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Introduction

Prefix palindromic length

The palindromic length PL(u) is the minimal number of concatenated
palindromes needed to express the word u.

abbaba = (abba) (b) (a) = (a) (bb) (aba)
PL(abbaba) = 3

The prefix palindromic length PPLy(n) of an infinite word u is the
palindromic length of the prefix of length n of u.
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Introduction

Prefix palindromic length

t = abbabaabba - - -
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What is known on the prefix palindromic length?

Very little.
If u is periodic, it can be bounded

u = abababab - - -

or not

u = abcabcabcabc - - - .
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Introduction

Conjecture

Conjecture (F., Puzynina, Zamboni, 2013)

For every non ultimately periodic word u, the function PPLy(n) is
unbounded.

Proven for u avoiding some power k, that is, words v = y - - - v (2013).
——
k

The proof is not constructive.
The number of palindromes starting at the same point is logarithmical.
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Introduction

Conjecture

Conjecture (F., Puzynina, Zamboni, 2013)

For every non ultimately periodic word u, the function PPLy(n) is
unbounded.

The conjecture is also proven
@ For all morphic words ([FPZ 2013] + [Klouda, Starosta, 2015])
@ In the greedy versions [Bucci, Richomme 2018]
@ For all Sturmian words [F. 2018]
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Introduction

Conjecture

Conjecture (F., Puzynina, Zamboni, 2013)

For every non ultimately periodic word u, the function PPLy(n) is
unbounded.

So, the conjecture holds for almost all infinite words, and here are the
remaining cases.
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Introduction

What about known words?

It is easier to find a decomposition to few palindromes than to prove it does
not exist.

Upper bounds :
F. 2017 - Fibonacci word;
Ambroz, Kadlec, Masdkova, Pelantovd, 2019: morphic words from class P

Lower bounds: F. 2019; Shuo LI 2020 - for some Toeplitz words including the
period doubling word.
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Introduction

Thue-Morse word

a — abba,
b — baab.

t = o(t) = abba baab baab abba baab abba - - -

PPL,(n)
W\/\/"\f\/\/\/\,\/\/\/\f\/\/‘/\’\/‘ .
4 16 64
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Introduction

Thue-Morse word

Theorem (F., 2019)

The following identities hold for all n > 0:

PPL(4n) = PPLy(n)

PPLi(4n + 1) = PPLyt(n ) +1,
PPL{(4n + 2) = min(PPL¢(n), PPLi(n + 1)) + 2,
PPLi(4n + 3) =

PPLi(n+ 1)+ 1.

Formula rediscovered by Shuo LI later the same year.
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Introduction

Morphism for first differences

di(n) = PPLy(n + 1) — PPLy(n) € {*\,,**, "}

Proposition

The sequence (dy(n)) is the fixed point of the morphism
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Growth

PPL¢(n)
W\/\/W\f“ .
4 16 64

PPL(n) 3
Inn  4In2’

lim sup
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k-regularity results

k-regularity?

The Thue-Morse word t is 2-automatic (and 4-automatic).
Its sequence PPL¢(n) is 4-regular (and 2-regular).

The first differences d¢(n) are 2- and 4-automatic.

Question

Is PPLy(n) a k-regular sequence whenever u is k-automatic? }
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k-regularity results

k-automatic words

Definition

A wordu =u[0]---u[n]- - is k-automatic if there exists a DFAO A such that
every symbol u[n] of u can be obtained as the output of A with the base-k
representation of n as the input.

Morphic definition

A word u is k-automatic if and only if u = v(¢*(a)) for some k-uniform
morphism ¢ and a uniform morphism .

Kernel definition
A word u is k-automatic if and only if its k-kernel

keri(u) = {(u[k’n + b]),>0 : € > 0,0 < b < k°}.

is finite.
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Equivalence

The three definitions above are equivalent.
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k-regularity results

k-regularity

Definition

A Z-valued sequence is k-regular if the Z-module generated by its k-kernel is
finitely generated.

Charlier, Rampersad, Shallit, 2012
Many functions of k-automatic words are k-regular, including
e factor complexity,

@ number of different palindrome factors of length n.

Walnut software
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k-regularity results

What about our case?

@ That method does not work for the PPL function.

@ The situation looks complicated even for simplest examples like the
period-doubling word.

@ On the good side: PPL, is k-regular if and only if d,, is k-automatic.

/—>/_\ o
0: e //\ or, equivalently, 0 ++——,
- +0--.

N
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k-regularity results

First differences

Proposition (Particular case of a lemma by Saarela, 2017)

For every infinite word u, the first differences of the prefix palindromic length
is a sequence over the alphabet {—1,0, 1} which we prefer to denote as

{-,0,+}.

So, it is a word over a finite alphabet which is k-automatic if and only if PPL,,
is k-regular.
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k-regularity results

The best result we get

Theorem

If a k-automatic word u contains a finite number of distinct palindromes, then
the PPL-difference sequence d,, is k-automatic.

IDEA OF THE PROOF: If p is the length of a longest palindrome in u, we have

PPL(n) = min{PPL(n—k)+1:k=1,...,p,uln — k + 1..n] is a palindrome}.

Just a finite number of cases to check and a transducer from another theorem
by Cobham (1972).
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k-regularity results

Paperfolding word

u,r = w(w;’;f(a)) = 0010011000110110- - - ,
where
a+— ab,
)b cb,
ool c+— ad,
dw—cd,

and the coding v is defined as ¥ (a) = ¥(b) = 0, ¥ (c) = ¥(d) = 1.
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k-regularity results

PPL of the paperfolding word

The longest palindromes in the paperfolding word are of length 13.

Theorem

The sequence d over the alphabet {-, 0, +} is equal to dyy = (115 (a0)),
where

ap — aopbg,
Hpf - ap — apby, by cpbe,  cp = apdy,  dy — cpde,
ag — adba, bc —> Cdbc, Cq —r adda, dc —> Cddc

and
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k-regularity results

PPL of the paperfolding word

ag — +0+0-+0+000—++0-+-P00+00+0-+000+000+00000-0++0-+0—,
ap — 0++-0+00+00-0+0000P00+00+0-+000+000+00000-0++0—+0—,
ag — 0+00000+00000+000-P00+00+0-+000+000+00000-0++0-+0—,
b, — 0++-0+00+00-0+0000P+-+0-0+000+000+0+-+0-000+000+0—,
Ypf: § be > +00+-00+0000+0000-P+-+0-0+000+000+0+-+0-000+000+0-,
Cp —> 0++-0+00+00-0+0000P00+00+0-+000+000+00000-0++0-+00,
€4 —> 0+00000+00000+000-P00+00+0-+000+000+00000-0++0-+00,
d, — 0++-0+00+00-0+0000P+-+0-0+000+000+0+-+0-000+000+00,

d. — +00+-00+0000+0000-P+-+0-0+000+000+0+-+0-000+000+00

with P = 0+00+00-0++-0+0.
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k-regularity results

Rudin-Shapiro word

The Rudin-Shapiro word u,y is the 2-automatic word
u,s = (% (a)) = 00010010000111010 - - - ,

where
a — ab,

b — ac,
c —db,
d — dc,

and the coding v is defined by 1(a) = ¥(b) =0, ¥(c) = ¥(d) = 1.

Prs -

The longest palindromes in the Rudin-Shapiro word are of length 14.
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k-regularity results

PPL of the Rudin-Shapiro word

Theorem

The sequence d, over the alphabet {—, 0, +} is equal to

dps = ’Yrs(:u‘;;(A))a

where )
A — AB,
B — CD,
Urs: § C — EB,
D — ED,
E— CB
and
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k-regularity results

PPL of the Rudin-Shapiro word

(A — +00+00000-++00-++00-+0+00+00+00+-0+00-+00+-0+0+0-0+0P,
B+ 0+0-0++-00+0+0-++00-+0+00+00+00+0+0-0++-00+0+0-+000+P,
Yrs : C— —0+OO—+O0+—0+0+OO+OO—++—+OO+OO0+O—+OOO+—+O—O+O+0—0+OP,
D — -0+00-+00+-0+0+00+00-++-+00+000+0+0-0++-00+0+0-+000+P,

KE > 0+0-0++-00+0+0—++00-+0+00+00+00+-0+00-+00+-0+0+0-0+0P.

with P = 0-+00+00+00+.
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k-regularity results

Remarks

@ The results on the paperfolding word and on the Rudin-Shapiro word are
not direct corollaries of the general theorem.

@ The Thue-Morse word contains an infinite number of palindromes but its
d is also 2-automatic.

@ We also have a conjecture on the Sierpifiski word. (0 — 010,1 — 111)
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Conjectures on non-regularity

Period-doubling word

w, = gozjd(a) = abaaabababaaabaa - - - |

where

a — ab,

d -
o b — aa.

The growth of sup PPL is logarithmic (Ambroz et al., Li)
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Conjectures on non-regularity

2-kernel?

kery(u) = {u[bju[2° + bju[2.2° + b]---u]2°n+b]---: € > 0,0 < b < 2°}.

u is 2-automatic if and only if its 2-kernel is finite.

Let &, be the number of elements of the 2-kernel observed in the prefix of
dpq(n) pf length 4". Then

4m VLR 46 47 48 4 410 T 41T = 4194304
K 66 | 145 | 297 | 584 | 1046 | 1816 | 3047 5051
km/km—1 || 3.0 | 2.197 | 2.048 | 1.966 | 1.791 | 1.736 | 1.678 1.658
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Conjectures on non-regularity

Fibonacci word

uy = abaababaabaab - - - is the fixed point of

~ Ja— ab,
e b — a.

It is Fibonacci-automatic, and all the regularity results can be generalized to it

if we use the Fibonacci numeration system (Du, Mousavi, Schaeffer, Shallit,
2016).
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Conjectures on non-regularity

Fibonacci-kernel of dg(n)?

07" ()] 21 | 89 | 377 | 1597 | 6765 | 28657 | 121393
o 11 | 31 | 88 | 207 | 504 | 1139 | 2377
o /1 3.67 | 2.82 | 2.85 | 2.35 | 243 | 2.26 | 2.09
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Conjectures on non-regularity

Main conjecture(s)

Conjecture

The PPL-difference sequence of the period-doubling word (@ — ab, b — aa)
is NOT 2-automatic.

Conjecture

The PPL-difference sequence of the Fibonacci word (@ — ab, b — a) is NOT
Fibonacci-automatic.

Conjecture

The PPL-difference sequence of a k-automatic word containing an infinite
number of palindromes is NOT obliged to be k-automatic.
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