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The language L(G) of a colored graph G is a set of all 
words that emerge on simple paths of G.

abdcb 

The Four Color Theorem (Appel, Haken, 1977). Every planar graph 
G can be colored using a 4-letter alphabet 𝒜 so that the language L(G) 
does not contain words of the form xx, with x ∈ 𝒜.
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Theorem (Dujmović, Esperet, Joret, Walczak, Wood, 2020). Every planar 
graph G satisfies 𝜋(G) ⩽ 768.

Theorem (Ochem, 2011). There exists a planar graph G with 𝜋(G) ⩾ 11.

Problem. What is the least number k such that 𝜋(G) ⩽ k, for every planar 
graph G?
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Conjecture (Grytczuk, 2006). There is a number k such that every planar 
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Conjecture (Grytczuk, 2019). There is a number k such that every planar 
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Theorem (Grytczuk, Szafruga, Zmarz, 2013). Ann wins the Thue game 
with 4 letters, while Ben can play arbitrarily long with 12 letters.

Theorem (Kündgen and Pelsmajer, Barát and Varjú, 2008). Every 
outerplanar graph G satisfies 𝜋(G) ⩽ 12.

Thue on-line game: In every round, Ann chooses a position in a word, and then Ben 
chooses a letter which is inserted at that position. If a square occurs, then the game 
stops and Ann is the winner.  
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A square-free word S is extremal (over a fixed alphabet) if there is no square-free 
extension of S.

An extension of a word S is any word of the form UxV, where S = UV and x is a letter.

abcabacbcabcbabcabacbcabc

Theorem (Grytczuk, Kordulewski, Niewiadomski, 2020). There exist 
arbitrarily long extremal words over a 3-letter alphabet.

Conjecture (Grytczuk, Kordulewski, Niewiadomski, 2020). There are no 
extremal words over a 4-letter alphabet at all.
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𝝌(G) = 2 𝝌ℓ(G) = 3

𝝌ℓ(G) = the list chromatic number of G 
(the minimum k such that G is colorable 
from arbitrary alphabets of size k).

Theorem (Thomassen, 1994). Every planar graph G satisfies 𝝌ℓ(G) ⩽ 5.

Theorem (Voigt, 1993). There exist planar graphs G with 𝝌ℓ(G) = 5.

Theorem (Grytczuk, Zhu, 2020). Every planar graph G contains a matching 
M such that 𝝌ℓ(G − M) ⩽ 4.
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An Abelian square is a word of the form XY, where Y is an anagram of X.  

Theorem (Keränen, 1992). There exist arbitrarily long Abelian square-free 
words over a 4-letter alphabet.

{a,b,c,d} {a,b,d,e} {b,c,d,e} {a,b,c,d} {a,b,d,e} {b,c,e,f}
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Conjecture (Grytczuk, Przybyło, Zhu, 2010). There is a constant k such that 
every path has an Abelian square-free coloring from arbitrary k-letter 
alphabets.
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Conjecture (C). For every n and every sequence 0 ⩽ i(0) < i(1) <...< i(m) ⩽ n, 
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A Cartesian word is any word C = c0c1...cn over a 4-letter alphabet 
satisfying the following recursive definition:   

(1) every two adjacent letters in C are different,   
(2) every subword of C on even subscripts c0c2c4... is Cartesian.

Conjecture (C). For every n and every sequence 0 ⩽ i(0) < i(1) <...< i(m) ⩽ n, 
there is a Cartesian word C = c0c1...cn such that the subword ci(0)ci(1)...ci(m) is 
also Cartesian.
Theorem (Descartes and Descartes, 1968). Conjecture (C) is equivalent to 
the Four Color Theorem.
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