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of vertices to some alphabet . «Z.

abdcb bcdba

The language L(G) of a colored graph G s a set of all
words that emerge on simple paths of G.

The Four Color Theorem (Appel, Haken, 1977). Every planar graph
G can be colored using a 4-letter alphabet <4 so that the language L(G)
does not contain words of the form xx, with x € .A.
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Problem. What is the least number k such that x7(G) < k, for every planar
graph G?
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Conjecture (Grytezuk, 2019). There is a number k such that every planar
graph G has a 4-coloring such that the language L(G) does not contain
squares of length greater than k.

A k-power is a word of the form XX..X, where a nonempty word X is repeated k times.
Imama mama ma mamatyge.
Conjecture (Grytezuk, 2006). There is a number k such that every planar

graph G has a 4-coloring such that the language L(G) does not contain
k-powers.
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Thue on-line game: In every round, Ann chooses a position in a word, and then Ben
chooses a letter which is inserted at that position. If a square occurs, then the game
stops and Ann is the winner.

Theorem (Grytezuk, Szafruga, Zmarz, 2013). Ann wins the Thue game
with 4 letters, while Ben can play arbitrarily long with 12 letters.

Theorem (Kiindgen and Pelsmajer, Barat and Varja, 2008). Every
outerplanar graph G satisfies 7(G) < 12.
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An extension of a word S is any word of the form UxV, where S = UV and x is a letter.
abcba

A square-free word S is extremal (over a fixed alphabet) if there is no square-free
extension of S.

abcabacbcabcbabcabacbcabc

Theorem (Grytezuk, Kordulewski, Niewiadomski, 2020). There exist
arbitrarily long extremal words over a 3-letter alphabet.

Conjecture (Grytezuk, Kordulewski, Niewiadomski, 2020). There are no
extremal words over a 4-letter alphabet at all.
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2 2,(G) = the list chromatic number of G

7’

(the minimum £ such that G is colorable
{a,bt {a,ct {b,c} from arbitrary alphabets of size k).

Theorem (Thomassen, 1994). Every planar graph G satisfies x (G) < 5.

Theorem (Voigt, 1993). There exist planar graphs G with x,(G) = 5.

Theorem (Grytezuk, Zhu, 2020). Every planar graph G contains a matching
M such that (G — M) < 4.
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Theorem (Grytezuk, Przybylo, Zhu, 2010). Every path G satisfies 7w ,(G) < 4.
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An Abelian square is a word of the form XY, where Y is an anagram of X.

Theorem (Keridnen, 1992). There exist arbitrarily long Abelian square-free
words over a 4-letter alphabet.
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Conjecture (Grytezuk, Przybylo, Zhu, 2010). There is a constant k such that
every path has an Abelian square-free coloring from arbitrary k-letter
alphabets.
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A Cartesian word is any word C = ¢ c,...c, over a 4-letter alphabet

satisfying the following recursive definition:

(1) every two adjacent letters in C are different,
(2) every subword of C'on even subscripts ¢ c,c¢,... is Cartesian.

Conjecture (C). For every n and every sequence 0 < 4(0) < (1) <...< i(m) < n,
there is a Cartesian word C = €oCq--+C, such that the subword Ci0)Cic1)Citm) 18
also Cartesian.

Theorem (Descartes and Descartes, 1968). Conjecture (C) is equivalent to
the Four Color Theorem.






