of a word

Some remarks:

◮ The ∼2-equivalence class of a word u is completely
determined by

((
w

1

)

,

(
w

2

)

,

(
w

3

)

,

(
w

12

)

,

(
w

13

)

,

(
w

23

))

.

◮ u ∼2 v implies that u, v are abelian equivalent

◮ In particular, if two words are abelian equivalent,
they are 2-binomially equivalent if they agree on

((
·

12

)

,

(
·

13

)

,

(
·

23

))

.

Generating the ∼2-class of a word

Two abelian equivalent words are 2-binomially equivalent if and
only if the total number of exchanges of ab 7→ ba (a < b) when
applying the algorithm, is the same.

ℓi
(·
12

) (·
13

) (·
23

)

1122233 6 4 6
1212233 5 4 6
2112233 4 4 6
2112323 4 4 5
2113223 4 4 4
2131223 4 3 4
2311223 4 2 4

ℓi
(·
12

) (·
13

) (·
23

)

1122233 6 4 6
1212233 5 4 6
1221233 4 4 6
1221323 4 4 5
1223123 4 3 5
1223132 4 3 4
1223312 4 2 4

2 switches of each of the three types

Generating the ∼2-class of a word

To determine all the words in [1223312]∼2 , we have to

◮ list all the words that can be obtained from 1122233

◮ when applying 2 switches of each of the three types
12 7→ 21, 13 7→ 31 and 23 7→ 32.

Remark:
The number of switches ab 7→ ba, a < b, is given by

(
ℓ0
ab

)

−

(
w

ab

)

=

(
w

ba

)

.

(
1223312

21

)

=

(
1223312

31

)

=

(
1223312

32

)

= 2.

Generating the ∼2-class of a word

◮ edges black : 12 7→ 21 ; red : 13 7→ 31 ; green 23 7→ 32

x12y13z23t

x21y13z23t x12y31z23t x12y13z32t

◮ Since w is given, limited number of edges of any given color.
For instance, if no more red edge is available:

x12y13z23t

x21y13z23t x12y13z32t

Generating the ∼2-class of a word

◮ Two paths with the same origin and destination must use the
same number of edges of any given color.

z1 (6, 4, 6)

z2 (5, 4, 6) z3 (6, 3, 6)

z4 (5, 3, 6) z5 (6, 3, 5)

z6 (5, 3, 5)

◮ There is always the path coming from the algorithm.

Generating the ∼2-class of a word

Ex. cont. Building a graph (then reduced to a tree) with edges in
black : 12 7→ 21 ; red : 13 7→ 31 ; green 23 7→ 32
no more than 2 black/red/green edges on each path going
downwards

1122233

1212233 1122323

2112233 1221233 1212323 1123223 1122332

2112323 1221323 1213223 1212332

first four levels

Generating the ∼2-class of a word

Ex. cont. Building a graph (then reduced to a tree) with edges in
black : 12 7→ 21 ; red : 13 7→ 31 ; green 23 7→ 32
no more than 2 black/red/green edges on each path going
downwards

1122233

1212233 1122323

2112233 1221233 1212323 1123223 1122332

2112323 1221323 1213223 1212332

first four levels

Generating the ∼2-class of a word

Ex. cont. Building a graph (then reduced to a tree) with edges in
black : 12 7→ 21 ; red : 13 7→ 31 ; green 23 7→ 32
no more than 2 black/red/green edges on each path going
downwards

1122233

1212233 1122323

2112233 1221233 1212323 1123223 1122332

2112323 1221323 1213223 1212332

first four levels

Generating the ∼2-class of a word

Ex. cont. Building a graph (then reduced to a tree) with edges in
black : 12 7→ 21 ; red : 13 7→ 31 ; green 23 7→ 32
no more than 2 black/red/green edges on each path going
downwards

1122233

1212233 1122323

2112233 1221233 1212323 1123223 1122332

2112323 1221323 1213223 1212332

first four levels

Generating the ∼2-class of a word

Ex. cont. Building a graph (then reduced to a tree) with edges in
black : 12 7→ 21 ; red : 13 7→ 31 ; green 23 7→ 32
no more than 2 black/red/green edges on each path going
downwards

1122233

1212233 1122323

2112233 1221233 1212323 1123223 1122332

2112323 1221323 1213223 1212332

first four levels

Generating the ∼2-class of a word

Ex. cont. Building a graph (then reduced to a tree) with edges in
black : 12 7→ 21 ; red : 13 7→ 31 ; green 23 7→ 32
no more than 2 black/red/green edges on each path going
downwards

1122233

1212233 1122323

2112233 1221233 1212323 1123223 1122332

2112323 1221323 1213223 1212332

first four levels

Generating the ∼2-class of a word

Ex. cont. Building a graph (then reduced to a tree) with edges in
black : 12 7→ 21 ; red : 13 7→ 31 ; green 23 7→ 32
no more than 2 black/red/green edges on each path going
downwards

1122233

1212233 1122323

2112233 1221233 1212323 1123223 1122332

2112323 1221323 1213223 1212332

first four levels

Generating the ∼2-class of a word

Ex. cont. Building a graph (then reduced to a tree) with edges in
black : 12 7→ 21 ; red : 13 7→ 31 ; green 23 7→ 32
If there are more than one path from the root to a vertex,
keep the one corresponding to the algorithm.

1122233

1212233 1122323

2112233 1221233 1212323 1123223 1122332

2112323 1221323 1213223 1212332

first four levels

Generating the ∼2-class of a word

Ex. cont. Building a graph (then reduced to a tree) with edges in
black : 12 7→ 21 ; red : 13 7→ 31 ; green 23 7→ 32
We can keep track of the coefficients for 12, 13, 23
the total sum decreases by one on each level.

1122233 (6, 4, 6)

(5, 4, 6) (6, 4, 5)

(4, 4, 6) (4, 4, 6) (5, 4, 5) (6, 4, 4) (6, 4, 4)

(4, 4, 5) (4, 4, 5) (5, 4, 4) (5, 4, 4)

first four levels

Generating the ∼2-class of a word

black : 12 7→ 21 ; red : 13 7→ 31 ; green 23 7→ 32

|1122233

|1212233 |1122323

|2112233 12|21233 12|12323 |1123223 11223|32

2|112323 122|1323 12|13223 12123|32

2|113223 21123|32 122|3123 12213|32 12|31223

2|131223 1223|132 123|2123

2|311223 1223|312

(
·

12

) (
·

13

) (
·

23

)

6 4 6
5 4 6
4 4 6
4 4 5
4 4 4
4 3 4
4 2 4
6 4 6
5 4 6
4 4 6
4 4 5
4 3 5
4 3 4
4 2 4

Generating the ∼2-class of a word

To prove the result about the nil-2 group, we have introduced
generalized binomial coefficients to the free group

For all words u over the alphabet Σ ∪ Σ−1 and v ∈ Σt

[
u

v

]

=
∑

(e1,...,et)∈{−1,1}t

(
t∏

i=1

ei

) (
u

v e11 · · · v ett

)

.

Example:

[
aba−1b

ab

]

=

(
aba−1b

ab

)

︸ ︷︷ ︸

2

−

(
aba−1b

a−1b

)

︸ ︷︷ ︸

1

−

(
aba−1b

ab−1

)

︸ ︷︷ ︸

0

+

(
aba−1b

a−1b−1

)

︸ ︷︷ ︸

0

.

Generating the ∼2-class of a word

If two words u, v over Σ ∪ Σ−1 are such that π(u) = π(v), i.e.
they represent the same element of the nil-2 group, then

[
u

x

]

=

[
v

x

]

for x = 1, 2, 3, 12, 13, 21, 23, 31, 32.

Φ(w) :=

([
w

1

]

,

[
w

2

] [
w

3

]

,

[
w

12

]

,

[
w

13

]

,

[
w

21

]

,

[
w

23

]

,

[
w

31

]

,

[
w

32

])

If u, x ∈ Σ∗, then
[
u

x

]

=

(
u

x

)

.

Corollary: if u, v ∈ Σ∗ are such that π(u) = π(v), then u ∼2 v .

Generating the ∼2-class of a word

Σ∗
(
Σ ∪ Σ−1

)∗
N2(Σ)

Z
m2

Φ|Σ∗ Φ ΦN

π

For the converse, if u, v ∈ Σ∗ are such that u ∼2 v , we have to
prove that π(u) = π(v) we make use of the algorithm.

Growth order

• Salimov–R. bounds for binary alphabet

• In Lejeune’s master thesis: A = {1, . . . ,m} be an alphabet of
size m ≥ 2

#(An/∼k) ∈ O

(

n
m

(m−1)2
(1+mk (km−k−1))

)

.

• Let A = {1, . . . ,m} be an alphabet of size m ≥ 2 and k ≥ 1

#(An/∼k) ∈ O
(

nk2mk
)

#(An/∼2) ∈ Θ
(

nm2−1
)

when n tends to infinity.

Non context-freeness

In comparison with Witheland’s result, we get:

For any alphabet A of size at least 3 and for any k ≥ 2,
the languages LL(∼k ,A) and Sing(∼k ,A) are not context-free.

• From the previous slide, we have a polynomial bound

#(Sing(∼k ,A)∩An) ≤ #(LL(∼k ,A)∩An) = #(An/∼k)≤ P(n).

• [Ginsburg–Spanier]

A context-free language L is bounded, L ⊆ w∗
1w

∗
2 · · ·w

∗
ℓ ,

if and only if it has a polynomial growth, #(L ∩ An) ≤ Q(n).

 it is enough to show that LL(∼k ,A) and Sing(∼k ,A) are not
bounded.

Non context-freeness

If L is bounded and M ⊆ L, then M is bounded:

M ⊆ L ⊆ w∗
1w

∗
2 · · ·w

∗
ℓ

Hence, M not bounded implies L not bounded.

Strategy: define a particular (sub)family of singletons

{ρp,n | p,n ∈ N}
︸ ︷︷ ︸

not bounded

⊆ Sing(∼k ,A) ⊆ LL(∼k ,A).

ρp,n := 1p2sn−13sn−21sn−3 · · · as1

over {1, 2, 3}, where a ≡ n (mod 3), and we take sn = 2× 88
n

.

Non context-freeness

If L is bounded and M ⊆ L, then M is bounded:

M ⊆ L ⊆ w∗
1w

∗
2 · · ·w

∗
ℓ

Hence, M not bounded implies L not bounded.

Strategy: define a particular (sub)family of singletons

{ρp,n | p,n ∈ N}
︸ ︷︷ ︸

not bounded

⊆ Sing(∼k ,A) ⊆ LL(∼k ,A).

ρp,n := 1p2sn−13sn−21sn−3 · · · as1

over {1, 2, 3}, where a ≡ n (mod 3), and we take sn = 2× 88
n

.

Conclusions

k -binomial equivalence ∼k

◮ #A = 2, k = 2, switch equivalence — everything is fine

◮ #A ≥ 3, k = 2, algorithm and algebraic description of
∼2-equivalence classes

◮ #A ≥ 3, k = 2, no simple operation corresponding to switch
equivalence is known.

◮ #A ≥ 3, k ≥ 3, extension of the above results?

◮ #A = 2, k = 2, LL(∼2,A) is context-free

◮ #A ≥ 3, k ≥ 2, LL(∼k ,A) is not context-free, what about its
descriptional complexity, automaticity?

◮ #A = 2, k ≥ 3, LL(∼k ,A) — conjecture: not context-free,
one needs to find an unbounded set of singletons. . .

Conclusions

Similar intricate“problems” for Parikh matrices/equivalence over
larger alphabets ; see for instance A. C. Atanasiu, Parikh Matrix
Mapping and Amiability over a ternary alphabet

Open question : give some (geometrical) interpretation of
k -binomial equivalence/complexity

Some references

◮ J. Cassaigne, J. Karhumäki, S. Puzynina, and M. A. Whiteland,
k -abelian equivalence and rationality, Fund. Infor. 154 (2017).

◮ S. Fossé, G. Richomme, Some characterizations of Parikh matrix
equivalent binary words, Inform. Process. Lett. 92 (2004).

◮ D. D. Freydenberger, P. Gawrychowski, J. Karhumäki, F. Manea,
W. Rytter, Testing k -binomial equivalence, in Multidisciplinary
Creativity: homage to Gheorghe Paun on his 65th birthday,
239–248, Ed. Spandugino, Bucharest, Romania (2015).

◮ M. Lejeune, J. Leroy, M. Rigo, Computing the k -binomial complexity
of the Thue–Morse word, J. Comb. Theory, ser. A 176 (2020).

◮ M. Lejeune, M. Rigo, M. Rosenfeld, Templates for the k -binomial
complexity of the Tribonacci word, Adv. Appl. Math. 112 (2020).

Some references

◮ M. Lejeune, M. Rigo, M. Rosenfeld, On the binomial equivalence
classes of finite words, to appear in IJAC, arXiv:2001.11732

◮ M. Rigo, P. Salimov, Another generalization of abelian equivalence:
binomial complexity of infinite words, Theoret. Comput. Sci. 601
(2015).

◮ M. A. Whiteland, On the k-Abelian Equivalence Relation of Finite
Words, Ph.D. Thesis, TUCS Dissertations 241, Univ. of Turku
(2019).

