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Semigroup basics

A semigroup is a set S with an associative binary operation, which
we denote multiplicatively. Some of the semigroups in this talk
have an identity element, but some do not. However they will never
have a 0 element.
An idempotent p ∈ S is an element satisfying pp = p.
A (left, right, or bilateral) ideal of S is a nonempty subset I ⊆ S
satisfying SI ⊆ I, IS ⊆ I, or SI ∪ IS ⊆ I respectively.
(Left, right, or bilateral) ideals are ordered by inclusion. A minimal
(left, right, or bilateral) ideal is a minimal element w.r.t. this order.
The idempotent p is minimal if it belongs to a minimal ideal.
The kernelM(S) of S is

M(S) :=
⋂

I:I ideal
I

A semigroup S is called simple if S =M(S).



Completely simple semigroups; Rees’s theorem
A completely simple semigroup is a simple semigroup which has
minimal idempotents.
Let G be a group, let I and Λ be non-empty sets, and let
A = (aλi)λ∈Λ,i∈I be a Λ× I matrix with entries from G. Then the
matrix semigroup M [G; I,Λ;A] is the set I ×G× Λ together with
the multiplication

(i, g, λ)(j, h, µ) = (i, gaλjh, µ).

An idempotent is of the form

(i, a−1
λi , λ),

and {i} ×G× {λ} is a subsemigroup of M [G; I,Λ;A] which is a
group whose identity element is (i, a−1

λi , λ). In particular, S is a
disjoint union of groups which are all isomorphic.

Theorem (Rees-Suskevitch)
A semigroup is completely simple if and only if it is isomorphic to a
matrix semigroup M [G; I,Λ;A] for some group G.



Dynamics setting

(X,T ) is a topological dynamical system, where
I X is a compact metric space (here a Cantor space, X ⊂ AZ)
I T : X → X is a homeomorphism (here the shift map σ), so

that T defines a Z-action on X.

Definition
The Ellis semigroup E(X) of a topological dynamical system
(X,T ) is the compactification of the Z-action in the topology of
pointwise convergence on XX .
In other words f : X → X belongs to E(X) iff f = limk T

nk for
some net nk, with the topology of pointwise convergence.



Facts about the Ellis semigroup E(X)

I The Bourgain-Fremlin-Talagrand dichotomy:
Either
|E(X)| ≤ 2ℵ0 in which case (X,T ) is called tame,
or
|E(X)| = 22ℵ0 . This talk is about nontame systems.

I E(X) is a right topological compact semigroup, so by
Ellis-Nakamura/Ruppert theorems,
E(X) admits a kernelM(X) which contains all minimal
idempotents, so thatM(X) ∼= a matrix semigroup.

I Two points x and y are proximal in X if there is (nk) with
d(Tnkx, Tnky)→ 0.
I x and y are proximal if and only if there exists a minimal

idempotent p such that p(x) = p(y).
I If T acts minimally and x, y are proximal then there is a

minimal idempotent q such that y = q(x) (and so y = q(y)).
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Bijective substitution shifts

A substitution of length ` is a morphism θ : A → A`.
There are ` maps θi : A → A, 0 ≤ i ≤ `− 1, such that

θ(a) = θ0(a) · · · θ`−1(a)

for each a ∈ A.
θ is bijective if each of the maps θi is a bijection.
A finite word is allowed for θ if it appears somewhere in θk(a) for
some a ∈ A and some k ∈ N.
The substitution shift (Xθ, σ) is the dynamical system where the
space Xθ consists of all bi-infinite sequences all of whose subwords
are allowed for θ, and σ is the left shift map.
We equip Xθ with the subspace topology of the product topology
on AZ, making σ a continuous Z-action.



Theorem (Barge-Kellendonk, 2019)
Let θ be a nontrivial primitive bijective substitution of length `
which defines the substitution shift (Xθ, σ). Then

E(Xθ) =M(Xθ) ∪ Z.

Now the kernelM(Xθ) is completely simple. What is its Rees
semigroup representation?

Theorem (Kellendonk-Y, 2020)
Let (Xθ, σ) be a nontrivial primitive length-` bijective substitution
shift. There exist finite groups Gθ, Γθ and a finite set Iθ such that,
algebraically,
I if θ has trivial generalised height then
M(Xθ) ∼= M [G; Iθ, {±};A] where G = GZ`

θ o Z`.
I if θ has generalised height = h , and Gθ contains an element

of order h, thenM(Xθ) ∼= M [G; Iθ, {±};A] where
G = (Γ

Z`

θ o Z/hZ) o Z`.

These systems are not tame.
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Group factors of (Xθ, σ)
If θ has length `, then recognizability implies that for each n and
each x ∈ Xθ, there is a unique y ∈ Xθ and 0 ≤ k < `n such that

x = σk(θn(y)).

Thus there is a factor map π : (Xθ, σ)→ (Z`,+1).
Note that π sends θ-fixed points to 0.
Using π we get a short exact sequence

Efib ↪→ E(Xθ)
π̃
� E(Z`) ∼= Z`

where π̃(fg) = π̃(f) + π̃(g) and Efib = ker π̃.

Z`
0 z

x1

x2

x3

y1

y2

f

f ∈ E f ib fixes fibres

f
If e is an idempotent in E(Xθ),
π̃(e) = π̃(e2) = π̃(e) + π̃(e)
so π̃(e) = 0, i.e. all idempotents belong to E f ib.
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How to find idempotents

Recall: x and y are proximal in Xθ if ∃ (nk), d(σnkx, σnky)→ 0.

Example
Consider the Thue-Morse substitution

a 7→ abba
b 7→ baab

There are four fixed points: a · a, a · b, b · a, b · b. We have

a · a and b · a are (right) proximal,
a · b and b · b are (right) proximal,
b · a and b · b are (left) proximal,
a · a and a · b are (left) proximal.

If σ acts minimally and x, y are proximal then there is a minimal
idempotent q such that y = q(x) and q(y) = y.
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Conspiracies between potential idempotents
We are guaranteed idempotents p and p̃ with:

b

a

ap

∃p
p(a · a) = p(b · a) = b · a

a

b

bp̃

∃ p̃
p̃(b · b) = p̃(a · b) = a · b

But it turns out that p = p̃:

a · a = . . . a · abbabaabbaababba . . .θn(b) ↓ θn(a) . . .

b · a = . . . b · abbabaabbaabbaab . . .θn(b) ↓ θn(a) . . .

a · b = . . . a · baababbaabbabaab . . .θn(a) ↓ θn(b) . . .

b · b = . . . b · baababbaabbabaab . . .θn(a) ↓ θn(b) . . .

So if limnk
σnk = p is such that

p(a · a) = p(b · a) = b · a, then p(a · b) = p(b · b) = a · b.

But how does p behave elsewhere?
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The dearth of proximality for bijective substitutions

We have found p such that p2(x) = p(x) for fixed points.

Lemma
For bijective substitutions, the only way a pair of points can be
proximal is if they are both in the shift orbit of {a ·a, a · b, b ·a, b · b}.
Recall:
I x and y are proximal if and only if there exists a minimal

idempotent p such that p(x) = p(y).
Therefore if p is a minimal idempotent, and if x is not in the
shift-orbit of a fixed point, then p(x) = x.



The dearth of proximality for bijective substitutions

We have found p such that p2(x) = p(x) for fixed points.

Lemma
For bijective substitutions, the only way a pair of points can be
proximal is if they are both in the shift orbit of {a ·a, a · b, b ·a, b · b}.
Recall:
I x and y are proximal if and only if there exists a minimal

idempotent p such that p(x) = p(y).
Therefore if p is a minimal idempotent, and if x is not in the
shift-orbit of a fixed point, then p(x) = x.



The dearth of proximality for bijective substitutions

We have found p such that p2(x) = p(x) for fixed points.

Lemma
For bijective substitutions, the only way a pair of points can be
proximal is if they are both in the shift orbit of {a ·a, a · b, b ·a, b · b}.
Recall:
I x and y are proximal if and only if there exists a minimal

idempotent p such that p(x) = p(y).
Therefore if p is a minimal idempotent, and if x is not in the
shift-orbit of a fixed point, then p(x) = x.



The dearth of proximality for bijective substitutions

We have found p such that p2(x) = p(x) for fixed points.

Lemma
For bijective substitutions, the only way a pair of points can be
proximal is if they are both in the shift orbit of {a ·a, a · b, b ·a, b · b}.
Recall:
I x and y are proximal if and only if there exists a minimal

idempotent p such that p(x) = p(y).
Therefore if p is a minimal idempotent, and if x is not in the
shift-orbit of a fixed point, then p(x) = x.



Thue-Morse example, completed
There are 4 idempotents, with p, p̃ coming from forward proximality
and q, q̃ from backward proximality:

p(a · a) = p(b · a) = b · a, p(a · b) = p(b · b) = a · b
p̃(a · a) = p̃(b · a) = a · a, p̃(a · b) = p̃(b · b) = b · b
q(a · a) = q(a · b) = a · b, q(b · a) = q(b · b) = b · a
q̃(a · a) = q̃(a · b) = a · a, q̃(b · a) = q̃(b · b) = b · b

Define Efib0 to be the restriction of Efib to the fixed points.

Theorem (Kellendonk-Y,2019, specific to Thue-Morse)
The idempotents generate Efib0 \ Id.
Also, algebraically
I Efib0 \ Id ∼= M [Gθ;S2, {±};A] where Gθ = S2.

I Efib\ Id ∼= M [Gfib;S2, {±};A] where Gfib ∼= G
Z2/Z
θ ;

I E(Xθ)\Z ∼= M [G;S2, {±};A] where G ∼= Gfib o Z2.
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The structure group Gθ and the little structure group Γθ
Given a bijective substitution θ = θ0 . . . θ`−1, we define
I the structure group Gθ of θ to be the group generated by all

the bijections (θn)i, n ∈ N, i = 0, · · · , `n − 1,
I its R-set by

Iθ := {(θn)i(θ
n)−1
i−1 ∈ Gθ : n ∈ N, i = 1, · · · , `n − 1}, and

I the little structure group Γθ to be the group generated by

{gh−1 : g, h ∈ Iθ.}
Example (Thue-Morse)(
a
b

)
7→
(
a
b

)(
b
a

)(
b
a

)(
a
b

)
, Gθ = Iθ = Γθ = S2.

Theorem (Kellendonk-Y,2020)
Let θ be a bijective primitive substitution of length `. If Gθ = Γθ,
then the idempotents generate Efib0 \ Id, and

E(Xθ)\Z =M(Xθ) ∼= M [G
Z`/Z
θ o Z`; Iθ, {±};A].



Do the idempotents always generate Efib
0 \ Id?

Example
Consider the substitutionab

c

 7→
ab
c

ba
c

ab
c

cb
a

ab
c

ac
b

ab
c


Columns of this substitution are either the identity, or
transpositions of S3. So Gθ = S3,

Iθ =


ba
c

 ,

cb
a

 ,

ac
b

 , and Γθ = 〈{gh−1 : g, h ∈ Iθ}〉 = A3

Here Γθ = A3 6= S3 = Gθ, so our previous theorem does not apply,
and in fact the idempotents do not generate Efib0 .



Generalised height

Lemma
Gθ/Γθ is a finite cyclic group.
The generalised height h of a primitive aperiodic bijective
substitution is the order of Gθ/Γθ.

Remark
Recall the definition of (classical) height hcl of a primitive
substitution of length ` : if u = u0u1 . . . is a fixed point,

hcl = gcd(`, {n : un = u0}).

The generalised height is at least the classical height, but can be
larger.



In general...

Theorem (Kellendonk-Y, 2020)
For a bijective substitution θ of length ` and generalised height h,
I Efib0 \ Id ∼= M [Gθ; Iθ, {±};A],
I Efib\ Id ∼= M [Gfib; Iθ, {±};A] where if Gθ contains an

element of order h then Gfib ∼= Γ
Z`/Z
θ o Z/hZ, and

I E(Xθ)\Z ∼= M [G;S2, {±};A] where G is given by

Gfib ↪→ G � Z`

In particular G ∼= Gfib o Z` if the generalised height equals the
classical height.



Towards topological description of Efib

Theorem (Kellendonk,Y, 2019)
If Γθ = Gθ, then there is a topological isomorphism

Efib ∼= (M [Gθ; Iθ, {±};A] ∪ {Id}) ×
∏

[z]∈Z`/Z
[z] 6=[0]

Gθ.

Otherwise

Efib ∼= (M [Gθ; Iθ, {±};A] ∪ {Id}) ×
∏

[z]∈Z`/Z
[z] 6=[0]

Γθ.



What next?

If θ is not bijective,
I it is not necessarily true that E(Xθ) =M(Xθ) ∪ Z,
I there can be uncountably many proximal pairs,
I and many conspiracies, both between idempotents, and across

fibres
How do we deal with this?


