Two applications of the composition of a 2-tape automaton and a weighted automaton

Célia Cisternino

Joint work with Émilie Charlier and Manon Stipulanti

February 22, 2021

Day of Short Talks on Combinatorics on Words

Introduction

Consider two alphabets A and B and a symbol $\$ \notin A \cup B$.
We denote

$$
A_{\$}=A \cup\{\$\} \text { and } B_{\$}=B \cup\{\$\} .
$$

For all $u \in A^{*}$ and $v \in B^{*}$, the $\$$-padding of $\left[\begin{array}{l}u \\ v\end{array}\right]$ is defined by

$$
\left[\begin{array}{cc}
u \\
v
\end{array}\right]^{\$}=\left\{\begin{array}{cc}
{[\$|v|-|u| u} \\
v & \text { if }|u| \leq|v| \\
{\left[\begin{array}{c}
u \\
\hline|u|-|v| v
\end{array}\right]} & \text { if }|u|>|v|
\end{array}\right.
$$

Two-tape automata

Consider a DFA

$$
\mathcal{A}=\left(Q, i, T, A_{\$} \times B_{\$}, \delta\right)
$$

- Q : set of states
- i : initial state
- T : set of final states
- A and B : alphabets
- $\delta: Q \times\left(A_{\$} \times B_{\$}\right) \rightarrow Q:($ partial $)$ function

An image $u \in A^{*}$ by \mathcal{A} is a word $v \in B^{*}$ such that

$$
\delta\left(i,\left[\begin{array}{l}
u \\
v
\end{array}\right]^{\$}\right) \in T .
$$

Example

\mathcal{A} :

Example

$\mathcal{A}:$
[$\left.\begin{array}{l}a \\ a\end{array}\right],\left[\begin{array}{l}a \\ b\end{array}\right],\left[\begin{array}{l}b \\ a\end{array}\right],\left[\begin{array}{l}b \\ b\end{array}\right]$

For all $u \in\{a, b\}^{*}$, then

$$
\operatorname{im}(u)=\left\{v \in\{a, b\}^{*}:\|u|-| v\| \leq 1\right\} .
$$

The 2-tape automaton \mathcal{A} accepts

$$
\left[\begin{array}{c}
\$ u \\
v
\end{array}\right],\left[\begin{array}{c}
u \\
v
\end{array}\right],\left[\begin{array}{c}
u \\
\$ v
\end{array}\right]
$$

with $v \in\{a, b\}^{|u|+1}, v \in\{a, b\}^{|u|}$ and $v \in\{a, b\}^{|u|-1}$ respectively.

Weighted automata

Let \mathbb{K} be a semiring and consider a \mathbb{K}-automaton

$$
\mathcal{B}=(Q, I, T, B, E)
$$

- Q: set of states
- B: alphabet
- $I: Q \rightarrow \mathbb{K}$, a state q is initial if $I(q) \neq 0$
- $T: Q \rightarrow \mathbb{K}$, a state q is final if $T(q) \neq 0$
- $E: Q \times B \times Q \rightarrow \mathbb{K}$.

A triple $(p, b, q) \in Q \times B \times Q$ is called a transition. The label of a transition (p, b, q) is the letter b and its weight is $E(p, b, q)$.

A path in \mathcal{B} is a sequence

$$
c=\left(q_{0}, b_{1}, q_{1}\right)\left(q_{1}, b_{2}, q_{2}\right) \cdots\left(q_{n-1}, b_{n}, q_{n}\right)
$$

of transitions. The weight of the path c is the product

$$
E(c)=E\left(q_{0}, b_{1}, q_{1}\right) E\left(q_{1}, b_{2}, q_{2}\right) \cdots E\left(q_{n-1}, b_{n}, q_{n}\right) .
$$

Its label is the word $b_{1} b_{2} \cdots b_{n}$.
The path c is initial if q_{0} is initial and final if q_{n} is final.
For $w \in B^{*}$, we let $C_{\mathcal{B}}(w)$ denote the set of paths in \mathcal{B} of label w that are both initial and final. The weight of w in \mathcal{B} is the quantity

$$
\sum_{c \in C_{\mathcal{B}}(w)} I\left(i_{c}\right) E(c) T\left(t_{c}\right) .
$$

Example

The weight of $v \in\{a, b\}^{*}$ in \mathcal{B} equals

$$
\max \left|\operatorname{Suff}(v) \cap\{a\}^{*}\right| .
$$

$\mathcal{B}:$

Example

The weight of $v \in\{a, b\}^{*}$ in \mathcal{B} equals

$$
\max \left|\operatorname{Suff}(v) \cap\{a\}^{*}\right| .
$$

Without loss of generality, \mathcal{B} has a unique initial state with no incoming transition.

Example

The weight of $v \in\{a, b\}^{*}$ in \mathcal{B} equals

$$
\max \left|\operatorname{Suff}(v) \cap\{a\}^{*}\right| .
$$

Without loss of generality, \mathcal{B} has a unique initial state with no incoming transition. We add a loop on this initial state of label \$ and weight 1 . For all $v \in B^{*}$ and $k \in \mathbb{N}$, the weight of $\$^{k} v$ in \mathcal{B} equals the weight of v.

Question:

Considering a 2-tape DFA

$$
\mathcal{A}=\left(Q_{\mathcal{A}}, i_{\mathcal{A}}, T_{\mathcal{A}}, A_{\$} \times B_{\$}, \delta_{\mathcal{A}}\right)
$$

and a (modified) \mathbb{K}-automaton

$$
\mathcal{B}=\left(Q_{\mathcal{B}}, I_{\mathcal{B}}, T_{\mathcal{B}}, B_{\$}, E_{\mathcal{B}}\right),
$$

can we compute a \mathbb{K}-automaton on the alphabet A in which the weight of $u \in A^{*}$ is the sum of the weights of its images by \mathcal{A} in \mathcal{B} ?

Question:
Considering a 2-tape DFA

$$
\mathcal{A}=\left(Q_{\mathcal{A}}, i_{\mathcal{A}}, T_{\mathcal{A}}, A_{\$} \times B_{\$}, \delta_{\mathcal{A}}\right)
$$

and a (modified) \mathbb{K}-automaton

$$
\mathcal{B}=\left(Q_{\mathcal{B}}, I_{\mathcal{B}}, T_{\mathcal{B}}, B_{\$}, E_{\mathcal{B}}\right),
$$

can we compute a \mathbb{K}-automaton on the alphabet A in which the weight of $u \in A^{*}$ is the sum of the weights of its images by \mathcal{A} in \mathcal{B} ?

Example: We have

$$
\operatorname{im}(a)=\{\varepsilon, a, b, a a, a b, b a, b b\}
$$

so we want the weight of a to be $0+1+0+2+0+1+0=4$.

Idea: Define the "composition" $\mathcal{B} \circ \mathcal{A}$.

Automata composition

We define a new \mathbb{K}-automaton $\mathcal{B} \circ \mathcal{A}=\left(Q, I, T, A_{\$}, E\right)$ as follows.
(1) $Q=\left(Q_{\mathcal{A}} \times Q_{\mathcal{B}}\right) \cup\{\alpha\}$.
(2) $I: Q \rightarrow \mathbb{K}$ is defined by

- $I\left(i_{\mathcal{A}}, i_{\mathcal{B}}\right)=I_{\mathcal{B}}\left(i_{\mathcal{B}}\right)$
- For $\left(q, q^{\prime}\right) \in\left(Q_{\mathcal{A}} \times Q_{\mathcal{B}}\right) \backslash\left\{\left(i_{\mathcal{A}}, i_{\mathcal{B}}\right)\right\}, I\left(q, q^{\prime}\right)=0$
- $I(\alpha)=1$.
(3) $T: Q \rightarrow \mathbb{K}$ is defined by
- For $\left(q, q^{\prime}\right) \in T_{\mathcal{A}} \times Q_{\mathcal{B}}, T\left(q, q^{\prime}\right)=T_{\mathcal{B}}\left(q^{\prime}\right)$
- For $\left(q, q^{\prime}\right) \in\left(Q_{\mathcal{A}} \backslash T_{\mathcal{A}}\right) \times Q_{\mathcal{B}}, T\left(q, q^{\prime}\right)=0$
- $T(\alpha)=0$.

(c) $E: Q \times A_{\$} \times Q \rightarrow \mathbb{K}$ is defined by
- For $\left(q_{1}, q_{1}^{\prime}\right),\left(q_{2}, q_{2}^{\prime}\right) \in Q_{\mathcal{A}} \times Q_{\mathcal{B}}$ and $a \in A_{\$}$,

$$
E\left(\left(q_{1}, q_{1}^{\prime}\right), a,\left(q_{2}, q_{2}^{\prime}\right)\right)=\sum_{\substack{b \in B_{\mathfrak{s}} \\
\delta_{\mathcal{A}}\left(q_{1},\left[\begin{array}{l}
a \\
b
\end{array}\right]\right)=q_{2}}} E_{\mathcal{B}}\left(q_{1}^{\prime}, b, q_{2}^{\prime}\right)
$$

- For $a \in A_{\$}, E(\alpha, a, \alpha)=0$
- For $\left(q, q^{\prime}\right) \in Q_{\mathcal{A}} \times Q_{\mathcal{B}}$ and $a \in A_{\$}, E\left(\left(q, q^{\prime}\right), a, \alpha\right)=0$

- For $\left(q, q^{\prime}\right) \in Q_{\mathcal{A}} \times Q_{\mathcal{B}}$ and $a \in A_{\Phi}$,

$$
E\left(\alpha, a,\left(q, q^{\prime}\right)\right)= \begin{cases}l\left(i_{\mathcal{A}}, i_{\mathcal{B}}\right) \sum_{\ell \geq 1} \sum_{c \in C_{q, q^{\prime}, a, \ell}} E(c) & \text { if }\left(q, q^{\prime}\right) \text { is co-accessible } \\ 0 & \text { else }\end{cases}
$$

where $C_{q, q^{\prime}, a, \ell}$ denotes the set of non-zero weight paths from $\left(i_{\mathcal{A}}, i_{\mathcal{B}}\right)$ to $\left(q, q^{\prime}\right)$ labeled by $\$^{\ell} a$.

Intuition:

- The state α bypasses the leading \$ for the images greater than u since

$$
\left[\begin{array}{c}
\$|v|-|u| \\
v
\end{array}\right]
$$

is accepted in \mathcal{A}. In fact, without $\alpha, \$^{|v|-|u|} u$ (instead of u) is the label of the path in $\mathcal{B} \circ \mathcal{A}$.

- Le loop $\$ \mid 1$ on $i_{\mathcal{B}}$ is for the images smaller than u since

$$
\left[\$|u|-|v|_{v}\right]
$$

is accepted in \mathcal{A}.

Synchronized relations and 2-tape automata

The relation $R: A^{*} \rightarrow B^{*}$ is synchronized if there exists a 2-tape automaton accepting the language

$$
\left\{\left[\begin{array}{l}
u \\
v
\end{array}\right]^{\$}: u R v\right\} .
$$

Example:

The relation $R:\{a, b\}^{*} \rightarrow\{a, b\}^{*}$ defined by

$$
u R v \Leftrightarrow\|u|-| v\| \leq 1
$$

is synchronized.

$$
\left[\begin{array}{l}
a \\
a
\end{array}\right],\left[\begin{array}{l}
a \\
b
\end{array}\right],\left[\begin{array}{l}
b \\
a
\end{array}\right],\left[\begin{array}{c}
b \\
b
\end{array}\right]
$$

\mathcal{A} :

Formal series and \mathbb{K}-automata

A (formal) series is a function

$$
S: A^{*} \rightarrow \mathbb{K}, w \mapsto(S, w)
$$

A series $S: A^{*} \rightarrow \mathbb{K}$ is \mathbb{K}-recognizable if there exist $r \in \mathbb{N}_{\geq 1}$, a morphism $\mu: A^{*} \rightarrow \mathbb{K}^{r \times r}$ and two matrices $\lambda \in \mathbb{K}^{1 \times r}$ and $\gamma \in \mathbb{K}^{r \times 1}$ such that for all $w \in A^{*}$,

$$
(S, w)=\lambda \mu(w) \gamma
$$

Proposition

A series is recognized by a \mathbb{K}-automaton if and only if it is \mathbb{K}-recognizable.

Example: The following \mathbb{N}-automaton recognizes the series

$$
S:\{a, b\}^{*} \rightarrow \mathbb{N}, v \mapsto \max \left|\operatorname{Suff}(v) \cap\{a\}^{*}\right|
$$

Composition of a relation and a series

For a relation $R: A^{*} \rightarrow B^{*}$ and a series $S: B^{*} \rightarrow \mathbb{K}$ such that for all $u \in A^{*}$, the language $\left\{v \in B^{*}: u R v\right\}$ is finite, we define the composition of R and S as the series

Theorem (Charlier, C. \& Stipulanti)

Let $R: A^{*} \rightarrow B^{*}$ be a synchronized relation, let $S: B^{*} \rightarrow \mathbb{K}$ be a \mathbb{K}-recognizable series, and suppose that for all $u \in A^{*}$, the language $\left\{v \in B^{*}: u R v\right\}$ is finite. Then $S \circ R$ is a \mathbb{K}-recognizable series.

Sketch of the proof:

- Let \mathcal{A} be a DFA recognizing $\left\{\left[\begin{array}{l}u \\ v\end{array}\right]^{\$}: u R v\right\}$.
- Let \mathcal{B} be a \mathbb{K}-automaton recognizing the series S.
- Modify \mathcal{B} : unique initial state with no incoming edge and loop \$|1.
- Construct the \mathbb{K}-automaton $\mathcal{B} \circ \mathcal{A}$.
- Project on A and change the final weight of the initial state $\left(i_{\mathcal{A}}, i_{\mathcal{B}}\right)$ from $T_{\mathcal{B}}\left(i_{\mathcal{B}}\right)$ to $\frac{1}{I_{\mathcal{B}}\left(i_{\mathcal{B}}\right)}\left(\sum_{\substack{v \in B^{*} \\ \varepsilon R v}}(S, v)\right)$
This automaton recognizes the series $S \circ R$.

First application

An abstract numeration system is a triple $\mathcal{S}=(L, A,<)$ where

- $(A,<)$ is a totally ordered alphabet
- L is an infinite regular language over A

The words in L are ordered with respect to the radix order $<_{\text {rad }}$ induced by the order $<$ on A : for $u, v \in A^{*}, u<_{\text {rad }} v$ either if $|u|<|v|$, or if $|u|=|v|$ and u is lexicographically less than v.

The \mathcal{S}-representation function $\operatorname{rep}_{\mathcal{S}}: \mathbb{N} \rightarrow L$ maps any non-negative integer n onto the nth word in L.
The \mathcal{S}-value function $\operatorname{val}_{\mathcal{S}}: L \rightarrow \mathbb{N}$ is the reciprocal function of $\operatorname{rep}_{\mathcal{S}}$.

Example: Let $\mathcal{S}=\left(a^{*} b^{*}, a<b\right)$ then $\operatorname{rep}_{\mathcal{S}}(7)=a a b$ and $\operatorname{val}_{\mathcal{S}}(a a a)=6$.
$\varepsilon<_{\mathrm{rad}} a<_{\mathrm{rad}} b<_{\mathrm{rad}} a a<_{\mathrm{rad}} a b<_{\mathrm{rad}} b b<_{\mathrm{rad}} a a a<_{\mathrm{rad}} a a b<_{\mathrm{rad}} \cdots$

A sequence $f: \mathbb{N} \rightarrow \mathbb{K}$ is called $(\mathcal{S}, \mathbb{K})$-regular if the formal series

$$
\sum_{n \in \mathbb{N}} f(n) \operatorname{rep}_{\mathcal{S}}(n)
$$

is \mathbb{K}-recognizable.
A sequence $f: \mathbb{N} \rightarrow \mathbb{N}$ is $\left(\mathcal{S}, \mathcal{S}^{\prime}\right)$-synchronized if

$$
\left\{\left[\underset{\operatorname{rep}_{\mathcal{S}}(n)}{\operatorname{rep}_{\mathcal{S}^{\prime}}(f(n))}\right]^{\$}: n \in \mathbb{N}\right\}
$$

is regular.

Theorem (Charlier, C. \& Stipulanti)

If $f: \mathbb{N} \rightarrow \mathbb{N}$ is an $\left(\mathcal{S}, \mathcal{S}^{\prime}\right)$-synchronized sequence and $g: \mathbb{N} \rightarrow \mathbb{K}$ is an $\left(\mathcal{S}^{\prime}, \mathbb{K}\right)$-regular sequence, then the sequence $g \circ f: \mathbb{N} \rightarrow \mathbb{K}$ is (\mathcal{S}, \mathbb{K})-regular.

Let U be a (positional) numeration system.
A sequence $f: \mathbb{N} \rightarrow \mathbb{K}$ is called (U, \mathbb{K})-regular if the series

$$
\sum_{n \in \mathbb{N}} f(n) \operatorname{rep}_{U}(n)
$$

is \mathbb{K}-recognizable.
In numeration systems, the U-value function can be extended over all words over the numeration alphabet A_{U}.
An alternative definition: f is (U, \mathbb{K})-regular if the series

$$
\sum_{w \in A_{U}^{*}} f\left(\operatorname{val}_{U}(w)\right) w
$$

is \mathbb{K}-recognizable.

Proposition

For any Pisot numeration system U, the normalization is effectively computable.

Theorem (Charlier, C. \& Stipulanti 2020)

For $f: \mathbb{N} \rightarrow \mathbb{K}$ and a Pisot numeration system U, the following assertions are equivalent.
(1) The sequence f is (U, \mathbb{K})-regular: that is, the series

$$
\sum_{n \in \mathbb{N}} f(n) \operatorname{rep}_{U}(n)
$$

is \mathbb{K}-recognizable.
(2) The series

$$
\sum_{w \in A_{U}^{*}} f\left(\operatorname{val}_{U}(w)\right) w
$$

is \mathbb{K}-recognizable.

E É Charlier, C. Cisternino and M. Stipulanti
Robustness of Pisot-regular sequences
Adv. in Appl. Math., 125: 102151, 2021.
arXiv:2006.11126
围 É. Charlier, C. Cisternino and M. Stipulanti
Regular sequences and synchronized sequences in abstract numeration systems
(Submitted)
arXiv:2012.04969

Thank you!

