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Semigroup basics

A semigroup is a set S with an associative binary operation, which
we denote multiplicatively. Some of the semigroups in this talk
have an identity element, but some do not. However they will never
have a 0 element.

An idempotent p € S is an element satisfying pp = p.

A (left, right, or bilateral) ideal of S is a nonempty subset I C S
satisfying ST C I, IS C I, or STUIS C I respectively.

(Left, right, or bilateral) ideals are ordered by inclusion. A minimal
(left, right, or bilateral) ideal is a minimal element w.r.t. this order.
The idempotent p is minimal if it belongs to a minimal ideal.

The kernel M(S) of S'is

M(S) = ﬂ I

I:1 ideal

A semigroup S is called simple if S = M(S5).



Completely simple semigroups; Rees's theorem

A completely simple semigroup is a simple semigroup which has
minimal idempotents.

Let G be a group, let I and A be non-empty sets, and let

A = (axi)renicr be a A x I matrix with entries from G. Then the
matrix semigroup M|[G; I, A; A] is the set I x G x A together with
the multiplication

(i)ga A)(]v h’a M) = (i7ga>\jha M)
An idempotent is of the form
(z’,a)_\il, A),
and {i} x G x {A} is a subsemigroup of M[G}; I, A; A] which is a
group whose identity element is (7, a;il, A). In particular, S is a
disjoint union of groups which are all isomorphic.
Theorem (Rees-Suskevitch)

A semigroup is completely simple if and only if it is isomorphic to a
matrix semigroup M[G; I, \; A] for some group G.



Dynamics setting

(X,T) is a topological dynamical system, where
» X is a compact metric space (here a Cantor space, X C A%)

» T7:X — X is a homeomorphism (here the shift map o), so
that T defines a Z-action on X.

Definition

The Ellis semigroup E(X) of a topological dynamical system
(X, T) is the compactification of the Z-action in the topology of
pointwise convergence on XX

In other words f : X — X belongs to E(X) iff f = limy T™* for
some net ny, with the topology of pointwise convergence.



Facts about the Ellis semigroup £(X)

» The Bourgain-Fremlin-Talagrand dichotomy:
Either

|E(X)| < 2% in which case (X, T) is called tame,
or

|E(X)| = 920 This talk is about nontame systems.
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Facts about the Ellis semigroup £(X)

» The Bourgain-Fremlin-Talagrand dichotomy:
Either
|E(X)| < 2% in which case (X, T) is called tame,
or
|E(X)| = 922" This talk is about nontame systems.

» FE(X) is a right topological compact semigroup, so by
Ellis-Nakamura/Ruppert theorems,
E(X) admits a kernel M(X') which contains all minimal
idempotents, so that M(X) = a matrix semigroup.
» Two points = and y are proximal in X if there is (ng) with
d(T"x, T™y) — 0.
» 2 and y are proximal if and only if there exists a minimal
idempotent p such that p(z) = p(y).
» If T' acts minimally and x, y are proximal then there is a
minimal idempotent ¢ such that y = ¢(x) (and so y = q(y)).



Bijective substitution shifts

A substitution of length ¢ is a morphism 6 : A — A’
There are £ maps 6, : A — A, 0 <3< /¥ —1, such that

O(a) =0o(a)---0s_1(a)

for each a € A.

6 is bijective if each of the maps 6; is a bijection.

A finite word is allowed for @ if it appears somewhere in 0% (a) for
some a € A and some k € N.

The substitution shift (Xg, o) is the dynamical system where the
space Xy consists of all bi-infinite sequences all of whose subwords
are allowed for 6, and o is the left shift map.

We equip Xy with the subspace topology of the product topology
on A%, making o a continuous Z-action.



Theorem (Barge-Kellendonk, 2019)

Let 0 be a nontrivial primitive bijective substitution of length ¢
which defines the substitution shift (Xy, o). Then

E(Xy) = M(Xy) UZ.

Now the kernel M(Xy) is completely simple. What is its Rees
semigroup representation?
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which defines the substitution shift (Xy, o). Then

E(Xy) = M(Xy) UZ.

Now the kernel M(Xy) is completely simple. What is its Rees
semigroup representation?

Theorem (Kellendonk-Y, 2020)

Let (Xg,0) be a nontrivial primitive length- bijective substitution
shift. There exist finite groups Gg, Ty and a finite set Iy such that,
algebraically,
» if 6 has trivial generalised height then
M(Xy) =2 M[G; Iy, {£}; A] where G = G5* x Z.
» if O has generalised height = h , and Gy contains an element
of order h, then M(Xy) = M[G; Iy, {£}; A] where
G = (T5" x Z/hZ) x Zy.

These systems are not tame.



Group factors of (Xy, o)
If 6 has length ¢, then recognizability implies that for each n and
each x € Xy, there is a unique y € Xy and 0 < k < ™ such that
z =" (0"(y)).

Thus there is a factor map 7 : (Xy,0) — (Z¢, +1).
Note that 7w sends -fixed points to 0.
Using 7 we get a short exact sequence

BIY < B(Xy) 5 E(Zy) = 7,

where 7(fg) = 7(f) + 7(g) and E/® = ker 7.
f € Ef fixes fibres

If ¢ is an idempotent in E(Xy),
7i(e) = 7(e?) = 7(e) + 7(e) ,
so 7t(e) = 0, i.e. all idempotents belong to E/%.
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How to find idempotents

Recall: z and y are proximal in Xy if 3 (ng), d(c™ z,0™y) — 0.
Example

Consider the Thue-Morse substitution

a +— abba
b — baab

There are four fixed points: a-a, a-b, b-a, b-b. We have

a-a and b- a are (right) proximal,
a-band b-b are (right) proximal,
b-a and b-b are (left) proximal,
a

~a and a - b are (left) proximal.

If o acts minimally and z, y are proximal then there is a minimal
idempotent ¢ such that y = ¢(x) and ¢(y) = y.
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But it turns out that p = p:
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So if lim,,, 0™ = p is such that

pla-a) =p(b-a) =b-a, then p(a-b) =p(b-b) =a-b.

But how does p behave elsewhere?
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The dearth of proximality for bijective substitutions

We have found p such that p?(z) = p(z) for fixed points.

Lemma
For bijective substitutions, the only way a pair of points can be
proximal is if they are both in the shift orbit of {a-a,a-b,b-a,b-b}.
Recall:
» z and y are proximal if and only if there exists a minimal
idempotent p such that p(z) = p(y).

Therefore if p is a minimal idempotent, and if x is not in the
shift-orbit of a fixed point, then p(z) = z.



Thue-Morse example, completed
There are 4 idempotents, with p, p coming from forward proximality
and ¢, ¢ from backward proximality:
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gla-a)=q(a-b)=a-a, Gb-a)=qb-b)=>b-b



Thue-Morse example, completed

There are 4 idempotents, with p, p coming from forward proximality
and ¢, ¢ from backward proximality:

pla-a)=p(b- ):b-a, pla-b)=pb-b)=a-b
pla-a)=pb-a)=a-a, pla-b)=pb-b)=b-b
q(a-a) =q(a- b)= b, q(b-a)=q(b-b)=b-a
gla-a)=q(a-b)=a-a, Gb-a)=qb-b)=>b-b

Define E(J;ib to be the restriction of Ef? to the fixed points.

Theorem (Kellendonk-Y,2019, specific to Thue-Morse)

The idempotents generate E(J; ib\ 1d.
Also, algebraically

> E["\1d = M[Gy; Sa, {£}; A] where Gy = Ss.
> B\ 1d = M[GI®; Sy, {+}; A] where G/ =~ GZ2/7;
> E(X)\Z = M[G; Sa, {+}; A] where G = G/ x Zy.



The structure group Gy and the little structure group I'y
Given a bijective substitution 8 = 6 ...60y_1, we define
» the structure group Gy of 0 to be the group generated by all
the bijections (0™);, ne€ N, i =0,--- (" —1,
> its R-set by
I = {(0™);(0"), -, €Gy:neNi=1,--- (" —1}, and
» the little structure group I'g to be the group generated by

{gh_l tg,h € Ig.}
Example (Thue-Morse)

(-0 G) emn-T=s

Theorem (Kellendonk-Y,2020)

Let 0 be a bijective primitive substitution of length (. If Go = Ty,
then the idempotents generate ng\ 1d, and

E(Xp)\Z = M(Xg) = M[GZ'" % 74 Iy, {£}; A].



Do the idempotents always generate Eg'b\ Id?

Example
Consider the substitution

(-GG

Columns of this substitution are either the identity, or
transpositions of S3. So Gy = Ss,

b & a
Iy = { (a) , (b) , (c) }, and Ty = ({gh™' 1 g,h € Ih}) = A3
c a b

Here Ty = Az # S5 = Gy, so our previous theorem does not apply,
and in fact the idempotents do not generate Eé%.



Generalised height

Lemma

Gy /Ty is a finite cyclic group.

The generalised height h of a primitive aperiodic bijective
substitution is the order of Gy/T.

Remark
Recall the definition of (classical) height h.; of a primitive
substitution of length £ : if u = uguy ... is a fixed point,

he = ged(l,{n : up = up}).

The generalised height is at least the classical height, but can be
larger.



In general...

Theorem (Kellendonk-Y, 2020)
For a bijective substitution 6 of length ¢ and generalised height h,
> E"\1d =~ M[Gy; Iy, {£}; A],
> B\ 1d = M[GT®: I,, {+}; A] where if Gy contains an
element of order h then G = f?Z/Z x Z/hZ, and

> E(Xp)\Z = M[G; Sa, {£}; A] where G is given by
GI" = G — 7

In particular G = GI™® x 7, if the generalised height equals the
classical height.



Towards topological description of E/%

Theorem (Kellendonk,Y, 2019)

IfTg = Gy, then there is a topological isomorphism

BT = (M[Go; Ip, {£}; AJU{Id}) x [] Go.

[2]€Zy /2
[2]#[0]
Otherwise

Bft = (MG Ip {1 AJU{1a}) x [] To.

[2]€Zy /7
[2]#(0]



What next?

If 6 is not bijective,
» it is not necessarily true that F(Xy) = M(Xy) UZ,
» there can be uncountably many proximal pairs,

» and many conspiracies, both between idempotents, and across
fibres

How do we deal with this?



