Two applications of the composition of a 2-tape automaton and a weighted automaton

Célia Cisternino Joint work with Émilie Charlier and Manon Stipulanti

February 22, 2021

Day of Short Talks on Combinatorics on Words

Introduction •0000000	Automata composition	Relations and formal series	Applications to regular sequences
Introducti	ion		

Consider two alphabets A and B and a symbol $\ \ \notin A \cup B$.

We denote

$$A_\$ = A \cup \{\$\}$$
 and $B_\$ = B \cup \{\$\}.$

For all $u \in A^*$ and $v \in B^*$, the \$-padding of $\begin{bmatrix} u \\ v \end{bmatrix}$ is defined by

$$\begin{bmatrix} u \\ v \end{bmatrix}^{\$} = \begin{cases} \begin{bmatrix} \$^{|v|-|u|}u \\ u \\ \end{bmatrix} & \text{if } |u| \le |v| \\ \begin{bmatrix} u \\ \$^{|u|-|v|}v \end{bmatrix} & \text{if } |u| > |v| \end{cases}$$

Introduction 0000000	Automata composition	Relations and formal series	Applications to regular sequences
Two-tape	automata		

Consider a DFA

$$\mathcal{A} = (Q, i, T, A_{\$} \times B_{\$}, \delta)$$

- Q: set of states
- *i*: initial state
- T: set of final states
- A and B: alphabets
- $\delta: Q \times (A_{\$} \times B_{\$}) \rightarrow Q$: (partial) function

An **image** $u \in A^*$ by \mathcal{A} is a word $v \in B^*$ such that

 $\delta(i, [\begin{smallmatrix} u\\v \end{smallmatrix}]^{\$}) \in T.$

Introduction 0000000	Automata composition	Relations and formal series	Applications to regular sequences
Example			

$$\mathcal{A}: \longrightarrow \boxed{1} \xrightarrow{\begin{bmatrix} \$ \\ b \end{bmatrix}, \begin{bmatrix} \$ \\ \$ \end{bmatrix}, \begin{bmatrix} \$ \\ a \end{bmatrix}, \begin{bmatrix} \$ \\ b \end{bmatrix}, \begin{bmatrix} \$ \\ b \end{bmatrix}, \begin{bmatrix} \$ \\ b \end{bmatrix}, \begin{bmatrix} b \\ \$ \end{bmatrix}, \begin{bmatrix} b \\ b \end{bmatrix}, \begin{bmatrix} b \\$$

Introduction 0000000	Automata composition	Relations and formal series	Applications to regular sequences
Example			

$$\mathcal{A}: \longrightarrow \boxed{1} \xrightarrow{\begin{bmatrix} \$ \\ a \end{bmatrix}, \begin{bmatrix} a \\ b \end{bmatrix}, \begin{bmatrix} b \\ a \end{bmatrix}, \begin{bmatrix} b \\ b \end{bmatrix}, \begin{bmatrix} b \\$$

For all $u \in \{a, b\}^*$, then

$$\operatorname{im}(u) = \{v \in \{a, b\}^* : ||u| - |v|| \le 1\}.$$

The 2-tape automaton ${\mathcal A}$ accepts

 $\begin{bmatrix} \$ u \\ v \end{bmatrix}, \begin{bmatrix} u \\ v \end{bmatrix}, \begin{bmatrix} u \\ \$ v \end{bmatrix}$

with $v \in \{a,b\}^{|u|+1}$, $v \in \{a,b\}^{|u|}$ and $v \in \{a,b\}^{|u|-1}$ respectively.

	oction	Automata composition	Relations and formal series	Applications to regular sequences
W	eighted	automata		

Let $\mathbb K$ be a semiring and consider a $\mathbb K\text{-}\textbf{automaton}$

 $\mathcal{B} = (Q, I, T, B, E)$

- Q: set of states
- B: alphabet
- $I: Q \to \mathbb{K}$, a state q is initial if $I(q) \neq 0$
- $T: Q \to \mathbb{K}$, a state q is final if $T(q) \neq 0$
- $E: Q \times B \times Q \to \mathbb{K}.$

A triple $(p, b, q) \in Q \times B \times Q$ is called a *transition*. The *label* of a transition (p, b, q) is the letter b and its **weight** is E(p, b, q).

Introduction	Automata composition	Relations and formal series	Applications to regular sequences
00000000			

A **path** in \mathcal{B} is a sequence

$$c = (q_0, b_1, q_1)(q_1, b_2, q_2) \cdots (q_{n-1}, b_n, q_n)$$

of transitions. The **weight** of the path *c* is the product

$$E(c) = E(q_0, b_1, q_1)E(q_1, b_2, q_2)\cdots E(q_{n-1}, b_n, q_n).$$

Its **label** is the word $b_1 b_2 \cdots b_n$.

The path *c* is **initial** if q_0 is initial and **final** if q_n is final.

For $w \in B^*$, we let $C_{\mathcal{B}}(w)$ denote the set of paths in \mathcal{B} of label w that are both initial and final. The **weight** of w in \mathcal{B} is the quantity

$$\sum_{c\in C_{\mathcal{B}}(w)} I(i_c)E(c)T(t_c).$$

Introduction 00000000	Automata composition	Relations and formal series	Applications to regular sequences
Example			

The weight of $v \in \{a, b\}^*$ in \mathcal{B} equals

 $\max |\mathrm{Suff}(v) \cap \{a\}^*|.$

 \mathcal{B} :

Introduction 00000000	Automata composition	Relations and formal series	Applications to regular sequences
Example			

The weight of $v \in \{a, b\}^*$ in \mathcal{B} equals

 $\max |\operatorname{Suff}(v) \cap \{a\}^*|.$

Without loss of generality, $\ensuremath{\mathcal{B}}$ has a unique initial state with no incoming transition.

Introduction 00000000	Automata composition	Relations and formal series	Applications to regular sequences
Example			

The weight of $v \in \{a, b\}^*$ in \mathcal{B} equals

 $\max |\operatorname{Suff}(v) \cap \{a\}^*|.$

Without loss of generality, \mathcal{B} has a unique initial state with no incoming transition. We add a loop on this initial state of label \$ and weight 1. For all $v \in B^*$ and $k \in \mathbb{N}$, the weight of $\$^k v$ in \mathcal{B} equals the weight of v.

Introduction	Automata composition	Relations and formal series	Applications to regular sequences
00000000			

Question:

Considering a 2-tape DFA

$$\mathcal{A} = (Q_{\mathcal{A}}, i_{\mathcal{A}}, T_{\mathcal{A}}, A_{\$} \times B_{\$}, \delta_{\mathcal{A}})$$

and a (modified) $\mathbb{K}\text{-}\mathsf{automaton}$

$$\mathcal{B} = (Q_{\mathcal{B}}, I_{\mathcal{B}}, T_{\mathcal{B}}, B_{\$}, E_{\mathcal{B}}),$$

can we compute a \mathbb{K} -automaton on the alphabet A in which the weight of $u \in A^*$ is the sum of the weights of its images by A in \mathcal{B} ?

Introduction	Automata composition	Relations and formal series	Applications to regular sequences
00000000			

Question:

Considering a 2-tape DFA

$$\mathcal{A} = (Q_{\mathcal{A}}, i_{\mathcal{A}}, T_{\mathcal{A}}, A_{\$} \times B_{\$}, \delta_{\mathcal{A}})$$

and a (modified) $\mathbb{K}\text{-}\mathsf{automaton}$

$$\mathcal{B} = (Q_{\mathcal{B}}, I_{\mathcal{B}}, T_{\mathcal{B}}, B_{\$}, E_{\mathcal{B}}),$$

can we compute a \mathbb{K} -automaton on the alphabet A in which the weight of $u \in A^*$ is the sum of the weights of its images by A in \mathcal{B} ?

Example: We have

$$im(a) = \{\varepsilon, a, b, aa, ab, ba, bb\}$$

so we want the weight of *a* to be 0 + 1 + 0 + 2 + 0 + 1 + 0 = 4.

Introduction	Automata composition	Relations and formal series	Applications to regular sequences
0000000			

<u>Idea</u>: Define the "composition" $\mathcal{B} \circ \mathcal{A}$.

Introduction 00000000	Automata composition ●00000	Relations and formal series	Applications to regular sequences
Automata	composition		

$$\mathcal{A}: \qquad \qquad \overbrace{\left[\begin{smallmatrix}a\\b\\b\end{smallmatrix}\right], \left[\begin{smallmatrix}b\\a\end{smallmatrix}\right], \left[\begin{smallmatrix}b\\a\end{smallmatrix}\right], \left[\begin{smallmatrix}b\\b\end{smallmatrix}\right], \left[\begin{smallmatrix}b\\b$$

Introduction 00000000	Automata composition 00000	Relations and formal series	Applications to regular sequences

We define a new \mathbb{K} -automaton $\mathcal{B} \circ \mathcal{A} = (Q, I, T, A_{\$}, E)$ as follows.

$$Q = (Q_{\mathcal{A}} \times Q_{\mathcal{B}}) \cup \{\alpha\}.$$

$$I: Q \to \mathbb{K} \text{ is defined by}$$

$$I(i_{\mathcal{A}}, i_{\mathcal{B}}) = I_{\mathcal{B}}(i_{\mathcal{B}})$$

$$For (q, q') \in (Q_{\mathcal{A}} \times Q_{\mathcal{B}}) \setminus \{(i_{\mathcal{A}}, i_{\mathcal{B}})\}, I(q, q') = 0$$

$$I(\alpha) = 1.$$

$$T: Q \to \mathbb{K} \text{ is defined by}$$

$$For (q, q') \in T_{\mathcal{A}} \times Q_{\mathcal{B}}, T(q, q') = T_{\mathcal{B}}(q')$$

$$For (q, q') \in (Q_{\mathcal{A}} \setminus T_{\mathcal{A}}) \times Q_{\mathcal{B}}, T(q, q') = 0$$

$$T(\alpha) = 0.$$

$$(2, x)$$

$$(2, y)$$

Introduction 00000000	Automata composition 000●00	Relations and formal series	Applications to regular sequences

• For
$$(q,q')\in Q_{\mathcal{A}} imes Q_{\mathcal{B}}$$
 and $a\in A_{\$},$

$$E(\alpha, a, (q, q')) = \begin{cases} I(i_{\mathcal{A}}, i_{\mathcal{B}}) \sum_{\ell \ge 1} \sum_{c \in C_{q,q',a,\ell}} E(c) & \text{if } (q, q') \text{ is co-accessible} \\ 0 & \text{else} \end{cases}$$

where $C_{q,q',a,\ell}$ denotes the set of non-zero weight paths from (i_A, i_B) to (q, q') labeled by ℓa .

Introduction	Automata composition	Relations and formal series	Applications to regular sequences
	000000		

Intuition:

• The state α bypasses the leading for the images greater than <math display="inline">u since

$$\left[\begin{smallmatrix} \$^{|v|-|u|} \\ v \end{smallmatrix}\right]$$

is accepted in \mathcal{A} . In fact, without α , |v| - |u|u (instead of u) is the label of the path in $\mathcal{B} \circ \mathcal{A}$.

• Le loop |1 on $i_{\mathcal{B}}$ is for the images smaller than u since

$$\left[\begin{smallmatrix} u\\ \$^{|u|-|v|}v \end{smallmatrix}\right]$$

is accepted in \mathcal{A} .

Introduction 00000000	Automata composition	Relations and formal series ●0000	Applications to regular sequences
C 1			

Synchronized relations and 2-tape automata

The relation $R: A^* \to B^*$ is **synchronized** if there exists a 2-tape automaton accepting the language

 $\{\begin{bmatrix} u\\v \end{bmatrix}^{\$}: uRv\}.$

Example:

The relation $R:\{a,b\}^* o \{a,b\}^*$ defined by $uRv \Leftrightarrow ||u|-|v||\leq 1$

is synchronized.

$$\mathcal{A}: \longrightarrow \boxed{1} \xrightarrow{\begin{bmatrix} \$ \\ a \end{bmatrix}, \begin{bmatrix} \$ \\ b \end{bmatrix}, \begin{bmatrix} \$ \\ \$ \end{bmatrix}, \begin{bmatrix} b \\ \$ \end{bmatrix}, \begin{bmatrix} b \\ b \end{bmatrix}, \begin{bmatrix} b \\$$

Introduction 00000000	Automata composition	Relations and formal series ○●○○○	Applications to regular sequences
Formal s	eries and ${\mathbb K}$ -aut	omata	

A (formal) series is a function

$$S: A^* \to \mathbb{K}, \ w \mapsto (S, w)$$

A series $S: A^* \to \mathbb{K}$ is \mathbb{K} -recognizable if there exist $r \in \mathbb{N}_{\geq 1}$, a morphism $\mu: A^* \to \mathbb{K}^{r \times r}$ and two matrices $\lambda \in \mathbb{K}^{1 \times r}$ and $\gamma \in \mathbb{K}^{r \times 1}$ such that for all $w \in A^*$,

$$(S, w) = \lambda \mu(w) \gamma.$$

Proposition

A series is recognized by a $\mathbb{K}\text{-}\mathrm{automaton}$ if and only if it is $\mathbb{K}\text{-}\mathrm{recognizable}.$

Introduction 00000000	Automata composition	Relations and formal series 00●00	Applications to regular sequences

Example: The following \mathbb{N} -automaton recognizes the series

$$S: \{a, b\}^* \to \mathbb{N}, \ v \mapsto \max |\mathrm{Suff}(v) \cap \{a\}^*|$$

Composition of a relation and a series

For a relation $R: A^* \to B^*$ and a series $S: B^* \to \mathbb{K}$ such that for all $u \in A^*$, the language $\{v \in B^*: uRv\}$ is finite, we define the *composition* of R and S as the series

roduction	Automata composition	Relations and formal series	Applications to regular sequences
		00000	

Theorem (Charlier, C. & Stipulanti)

Let $R: A^* \to B^*$ be a synchronized relation, let $S: B^* \to \mathbb{K}$ be a \mathbb{K} -recognizable series, and suppose that for all $u \in A^*$, the language $\{v \in B^*: uRv\}$ is finite. Then $S \circ R$ is a \mathbb{K} -recognizable series.

Sketch of the proof:

Int

- Let \mathcal{A} be a DFA recognizing $\{ \begin{bmatrix} u \\ v \end{bmatrix}^{\$} : uRv \}$.
- Let \mathcal{B} be a \mathbb{K} -automaton recognizing the series S.
- Modify $\mathcal{B}:$ unique initial state with no incoming edge and loop 1.1
- Construct the \mathbb{K} -automaton $\mathcal{B} \circ \mathcal{A}$.
- Project on A and change the final weight of the initial state $(i_{\mathcal{A}}, i_{\mathcal{B}})$ from $T_{\mathcal{B}}(i_{\mathcal{B}})$ to $\frac{1}{I_{\mathcal{B}}(i_{\mathcal{B}})} \left(\sum_{\substack{v \in B^* \\ C \mathcal{B}^v}} (S, v) \right)$

This automaton recognizes the series $S \circ R$.

Introduction 00000000	Automata composition	Relations and formal series	Applications to regular sequences ●0000
First app	olication		

An abstract numeration system is a triple S = (L, A, <) where

- (A, <) is a totally ordered alphabet
- *L* is an infinite regular language over *A*

The words in *L* are ordered with respect to the **radix** order $<_{rad}$ induced by the order < on *A*: for $u, v \in A^*$, $u <_{rad} v$ either if |u| < |v|, or if |u| = |v| and *u* is lexicographically less than *v*.

The *S*-representation function $\operatorname{rep}_{S} \colon \mathbb{N} \to L$ maps any non-negative integer *n* onto the *n*th word in *L*. The *S*-value function $\operatorname{val}_{S} \colon L \to \mathbb{N}$ is the reciprocal function of rep_{S} .

Example: Let $S = (a^*b^*, a < b)$ then $\operatorname{rep}_S(7) = aab$ and $\operatorname{val}_S(aaa) = 6$.

 $arepsilon <_{
m rad} {\it a} <_{
m rad} {\it b} <_{
m rad} {\it aa} <_{
m rad} {\it ab} <_{
m rad} {\it bb} <_{
m rad} {\it aaa} <_{
m rad} {\it aab} <_{
m rad} \cdots$

Introduction	Automata composition	Relations and formal series	Applications to regular sequences
			0000

A sequence $f : \mathbb{N} \to \mathbb{K}$ is called $(\mathcal{S}, \mathbb{K})$ -regular if the formal series

 $\sum_{n\in\mathbb{N}}f(n)\operatorname{rep}_{\mathcal{S}}(n)$

is K-recognizable.

A sequence $f : \mathbb{N} \to \mathbb{N}$ is $(\mathcal{S}, \mathcal{S}')$ -synchronized if

$$\left\{ \left[\begin{smallmatrix} \operatorname{rep}_{\mathcal{S}}(n) \\ \operatorname{rep}_{\mathcal{S}'}(f(n)) \end{smallmatrix} \right]^{\$} : n \in \mathbb{N} \right\}$$

is regular.

Theorem (Charlier, C. & Stipulanti)

If $f : \mathbb{N} \to \mathbb{N}$ is an (S, S')-synchronized sequence and $g : \mathbb{N} \to \mathbb{K}$ is an (S', \mathbb{K}) -regular sequence, then the sequence $g \circ f : \mathbb{N} \to \mathbb{K}$ is (S, \mathbb{K}) -regular.

Introduction 00000000	Automata composition	Relations and formal series	Applications to regular sequences 00●00
Second a	application		

Let U be a (positional) **numeration system**. A sequence $f : \mathbb{N} \to \mathbb{K}$ is called (U, \mathbb{K}) -regular if the series

$$\sum_{n\in\mathbb{N}}f(n)\operatorname{rep}_U(n)$$

is \mathbb{K} -recognizable.

In numeration systems, the *U*-value function can be extended over all words over the numeration alphabet A_U . An alternative definition: f is (U, \mathbb{K}) -regular if the series

$$\sum_{w \in A_U^*} f(\operatorname{val}_U(w)) w$$

is $\mathbb K\text{-recognizable}.$

Introduction	Automata composition	Relations and formal series	Applications to regular sequences
0000000	000000	00000	00000

Proposition

For any Pisot numeration system U, the normalization is effectively computable.

Introduction 00000000	Automata composition	Relations and formal series	Applications to regular sequences 0000●

Theorem (Charlier, C. & Stipulanti 2020)

For $f: \mathbb{N} \to \mathbb{K}$ and a Pisot numeration system U, the following assertions are equivalent.

① The sequence f is (U, \mathbb{K}) -regular: that is, the series

 $\sum_{n\in\mathbb{N}}f(n)\operatorname{rep}_U(n)$

is \mathbb{K} -recognizable.

O The series

$$\sum_{w \in A_U^*} f(\operatorname{val}_U(w)) w$$

is \mathbb{K} -recognizable.

References

É. Charlier, C. Cisternino and M. Stipulanti Robustness of Pisot-regular sequences Adv. in Appl. Math., 125: 102151, 2021. arXiv:2006.11126

 É. Charlier, C. Cisternino and M. Stipulanti Regular sequences and synchronized sequences in abstract numeration systems (Submitted) arXiv:2012.04969

Thank you!