The Ellis semigroup of bijective substitution shifts

Reem Yassawi (joint with Johannes Kellendonk)

Open University, UK (Université de Lyon 1)

September 14, 2020

Semigroup basics

A semigroup is a set S with an associative binary operation, which we denote multiplicatively. Some of the semigroups in this talk have an identity element, but some do not. However they will never have a 0 element.

An idempotent $p \in S$ is an element satisfying pp = p.

A (left, right, or bilateral) ideal of S is a nonempty subset $I \subseteq S$ satisfying $SI \subseteq I$, $IS \subseteq I$, or $SI \cup IS \subseteq I$ respectively.

(Left, right, or bilateral) ideals are ordered by inclusion. A *minimal* (left, right, or bilateral) ideal is a minimal element w.r.t. this order. The idempotent p is *minimal* if it belongs to a minimal ideal. The *kernel* $\mathcal{M}(S)$ of S is

$$\mathcal{M}(S) := \bigcap_{I:I \text{ ideal}} I$$

A semigroup S is called *simple* if $S = \mathcal{M}(S)$.

Completely simple semigroups; Rees's theorem

A *completely simple* semigroup is a simple semigroup which has minimal idempotents.

Let G be a group, let I and Λ be non-empty sets, and let $A = (a_{\lambda i})_{\lambda \in \Lambda, i \in I}$ be a $\Lambda \times I$ matrix with entries from G. Then the *matrix semigroup* $M[G; I, \Lambda; A]$ is the set $I \times G \times \Lambda$ together with the multiplication

$$(i,g,\lambda)(j,h,\mu) = (i,ga_{\lambda j}h,\mu).$$

An idempotent is of the form

$$(i, a_{\lambda i}^{-1}, \lambda),$$

and $\{i\}\times G\times \{\lambda\}$ is a subsemigroup of $M[G;I,\Lambda;A]$ which is a group whose identity element is $(i,a_{\lambda i}^{-1},\lambda).$ In particular, S is a disjoint union of groups which are all isomorphic.

Theorem (Rees-Suskevitch)

A semigroup is completely simple if and only if it is isomorphic to a matrix semigroup $M[G; I, \Lambda; A]$ for some group G.

Dynamics setting

$\left(X,T\right)$ is a topological dynamical system, where

- X is a compact metric space (here a Cantor space, $X \subset \mathcal{A}^{\mathbb{Z}}$)
- $T: X \to X$ is a homeomorphism (here the shift map σ), so that T defines a \mathbb{Z} -action on X.

Definition

The *Ellis semigroup* E(X) of a topological dynamical system (X,T) is the compactification of the \mathbb{Z} -action in the topology of pointwise convergence on X^X .

In other words $f: X \to X$ belongs to E(X) iff $f = \lim_k T^{n_k}$ for some net n_k , with the topology of pointwise convergence.

- The Bourgain-Fremlin-Talagrand dichotomy: Either
 |E(X)| ≤ 2^{ℵ0} in which case (X, T) is called *tame*, or
 |E(X)| = 2^{2^{ℵ0}}. This talk is about nontame systems.
- E(X) is a right topological compact semigroup, so by Ellis-Nakamura/Ruppert theorems, E(X) admits a kernel $\mathcal{M}(X)$ which contains all minimal idempotents, so that $\mathcal{M}(X) \cong$ a matrix semigroup.
- Two points x and y are proximal in X if there is (n_k) with $d(T^{n_k}x, T^{n_k}y) \to 0.$
 - ➤ x and y are proximal if and only if there exists a minimal idempotent p such that p(x) = p(y).
 - If T acts minimally and x, y are proximal then there is a minimal idempotent q such that y = q(x) (and so y = q(y)).

- The Bourgain-Fremlin-Talagrand dichotomy: Either
 |E(X)| ≤ 2^{ℵ0} in which case (X, T) is called *tame*, or
 |E(X)| = 2^{2^{ℵ0}}. This talk is about nontame systems.
- E(X) is a right topological compact semigroup, so by Ellis-Nakamura/Ruppert theorems,
 E(X) admits a kernel M(X) which contains all minimal idempotents, so that M(X) ≅ a matrix semigroup.
 - Two points x and y are proximal in X if there is (n_k) with $d(T^{n_k}x, T^{n_k}y) \to 0.$
 - ➤ x and y are proximal if and only if there exists a minimal idempotent p such that p(x) = p(y).
 - If T acts minimally and x, y are proximal then there is a minimal idempotent q such that y = q(x) (and so y = q(y)).

- The Bourgain-Fremlin-Talagrand dichotomy: Either
 |E(X)| ≤ 2^{ℵ0} in which case (X, T) is called *tame*, or
 |E(X)| = 2^{2^{ℵ0}}. This talk is about nontame systems.
- E(X) is a right topological compact semigroup, so by Ellis-Nakamura/Ruppert theorems, E(X) admits a kernel M(X) which contains all minimal idempotents, so that M(X) ≅ a matrix semigroup.
- Two points x and y are proximal in X if there is (n_k) with $d(T^{n_k}x, T^{n_k}y) \to 0.$
 - * x and y are proximal if and only if there exists a minimal idempotent p such that p(x) = p(y).
 - If T acts minimally and x, y are proximal then there is a minimal idempotent q such that y = q(x) (and so y = q(y)).

- The Bourgain-Fremlin-Talagrand dichotomy: Either
 |E(X)| ≤ 2^{ℵ0} in which case (X, T) is called *tame*, or
 |E(X)| = 2^{2^{ℵ0}}. This talk is about nontame systems.
- E(X) is a right topological compact semigroup, so by Ellis-Nakamura/Ruppert theorems, E(X) admits a kernel M(X) which contains all minimal idempotents, so that M(X) ≅ a matrix semigroup.
- Two points x and y are proximal in X if there is (n_k) with $d(T^{n_k}x, T^{n_k}y) \to 0.$
 - ➤ x and y are proximal if and only if there exists a minimal idempotent p such that p(x) = p(y).
 - ▶ If T acts minimally and x, y are proximal then there is a minimal idempotent q such that y = q(x) (and so y = q(y)).

Bijective substitution shifts

A substitution of length ℓ is a morphism $\theta : \mathcal{A} \to \mathcal{A}^{\ell}$. There are ℓ maps $\theta_i : \mathcal{A} \to \mathcal{A}$, $0 \leq i \leq \ell - 1$, such that

$$\theta(a) = \theta_0(a) \cdots \theta_{\ell-1}(a)$$

for each $a \in \mathcal{A}$.

 θ is *bijective* if each of the maps θ_i is a bijection.

A finite word is *allowed* for θ if it appears somewhere in $\theta^k(a)$ for some $a \in \mathcal{A}$ and some $k \in \mathbb{N}$.

The substitution shift (X_{θ}, σ) is the dynamical system where the space X_{θ} consists of all bi-infinite sequences all of whose subwords are allowed for θ , and σ is the left shift map.

We equip X_{θ} with the subspace topology of the product topology on $\mathcal{A}^{\mathbb{Z}}$, making σ a continuous \mathbb{Z} -action.

Theorem (Barge-Kellendonk, 2019)

Let θ be a nontrivial primitive bijective substitution of length ℓ which defines the substitution shift (X_{θ}, σ) . Then

 $E(X_{\theta}) = \mathcal{M}(X_{\theta}) \cup \mathbb{Z}.$

Now the kernel $\mathcal{M}(X_{\theta})$ is completely simple. What is its Rees semigroup representation?

Theorem (Kellendonk-Y, 2020)

Let (X_{θ}, σ) be a nontrivial primitive length- ℓ bijective substitution shift. There exist finite groups G_{θ} , Γ_{θ} and a finite set I_{θ} such that, algebraically,

• if θ has trivial generalised height then $\mathcal{M}(X_{\theta}) \cong M[\mathcal{G}; I_{\theta}, \{\pm\}; A]$ where $\mathcal{G} = G_{\theta}^{\mathbb{Z}_{\ell}} \rtimes \mathbb{Z}_{\ell}$

• if θ has generalised height = h, and G_{θ} contains an element of order h, then $\mathcal{M}(X_{\theta}) \cong M[\mathcal{G}; I_{\theta}, \{\pm\}; A]$ where $\mathcal{G} = (\overline{\Gamma}_{\theta}^{\mathbb{Z}_{\ell}} \rtimes \mathbb{Z}/h\mathbb{Z}) \rtimes \mathbb{Z}_{\ell}.$

These systems are **not** tame.

Theorem (Barge-Kellendonk, 2019)

Let θ be a nontrivial primitive bijective substitution of length ℓ which defines the substitution shift (X_{θ}, σ) . Then

 $E(X_{\theta}) = \mathcal{M}(X_{\theta}) \cup \mathbb{Z}.$

Now the kernel $\mathcal{M}(X_{\theta})$ is completely simple. What is its Rees semigroup representation?

Theorem (Kellendonk-Y, 2020)

Let (X_{θ}, σ) be a nontrivial primitive length- ℓ bijective substitution shift. There exist finite groups G_{θ} , Γ_{θ} and a finite set I_{θ} such that, algebraically,

- if θ has trivial generalised height then $\mathcal{M}(X_{\theta}) \cong M[\mathcal{G}; I_{\theta}, \{\pm\}; A]$ where $\mathcal{G} = G_{\theta}^{\mathbb{Z}_{\ell}} \rtimes \mathbb{Z}_{\ell}$.
- if θ has generalised height = h, and G_θ contains an element of order h, then M(X_θ) ≅ M[G; I_θ, {±}; A] where G = (Γ_θ^{Z_ℓ} ⋊ Z/hZ) ⋊ Z_ℓ.

These systems are **not** tame.

Theorem (Barge-Kellendonk, 2019)

Let θ be a nontrivial primitive bijective substitution of length ℓ which defines the substitution shift (X_{θ}, σ) . Then

 $E(X_{\theta}) = \mathcal{M}(X_{\theta}) \cup \mathbb{Z}.$

Now the kernel $\mathcal{M}(X_{\theta})$ is completely simple. What is its Rees semigroup representation?

Theorem (Kellendonk-Y, 2020)

Let (X_{θ}, σ) be a nontrivial primitive length- ℓ bijective substitution shift. There exist finite groups G_{θ} , Γ_{θ} and a finite set I_{θ} such that, algebraically,

- if θ has trivial generalised height then $\mathcal{M}(X_{\theta}) \cong M[\mathcal{G}; I_{\theta}, \{\pm\}; A]$ where $\mathcal{G} = G_{\theta}^{\mathbb{Z}_{\ell}} \rtimes \mathbb{Z}_{\ell}$.
- if θ has generalised height = h, and G_θ contains an element of order h, then M(X_θ) ≅ M[G; I_θ, {±}; A] where G = (Γ_θ^{Z_ℓ} ⋊ Z/hZ) ⋊ Z_ℓ.

These systems are **not** tame.

Group factors of (X_{θ}, σ)

If θ has length ℓ , then recognizability implies that for each n and each $x \in X_{\theta}$, there is a unique $y \in X_{\theta}$ and $0 \le k < \ell^n$ such that

$$x = \sigma^k(\theta^n(y)).$$

Thus there is a factor map $\pi : (X_{\theta}, \sigma) \to (\mathbb{Z}_{\ell}, +1)$. Note that π sends θ -fixed points to 0. Using π we get a short exact sequence

$$E^{fib} \hookrightarrow E(X_{\theta}) \stackrel{\tilde{\pi}}{\twoheadrightarrow} E(\mathbb{Z}_{\ell}) \cong \mathbb{Z}_{\ell}$$

where $\tilde{\pi}(fg) = \tilde{\pi}(f) + \tilde{\pi}(g)$ and $E^{fib} = \ker \tilde{\pi}$. $f \in E^{fib}$ fixes fibres

If *e* is an idempotent in $E(X_{\theta})$, $\tilde{\pi}(e) = \tilde{\pi}(e^2) = \tilde{\pi}(e) + \tilde{\pi}(e)$ so $\tilde{\pi}(e) = 0$, i.e. all idempotents belong to E^{fib} .

Group factors of (X_{θ}, σ)

If θ has length ℓ , then recognizability implies that for each n and each $x \in X_{\theta}$, there is a unique $y \in X_{\theta}$ and $0 \le k < \ell^n$ such that

$$x = \sigma^k(\theta^n(y)).$$

Thus there is a factor map $\pi : (X_{\theta}, \sigma) \to (\mathbb{Z}_{\ell}, +1)$. Note that π sends θ -fixed points to 0. Using π we get a short exact sequence

$$E^{fib} \hookrightarrow E(X_{\theta}) \stackrel{\tilde{\pi}}{\twoheadrightarrow} E(\mathbb{Z}_{\ell}) \cong \mathbb{Z}_{\ell}$$

where $\tilde{\pi}(fg) = \tilde{\pi}(f) + \tilde{\pi}(g)$ and $E^{fib} = \ker \tilde{\pi}$. $f \in E^{fib}$ fixes fibres

If *e* is an idempotent in $E(X_{\theta})$, $\tilde{\pi}(e) = \tilde{\pi}(e^2) = \tilde{\pi}(e) + \tilde{\pi}(e)$ so $\tilde{\pi}(e) = 0$, i.e. all idempotents belong to E^{fib} .

How to find idempotents

Recall: x and y are proximal in X_{θ} if $\exists (n_k), d(\sigma^{n_k}x, \sigma^{n_k}y) \to 0$. Example

Consider the Thue-Morse substitution

 $\begin{array}{rrrr} a & \mapsto & abba \\ b & \mapsto & baab \end{array}$

There are four fixed points: $a \cdot a$, $a \cdot b$, $b \cdot a$, $b \cdot b$. We have

 $a \cdot a$ and $b \cdot a$ are (right) proximal, $a \cdot b$ and $b \cdot b$ are (right) proximal, $b \cdot a$ and $b \cdot b$ are (left) proximal, $a \cdot a$ and $a \cdot b$ are (left) proximal.

If σ acts minimally and x, y are proximal then there is a minimal idempotent q such that y = q(x) and q(y) = y.

How to find idempotents

Recall: x and y are proximal in X_{θ} if $\exists (n_k), d(\sigma^{n_k}x, \sigma^{n_k}y) \to 0$. Example

Consider the Thue-Morse substitution

 $\begin{array}{rrrr} a & \mapsto & abba \\ b & \mapsto & baab \end{array}$

There are four fixed points: $a \cdot a$, $a \cdot b$, $b \cdot a$, $b \cdot b$. We have

 $a \cdot a$ and $b \cdot a$ are (right) proximal, $a \cdot b$ and $b \cdot b$ are (right) proximal, $b \cdot a$ and $b \cdot b$ are (left) proximal, $a \cdot a$ and $a \cdot b$ are (left) proximal.

If σ acts minimally and x, y are proximal then there is a minimal idempotent q such that y = q(x) and q(y) = y.

How to find idempotents

Recall: x and y are proximal in X_{θ} if $\exists (n_k), d(\sigma^{n_k}x, \sigma^{n_k}y) \to 0$. Example

Consider the Thue-Morse substitution

 $\begin{array}{rrrr} a & \mapsto & abba \\ b & \mapsto & baab \end{array}$

There are four fixed points: $a \cdot a$, $a \cdot b$, $b \cdot a$, $b \cdot b$. We have

 $a \cdot a$ and $b \cdot a$ are (right) proximal, $a \cdot b$ and $b \cdot b$ are (right) proximal, $b \cdot a$ and $b \cdot b$ are (left) proximal, $a \cdot a$ and $a \cdot b$ are (left) proximal.

If σ acts minimally and x, y are proximal then there is a minimal idempotent q such that y = q(x) and q(y) = y.

Conspiracies between potential idempotents

We are guaranteed idempotents p and \tilde{p} with:

But it turns out that $p = \tilde{p}$:

 $a \cdot a = \dots a \cdot abbabaabbaabbabba \dots \theta^{n}(b) \downarrow \theta^{n}(a) \dots$ $b \cdot a = \dots b \cdot abbabaabbaabbaabbaab \dots \theta^{n}(b) \downarrow \theta^{n}(a) \dots$ $a \cdot b = \dots a \cdot baababbaabbaabaab \dots \theta^{n}(a) \downarrow \theta^{n}(b) \dots$ $b \cdot b = \dots b \cdot baababbaabbaabaab \dots \theta^{n}(a) \downarrow \theta^{n}(b) \dots$

So if $\lim_{n_k} \sigma^{n_k} = p$ is such that

 $p(a \cdot a) = p(b \cdot a) = b \cdot a$, then $p(a \cdot b) = p(b \cdot b) = a \cdot b$.

But how does p behave elsewhere?

Conspiracies between potential idempotents

We are guaranteed idempotents p and \tilde{p} with:

But it turns out that $p = \tilde{p}$:

 $a \cdot a = \dots a \cdot abbabaabbaabbabba \dots \theta^{n}(b) \downarrow \theta^{n}(a) \dots$ $b \cdot a = \dots b \cdot abbabaabbaabbaabbaab \dots \theta^{n}(b) \downarrow \theta^{n}(a) \dots$ $a \cdot b = \dots a \cdot baababbaabbaabaab \dots \theta^{n}(a) \downarrow \theta^{n}(b) \dots$ $b \cdot b = \dots b \cdot baababbaabbaabaab \dots \theta^{n}(a) \downarrow \theta^{n}(b) \dots$

So if $\lim_{n_k} \sigma^{n_k} = p$ is such that

$$p(a \cdot a) = p(b \cdot a) = b \cdot a, \text{ then } p(a \cdot b) = p(b \cdot b) = a \cdot b.$$

But how does p behave elsewhere?

Conspiracies between potential idempotents

We are guaranteed idempotents p and \tilde{p} with:

But it turns out that $p = \tilde{p}$:

 $a \cdot a = \dots a \cdot abbabaabbaabbabba \dots \theta^{n}(b) \downarrow \theta^{n}(a) \dots$ $b \cdot a = \dots b \cdot abbabaabbaabbaabbaab \dots \theta^{n}(b) \downarrow \theta^{n}(a) \dots$ $a \cdot b = \dots a \cdot baababbaabbaabaab \dots \theta^{n}(a) \downarrow \theta^{n}(b) \dots$ $b \cdot b = \dots b \cdot baababbaabbaabaab \dots \theta^{n}(a) \downarrow \theta^{n}(b) \dots$

So if $\lim_{n_k} \sigma^{n_k} = p$ is such that

$$p(a \cdot a) = p(b \cdot a) = b \cdot a, \text{ then } p(a \cdot b) = p(b \cdot b) = a \cdot b.$$

But how does p behave elsewhere?

We have found p such that $p^2(x) = p(x)$ for fixed points.

Lemma

For bijective substitutions, the only way a pair of points can be proximal is if they are both in the shift orbit of $\{a \cdot a, a \cdot b, b \cdot a, b \cdot b\}$. Recall:

➤ x and y are proximal if and only if there exists a minimal idempotent p such that p(x) = p(y).

We have found p such that $p^2(x) = p(x)$ for fixed points.

Lemma

For bijective substitutions, the only way a pair of points can be proximal is if they are both in the shift orbit of $\{a \cdot a, a \cdot b, b \cdot a, b \cdot b\}$. Recall:

• x and y are proximal if and only if there exists a minimal idempotent p such that p(x) = p(y).

We have found p such that $p^2(x) = p(x)$ for fixed points.

Lemma

For bijective substitutions, the only way a pair of points can be proximal is if they are both in the shift orbit of $\{a \cdot a, a \cdot b, b \cdot a, b \cdot b\}$. Recall:

➤ x and y are proximal if and only if there exists a minimal idempotent p such that p(x) = p(y).

We have found p such that $p^2(x) = p(x)$ for fixed points.

Lemma

For bijective substitutions, the only way a pair of points can be proximal is if they are both in the shift orbit of $\{a \cdot a, a \cdot b, b \cdot a, b \cdot b\}$. Recall:

➤ x and y are proximal if and only if there exists a minimal idempotent p such that p(x) = p(y).

Thue-Morse example, completed

There are 4 idempotents, with p, \tilde{p} coming from forward proximality and q, \tilde{q} from backward proximality:

$$\begin{split} p(a \cdot a) &= p(b \cdot a) = b \cdot a, \ p(a \cdot b) = p(b \cdot b) = a \cdot b\\ \tilde{p}(a \cdot a) &= \tilde{p}(b \cdot a) = a \cdot a, \ \tilde{p}(a \cdot b) = \tilde{p}(b \cdot b) = b \cdot b\\ q(a \cdot a) &= q(a \cdot b) = a \cdot b, \ q(b \cdot a) = q(b \cdot b) = b \cdot a\\ \tilde{q}(a \cdot a) &= \tilde{q}(a \cdot b) = a \cdot a, \ \tilde{q}(b \cdot a) = \tilde{q}(b \cdot b) = b \cdot b \end{split}$$

Define E_0^{fib} to be the restriction of E^{fib} to the fixed points. Theorem (Kellendonk-Y,2019, specific to Thue-Morse) The idempotents generate $E_0^{fib} \setminus \text{Id}$. Also, algebraically

• $E_0^{fib} \setminus \mathrm{Id} \cong M[G_\theta; S_2, \{\pm\}; A]$ where $G_\theta = S_2$.

- $E^{fib} \setminus \mathrm{Id} \cong M[\mathcal{G}^{fib}; S_2, \{\pm\}; A]$ where $\mathcal{G}^{fib} \cong \mathcal{G}_{\theta}^{\mathbb{Z}_2/\mathbb{Z}};$
- $\models E(X_{\theta}) \setminus \mathbb{Z} \cong M[\mathcal{G}; S_2, \{\pm\}; A] \text{ where } \mathcal{G} \cong \mathcal{G}^{fib} \rtimes \mathbb{Z}_2.$

Thue-Morse example, completed

There are 4 idempotents, with p, \tilde{p} coming from forward proximality and q, \tilde{q} from backward proximality:

$$\begin{split} p(a \cdot a) &= p(b \cdot a) = b \cdot a, \ p(a \cdot b) = p(b \cdot b) = a \cdot b\\ \tilde{p}(a \cdot a) &= \tilde{p}(b \cdot a) = a \cdot a, \ \tilde{p}(a \cdot b) = \tilde{p}(b \cdot b) = b \cdot b\\ q(a \cdot a) &= q(a \cdot b) = a \cdot b, \ q(b \cdot a) = q(b \cdot b) = b \cdot a\\ \tilde{q}(a \cdot a) &= \tilde{q}(a \cdot b) = a \cdot a, \ \tilde{q}(b \cdot a) = \tilde{q}(b \cdot b) = b \cdot b \end{split}$$

Define E_0^{fib} to be the restriction of E^{fib} to the fixed points. Theorem (Kellendonk-Y,2019, specific to Thue-Morse) The idempotents generate $E_0^{fib} \setminus \text{Id.}$ Also, algebraically

•
$$E_0^{fib} \setminus \text{Id} \cong M[G_\theta; S_2, \{\pm\}; A]$$
 where $G_\theta = S_2$.

- $E^{fib} \setminus \mathrm{Id} \cong M[\mathcal{G}^{fib}; S_2, \{\pm\}; A]$ where $\mathcal{G}^{fib} \cong G_{\theta}^{\mathbb{Z}_2/\mathbb{Z}}$;
- $E(X_{\theta}) \setminus \mathbb{Z} \cong M[\mathcal{G}; S_2, \{\pm\}; A]$ where $\mathcal{G} \cong \mathcal{G}^{fib} \rtimes \mathbb{Z}_2$.

The structure group G_{θ} and the little structure group Γ_{θ}

Given a bijective substitution $\theta = \theta_0 \dots \theta_{\ell-1}$, we define

▶ the structure group G_{θ} of θ to be the group generated by all the bijections $(\theta^n)_i$, $n \in \mathbb{N}$, $i = 0, \dots, \ell^n - 1$,

▶ its *R-set* by

$$I_{\theta} := \{(\theta^n)_i (\theta^n)_{i-1}^{-1} \in G_{\theta} : n \in \mathbb{N}, i = 1, \cdots, \ell^n - 1\}, \text{ and }$$

• the *little structure group* Γ_{θ} to be the group generated by

$$\{gh^{-1}: g, h \in I_{\theta}.\}$$

Example (Thue-Morse)
$$\binom{a}{b} \mapsto \binom{a}{b} \binom{b}{a} \binom{b}{a} \binom{a}{b}$$
, $G_{\theta} = I_{\theta} = \overline{\Gamma}_{\theta} = S_2.$

Theorem (Kellendonk-Y,2020)

Let θ be a bijective primitive substitution of length ℓ . If $G_{\theta} = \overline{\Gamma}_{\theta}$, then the idempotents generate $E_0^{fib} \setminus \mathrm{Id}$, and

$$E(X_{\theta}) \setminus \mathbb{Z} = \mathcal{M}(X_{\theta}) \cong M[G_{\theta}^{\mathbb{Z}_{\ell}/\mathbb{Z}} \rtimes \mathbb{Z}_{\ell}; I_{\theta}, \{\pm\}; A].$$

Do the idempotents always generate $E_0^{fib} \setminus \mathrm{Id}$?

Example

Consider the substitution

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} \mapsto \begin{pmatrix} a \\ b \\ c \end{pmatrix} \begin{pmatrix} b \\ a \\ c \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} \begin{pmatrix} c \\ b \\ a \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$

Columns of this substitution are either the identity, or transpositions of S_3 . So $G_{\theta} = S_3$,

$$I_{\theta} = \left\{ \begin{pmatrix} b \\ a \\ c \end{pmatrix}, \begin{pmatrix} c \\ b \\ a \end{pmatrix}, \begin{pmatrix} a \\ c \\ b \end{pmatrix} \right\}, \text{ and } \Gamma_{\theta} = \langle \{gh^{-1} : g, h \in I_{\theta}\} \rangle = A_3$$

Here $\overline{\Gamma}_{\theta} = A_3 \neq S_3 = G_{\theta}$, so our previous theorem does not apply, and in fact the idempotents do not generate E_0^{fib} .

Generalised height

Lemma

 $G_{\theta}/\overline{\Gamma}_{\theta}$ is a finite cyclic group.

The generalised height h of a primitive aperiodic bijective substitution is the order of $G_{\theta}/\overline{\Gamma}_{\theta}$.

Remark

Recall the definition of (classical) height h_{cl} of a primitive substitution of length ℓ : if $u = u_0 u_1 \dots$ is a fixed point,

 $h_{cl} = gcd(\ell, \{n : u_n = u_0\}).$

The generalised height is at least the classical height, but can be larger.

In general...

Theorem (Kellendonk-Y, 2020)

For a bijective substitution θ of length ℓ and generalised height h,
E^{fib}₀ \ Id ≃ M[G_θ; I_θ, {±}; A],
E^{fib}\ Id ≃ M[G^{fib}; I_θ, {±}; A] where if G_θ contains an element of order h then G^{fib} ≃ Γ^{ℤ_ℓ/ℤ} × ℤ/hℤ, and
E(X_θ)\ℤ ≃ M[G; S₂, {±}; A] where G is given by

$$\mathcal{G}^{fib} \hookrightarrow \mathcal{G} \twoheadrightarrow \mathbb{Z}_{\ell}$$

In particular $\mathcal{G} \cong \mathcal{G}^{fib} \rtimes \mathbb{Z}_{\ell}$ if the generalised height equals the classical height.

Towards topological description of E^{fib}

Theorem (Kellendonk, Y, 2019) If $\overline{\Gamma}_{\theta} = G_{\theta}$, then there is a topological isomorphism $E^{fib} \cong (M[G_{\theta}; I_{\theta}, \{\pm\}; A] \cup \{\mathrm{Id}\}) \times \prod_{\substack{[z] \in \mathbb{Z}_{\ell}/\mathbb{Z} \\ |z| \neq [0]}} G_{\theta}.$

Otherwise

$$E^{fib} \cong (M[G_{\theta}; I_{\theta}, \{\pm\}; A] \cup \{\mathrm{Id}\}) \times \prod_{\substack{[z] \in \mathbb{Z}_{\ell}/\mathbb{Z} \\ [z] \neq [0]}} \overline{\Gamma}_{\theta}.$$

What next?

If $\boldsymbol{\theta}$ is not bijective,

- ▶ it is not necessarily true that $E(X_{\theta}) = \mathcal{M}(X_{\theta}) \cup \mathbb{Z}$,
- there can be uncountably many proximal pairs,
- and many conspiracies, both between idempotents, and across fibres

How do we deal with this?