A characterization of Sturmian sequences by indistinguishable asymptotic pairs

arXiv:2011.08112

Sebastián Barbieri*, Sébastien Labbé† and Štěpán Starosta‡

* Universidad de Santiago de Chile
 † CNRS, LaBRI, Université de Bordeaux
 ‡ Czech Technical University in Prague

One World Combinatorics on Words Seminar
December 14th 2020

Outline

- Sturmian words
 Mechanical words, Christoffel words, Pirillo's theorem
- Terminology
 Symbolic dynamics, Asymptotic pairs, Pattern discrepancy,
 Indistinguishable asymptotic pairs
- Results
 Theorem A, Theorem B, Theorem C

Mechanical words (Morse, Hedlund, 1940)

Let $\alpha \in [0, 1]$ and $c_{\alpha}, c'_{\alpha} : \mathbb{Z} \to \{0, 1\}$ be the configurations

Sturmian words (Morse, Hedlund, 1940)

If $\alpha \in [0, 1] \setminus \mathbb{Q}$, then the mechanical words are **not periodic**:

$$c'_{\alpha}(n) = \lceil \alpha(n+1) \rceil - \lceil \alpha n \rceil$$
 (upper characteristic Sturmian word) $c_{\alpha}(n) = \lfloor \alpha(n+1) \rfloor - \lfloor \alpha n \rfloor$ (lower characteristic Sturmian word)

Christoffel words

If $\alpha \in [0, 1] \cap \mathbb{Q}$, then the mechanical words are **periodic**:

 $c'_{\alpha}(n) = {}^{\infty}w'^{\infty}$ where w' is the **upper** Christoffel word of slope p/q, $c_{\alpha}(n) = {}^{\infty}w^{\infty}$ where w is the **lower** Christoffel word of slope p/q, where $\alpha = p/(p+q)$ with $a, b \in \mathbb{Z}_{>0}$ coprime integers.

Moreover $w \leq_{\textit{lex}} p \leq_{\textit{lex}} w'$ for all primitive period p of c_{α} and c'_{α} .

Books

- Chapter 2 of Lothaire's book (2002), by Berstel and Séébold
- Chapter 6 of Pytheas Fogg's book (2002), by Arnoux
- Chapter 9 of Allouche and Shallit's book (2003)
- Christophe Reutenauer's book (2019)

Pirillo's theorem (2001)

Let w = 0m1 and w' = 1m0 for some $m \in \{0, 1\}^*$.

Theorem

The word w is a lower Christoffel word iff w and w' are conjugate.

A *d*-dimensional extension of Christoffel words

S. Labbé, C. Reutenauer, Discrete Comput. Geom. 54 (2015) 152-181.

Pirillo's theorem (restated for $^{\infty}w^{\infty}$)

Let w = 0m1 and w' = 1m0 for some $m \in \{0, 1\}^*$.

Theorem

 ${}^{\infty}w^{\infty}=c_{\alpha}$ is a lower mechanical word of slope $\alpha=p/(p+q)$ iff ${}^{\infty}w^{\infty}$ is a shift of ${}^{\infty}w'^{\infty}$.

Question: Let $\alpha \in [0, 1] \setminus \mathbb{Q}$.

Does $\lim_{\frac{p}{p+q} \to \alpha}$ (Pirillo's theorem) exist?

Symbolic dynamics

We consider

- a finite set Σ : the **alphabet**,
- the space of **configurations** $\Sigma^{\mathbb{Z}} = \{x \colon \mathbb{Z} \to \Sigma\},$
- ullet $\Sigma^{\mathbb{Z}}$ endowed with the **prodiscrete topology**,

$$x = \cdots \boxed{00010111011100.011001000001101} \boxed{100001} \cdots$$

 $y = \cdots \boxed{10010111011100.011001000001101} \boxed{011110} \cdots$

• to a pattern $p \colon S \to \Sigma$ with finite support $S \subset \mathbb{Z}$, a **cylinder**

$$[p] = \left\{ x \in \Sigma^{\mathbb{Z}} \colon x|_{\mathcal{S}} = p \right\}.$$

• the **shift** action $\mathbb{Z} \stackrel{\sigma}{\sim} \Sigma^{\mathbb{Z}}$.

$$\sigma^{-1}(x) = \cdots 10001011101110.001100100000110110000 \cdots$$
 $x = \cdots 00010111011100.011001000001101100001 \cdots$
 $\sigma(x) = \cdots 00101110111000.110010000011011000010 \cdots$
 $\sigma^{2}(x) = \cdots 01011101110001.100100000110110000100 \cdots$

Asymptotic pairs

Definition

 $x,y \in \Sigma^{\mathbb{Z}}$ are **asymptotic** if x and y differ in finitely many sites of \mathbb{Z} .

The set $F = \{n \in \mathbb{Z} : x_n \neq y_n\}$ is called the **difference set** of (x, y).

Pattern discrepancy

- Two asymptotic configurations $x, y \in \Sigma^{\mathbb{Z}}$ with difference set F.
- A pattern $p \colon S \to \Sigma$ with finite support $S \subseteq \mathbb{Z}$.

Goal : compare the # of occurrences of p in x and y : $|y|_p - |x|_p$.

Example: pattern p = .1001 with support $S = \{0, 1, 2, 3\}$

$$x = \cdots 10\underline{1001010010} \ \underline{1.0} \ \underline{010010100101} \cdots$$

 $y = \cdots 101001010010 \ \underline{100101001001001} \cdots$

with difference set $F = \{-1, 0\}$.

Definition

The p-discrepancy associated to (x, y) is given by

$$\Delta_{\rho}(x,y) = \sum_{n \in F-S} \mathbb{1}_{[\rho]}(\sigma^n y) - \mathbb{1}_{[\rho]}(\sigma^n x).$$

Note : $n \in \mathbb{Z} \setminus (F - S)$ if and only if $(n + S) \cap F = \emptyset$.

Indistinguishable asymptotic pairs

Let $x, y \in \Sigma^{\mathbb{Z}}$ be asymptotic configurations.

Definition

x, y are **indistinguishable** if $\Delta_p(x, y) = 0$ for every finite pattern p.

Example 1 : The **trivial** asymptotic pair (x, x) is indistinguishable.

Example 2:

In both of these examples, x and y lie on the same orbit of $\mathbb{Z} \stackrel{\sigma}{\sim} \Sigma^{\mathbb{Z}}$.

Question: Can we find other examples?

Indistinguishable asymptotic pairs

Let $x, y \in \Sigma^{\mathbb{Z}}$ be asymptotic configurations.

Definition

x, y are **indistinguishable** if $\Delta_p(x, y) = 0$ for every finite pattern p.

Non-Example 3, because $\Delta_1(x,y) = -7$:

Example 4, with $\Delta_{abcabc}(x, y) = 1 - 1 = 0$:

$$x = \cdots$$
 bcabcbcabcabcbcabcbcabcbcabcbc \cdots

$$y = \cdots$$
 bcabcbcabcabcbcabc. bcabcbcabcabcbcabcbc \cdots

Theorem A

Theorem

Let $x, y \in \{0, 1\}^{\mathbb{Z}}$ and assume that x is **recurrent**. The pair (x, y) is an **indistinguishable asymptotic pair** with difference set $F = \{-1, 0\}$ such that $x_{-1}x_0 = 10$ and $y_{-1}y_0 = 01$ if and only if

there exists $\alpha \in [0,1] \setminus \mathbb{Q}$ such that $x = c_{\alpha}$ and $y = c'_{\alpha}$ are the lower and upper characteristic Sturmian words of slope α .

Idea of Proof of Theorem A

(Recall that x is recurrent)

x, y indistinguishable pair

x, y mechanical words \leftarrow $\sum_{\text{Coven-Hedlund. } 73'} x, y$ have complexity n + 1

Proposition

Let $x,y\in \Sigma^{\mathbb{Z}}$ be a non-trivial indistinguishable asymptotic pair whose difference set F is contained in an interval I. For every $n\geq 1$

$$n+1 \le \#\mathcal{L}_n(x) \le n+\#I-1.$$

Example using Christoffel words

Let 0m1 be a lower Christoffel word of slope p/q with p+q=n. The 2 words of length 2n:

```
1m1.0m1
                            1m0.1m1
both contain n+1 factors of size n (one occurrence of each):
    sage: u = Word('10100101001010010010101')
    sage: v = Word('1010010100100101001010101')
    sage: v.factor_set(13) == u.factor_set(13)
    True
    sage: len(u.factor_set(13))
    14
But their binomial coefficients are not equal:
    sage: u.number_of_subword_occurrences(Word('01'))
    82
    sage: v.number_of_subword_occurrences(Word('01'))
    83
```

Theorem B

Theorem

Let $x, y \in \{0, 1\}^{\mathbb{Z}}$.

The pair (x, y) is an **indistinguishable asymptotic pair** with difference set $F = \{-1, 0\}$ such that $x_{-1}x_0 = 10$ and $y_{-1}y_0 = 01$

if and only if

there exists a monotone sequence $(\alpha_n)_{n\in\mathbb{N}}$ with $\alpha_n\in[0,1]\setminus\mathbb{Q}$ s.t.

$$x = \lim_{n \to \infty} c_{\alpha_n}$$
 and $y = \lim_{n \to \infty} c'_{\alpha_n}$.

are the limits of **characteristic Sturmian words** of slope α_n .

If
$$\alpha = \lim_{n \to \infty} \alpha_n \in [0, 1] \setminus \mathbb{Q}$$
, then

$$x = \lim_{n \to \infty} c_{\alpha_n} = c_{\alpha}$$
 and $y = \lim_{n \to \infty} c'_{\alpha_n} = c'_{\alpha}$

and it corresponds to Theorem A.

Theorem B: limit towards a rational slope

Assume $\lim_{n\to\infty} \alpha_n = p/(p+q) \in [0,1] \cap \mathbb{Q}$, with $p,q \in \mathbb{Z}_{\geq 0}$ coprime. If $p \neq 0$ and $q \neq 0$ and the limit is **from above**, then

$$\lim_{lpha o rac{p}{p+q}^+} c_lpha = {}^\infty (1m0)(1m1).(0m1)(0m1)^\infty \ \lim_{lpha o rac{p}{p+q}^+} c_lpha' = {}^\infty (1m0)(1m0).(1m1)(0m1)^\infty$$

or the limit is **from below**, then

$$\lim_{\alpha \to \frac{p}{p+q}^{-}} c_{\alpha} = {}^{\infty}(0m1)(0m1).(0m0)(1m0)^{\infty}$$

$$\lim_{\alpha \to \frac{p}{p+q}^{-}} c'_{\alpha} = {}^{\infty}(0m1)(0m0).(1m0)(1m0)^{\infty}$$

Limit cases: when p = 0 and q = 1 or p = 1 and q = 0, then

$$\lim_{\alpha \to 0^+} c_{\alpha} = {}^{\infty}01.00^{\infty} \qquad \qquad \lim_{\alpha \to 1^-} c_{\alpha} = {}^{\infty}11.01^{\infty}$$

$$\lim_{\alpha \to 0^+} c'_{\alpha} = {}^{\infty}00.10^{\infty} \qquad \qquad \lim_{\alpha \to 1^-} c'_{\alpha} = {}^{\infty}10.11^{\infty}$$

Idea of Proof of Theorem B (\Longrightarrow)

Let $x, y \in \{0, 1\}^{\mathbb{Z}}$ and assume x is **not recurrent**. If the pair (x, y) is an **indistinguishable asymptotic pair** with difference set $F = \{-1, 0\}$ such that $x_{-1}x_0 = 10$ and $y_{-1}y_0 = 01$,

then

 $x = \sigma^k(y)$ for some $k \in \mathbb{Z}$. If $k \ge 2$, then there exists $m \in \{0, 1\}^{k-2}$ s.t.

$$x = {^{\infty}(1m0)(1m1).(0m1)(0m1)^{\infty}}$$

$$y = {^{\infty}(1m0)(1m0).(1m1)(0m1)^{\infty}}$$

- 1*m*0 appears in *y* intersecting the difference set *F*
- it must appear in x intersecting the difference set F
- Thus 1m0 is a factor of 1m1.0m1, but certainly not as a prefix
- Therefore 1 m0 is a factor of m1.0 m1 and 0 m1.0 m1 = $(0 m1)^2$
- This implies that 1 m0 and 0 m1 are conjugate
- **Pirillo**'s Theorem \implies 0*m*1 is a **lower Christoffel word** of slope p/q for some coprime integers $p, q \in \mathbb{Z}_{>0}$ satisfying p + q = k.

Theorem C

Theorem

Let Σ be a **finite alphabet** and $x, y \in \Sigma^{\mathbb{Z}}$ a non-trivial asymptotic pair. Then x, y is **indistinguishable** if and only if either

• x is **recurrent** and there exists $\alpha \in [0,1] \setminus \mathbb{Q}$, a substitution $\varphi \colon \{0,1\} \to \Sigma^+$ and an integer $m \in \mathbb{Z}$ such that

$$\{x,y\} = \{\sigma^m \varphi(\sigma^1(\mathbf{c}_\alpha)), \sigma^m \varphi(\sigma^1(\mathbf{c}'_\alpha))\},\$$

• x is **not recurrent** and there exists a substitution $\varphi \colon \{\emptyset, 1\} \to \Sigma^+$ and an integer $m \in \mathbb{Z}$ such that

$$\{x,y\} = \{\sigma^m \varphi(\infty 0.10^{\infty}), \sigma^m \varphi(\infty 0.010^{\infty})\}.$$

Idea of Proof of Theorem C (←)

Let $x, y \in \Sigma^{\mathbb{Z}}$ be an **asymptotic pair** such that their difference set F is contained in [0, k-1].

Lemma

Let $\varphi \colon \Sigma \to \Gamma^+$ be a substitution on $\Sigma^{\mathbb{Z}}$. If (x,y) is indistinguishable, then $(\varphi(x), \varphi(y))$ is indistinguishable.

$$x = \cdots 010010. 01 0100101 \cdots$$

 $y = \cdots 010010. 10 0100101 \cdots$

Applying $\varphi: 0 \mapsto abc, 1 \mapsto bc:$

Idea of Proof of Theorem C (\Longrightarrow)

Lemma

Assume $a \in \Sigma$ appears with bounded gaps in x.

Let $D_a(x)$ be the **derived sequence** of x wrt return words to $a \in \Sigma$. If (x,y) indistinguishable, then $(D_a(x),D_a(y))$ indistinguishable.

Return words to letter *c* in *x* and *y* are *cab* and *cb* :

Replacing $cab \mapsto 0, cb \mapsto 1$, we obtain the **derived sequences**:

$$D_c(x) = \cdots 010010.$$
 01 0100101 \cdots

$$D_c(y) = \cdots 010010.$$
 10 0100101 \cdots

with a smaller difference set.

Thermodynamics and Gibbs theory

Gibbsian representations of continuous specifications : the theorems of Kozlov and Sullivan revisited.

S. Barbieri, R. Gómez, B. Marcus, T. Meyerovitch, S. Taati. arXiv:2001.03880

They defined the following ${\color{red} norm}$ on asymptotic configurations of $\Sigma^{\mathbb{Z}}$:

$$\|(x,y)\|_{\mathsf{NS}}^* = \sup_{\substack{S \subseteq \mathbb{Z} \\ S \text{ finite}}} \frac{1}{|S|} \sum_{p \in \Sigma^S} |\Delta_p(x,y)|.$$

- Every asymptotic pair induces an evaluation map on the space of continuous cocycles on the equiv. relation of asymptotic pairs.
- They show that this norm coincides with the dual norm in the space of linear functionals on the space of continuous cocycles.
- In other words, the asymptotic pairs which induce the null operator are precisely the indistinguishable pairs.
- Thus, our results provide a full characterization of which asymptotic pairs induce the null operator.

Ongoing

We are currently working to extend Theorem A from \mathbb{Z} to \mathbb{Z}^d .

Extending Theorem B and Theorem C to \mathbb{Z}^d seems more difficult.