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Introduction Automata composition Relations and formal series Applications to regular sequences

Introduction

Consider two alphabets A and B and a symbol $ /∈ A ∪ B.

We denote
A$ = A ∪ {$} and B$ = B ∪ {$}.

For all u ∈ A∗ and v ∈ B∗, the $-padding of [ u
v ] is defined by

[ u
v ]$ =

®[
$|v|−|u|u

v
]

if |u| ≤ |v |[ u
$|u|−|v|v

]
if |u| > |v |

1/24



Introduction Automata composition Relations and formal series Applications to regular sequences

Two-tape automata

Consider a DFA
A = (Q, i ,T ,A$ × B$, δ)

• Q: set of states
• i : initial state
• T : set of final states
• A and B: alphabets
• δ : Q × (A$ × B$)→ Q: (partial) function

An image u ∈ A∗ by A is a word v ∈ B∗ such that

δ(i , [ u
v ]$) ∈ T .
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Example

1 2

[ a
a ] , [ a

b ] , [ b
a ] ,
[ b

b
]

[
$
a
]
, [ a

$ ] , [ a
a ] , [ a

b ][ $
b
]
,
[ b

$
]
, [ b

a ] ,
[ b

b
]A :

For all u ∈ {a, b}∗, then

im(u) = {v ∈ {a, b}∗ : ||u| − |v || ≤ 1}.

The 2-tape automaton A accepts[
$u
v
]
, [ u

v ] , [ u
$v ]

with v ∈ {a, b}|u|+1, v ∈ {a, b}|u| and v ∈ {a, b}|u|−1 respectively.
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Weighted automata

Let K be a semiring and consider a K-automaton

B = (Q, I,T ,B,E )

• Q: set of states
• B: alphabet
• I : Q → K, a state q is initial if I(q) 6= 0
• T : Q → K, a state q is final if T (q) 6= 0
• E : Q × B × Q → K.

A triple (p, b, q) ∈ Q × B ×Q is called a transition. The label of a
transition (p, b, q) is the letter b and its weight is E (p, b, q).

X Y
11

a|1

a|1

a|1, b|1
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A path in B is a sequence

c = (q0, b1, q1)(q1, b2, q2) · · · (qn−1, bn, qn)

of transitions. The weight of the path c is the product

E (c) = E (q0, b1, q1)E (q1, b2, q2) · · ·E (qn−1, bn, qn).

Its label is the word b1b2 · · · bn.

The path c is initial if q0 is initial and final if qn is final.

For w ∈ B∗, we let CB(w) denote the set of paths in B of label w
that are both initial and final. The weight of w in B is the quantity∑

c∈CB(w)
I(ic)E (c)T (tc).
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Example

The weight of v ∈ {a, b}∗ in B equals

max |Suff(v) ∩ {a}∗|.

i

X Y
11

1

$|1

a|1

a|1

a|1, b|1

a|1

a|1, b|1

B :

Without loss of generality, B has a unique initial state with no
incoming transition. We add a loop on this initial state of label $
and weight 1. For all v ∈ B∗ and k ∈ N, the weight of $kv in B
equals the weight of v .
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Question:
Considering a 2-tape DFA

A = (QA, iA,TA,A$ × B$, δA)

and a (modified) K-automaton

B = (QB, IB,TB,B$,EB),

can we compute a K-automaton on the alphabet A in which the
weight of u ∈ A∗ is the sum of the weights of its images by A in B?

Example: We have

im(a) = {ε, a, b, aa, ab, ba, bb}

so we want the weight of a to be 0 + 1 + 0 + 2 + 0 + 1 + 0 = 4.
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Idea: Define the “composition” B ◦ A.

A Bu ∈ A∗ im(u)
∑

v∈im(u)
kv ∈ K

B ◦ A
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Automata composition

1 2

[ a
a ] , [ a

b ] , [ b
a ] ,
[ b

b
]

[
$
a
]
, [ a

$ ] , [ a
a ] , [ a

b ][ $
b
]
,
[ b

$
]
, [ b

a ] ,
[ b

b
]A :

i X Y
11

$|1 a|1

a|1

a|1, b|1

a|1

a|1, b|1
B :
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We define a new K-automaton B ◦A = (Q, I,T ,A$,E ) as follows.
1 Q = (QA × QB) ∪ {α}.
2 I : Q → K is defined by

I(iA, iB) = IB(iB)
For (q, q′) ∈ (QA × QB) \ {(iA, iB)}, I(q, q′) = 0
I(α) = 1.

3 T : Q → K is defined by
For (q, q′) ∈ TA × QB, T (q, q′) = TB(q′)
For (q, q′) ∈ (QA \ TA)× QB, T (q, q′) = 0
T (α) = 0.

(1, i) (2, i)

(2,X )

(2,Y )

α
1 1

1
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4 E : Q × A$ × Q → K is defined by
For (q1, q′

1), (q2, q′
2) ∈ QA × QB and a ∈ A$,

E ((q1, q′
1), a, (q2, q′

2)) =
∑
b∈B$

δA(q1,[ a
b ])=q2

EB(q′
1, b, q′

2)

For a ∈ A$, E (α, a, α) = 0
For (q, q′) ∈ QA × QB and a ∈ A$, E ((q, q′), a, α) = 0

(1, i) (2, i)

(2,X )

(2,Y )

α
1 1

1

a|1, b|1

a|2, b|2

a|1, b|1

$|2, a|2, b|2

$|1, a|1, b|1

a|1, b|1

a|2, b|2

a|1, b|1
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For (q, q′) ∈ QA × QB and a ∈ A$,

E (α, a, (q, q′)) =

I(iA,iB)
∑̀
≥1

∑
c∈Cq,q′,a,`

E(c) if (q, q′) is co-accessible

0 else

where Cq,q′,a,` denotes the set of non-zero weight paths from
(iA, iB) to (q, q′) labeled by $`a.
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(1, i) (2, i)

(2,X )

(2,Y )

α
1 1

1

a|1, b|1

a|2, b|2

a|1, b|1

$|2, a|2, b|2

$|1, a|1, b|1

a|1, b|1

a|2, b|2

a|1, b|1
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Intuition:
• The state α bypasses the leading $ for the images greater

than u since [
$|v|−|u|u

v
]

is accepted in A. In fact, without α, $|v |−|u|u (instead of u) is
the label of the path in B ◦ A.
• Le loop $|1 on iB is for the images smaller than u since[ u

$|u|−|v|v
]

is accepted in A.
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Synchronized relations and 2-tape automata
The relation R : A∗ → B∗ is synchronized if there exists a 2-tape
automaton accepting the language

{[ u
v ]$ : uRv}.

Example:

The relation R : {a, b}∗ → {a, b}∗ defined by

uRv ⇔ ||u| − |v || ≤ 1

is synchronized.

1 2

[ a
a ] , [ a

b ] , [ b
a ] ,
[ b

b
]

[
$
a
]
, [ a

$ ] , [ a
a ] , [ a

b ][ $
b
]
,
[ b

$
]
, [ b

a ] ,
[ b

b
]A :
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Formal series and K-automata

A (formal) series is a function

S : A∗ → K, w 7→ (S,w)

A series S : A∗ → K is K-recognizable if there exist r ∈ N≥1, a
morphism µ : A∗ → Kr×r and two matrices λ ∈ K1×r and
γ ∈ Kr×1 such that for all w ∈ A∗,

(S,w) = λµ(w)γ.

Proposition
A series is recognized by a K-automaton if and only if it is
K-recognizable.
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Example: The following N-automaton recognizes the series

S : {a, b}∗ → N, v 7→ max |Suff(v) ∩ {a}∗|

X Y
11

a|1

a|1

a|1, b|1

B :
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Composition of a relation and a series

For a relation R : A∗ → B∗ and a series S : B∗ → K such that for
all u ∈ A∗, the language {v ∈ B∗ : uRv} is finite, we define the
composition of R and S as the series

S ◦ R : A∗ → K, u 7→
∑

v∈B∗
uRv

(S, v).

R Su ∈ A∗ {v : uRv}
∑

v∈B∗
uRv

(S, v)

S ◦ R
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Theorem (Charlier, C. & Stipulanti)
Let R : A∗ → B∗ be a synchronized relation, let S : B∗ → K be a
K-recognizable series, and suppose that for all u ∈ A∗, the
language {v ∈ B∗ : uRv} is finite. Then S ◦ R is a K-recognizable
series.

Sketch of the proof:

• Let A be a DFA recognizing {[ u
v ]$ : uRv}.

• Let B be a K-automaton recognizing the series S.
• Modify B: unique initial state with no incoming edge and loop

$|1.
• Construct the K-automaton B ◦ A.
• Project on A and change the final weight of the initial state

(iA, iB) from TB(iB) to 1
IB(iB)

(∑
v∈B∗
εRv

(S, v)
)

This automaton recognizes the series S ◦ R.
19/24



Introduction Automata composition Relations and formal series Applications to regular sequences

First application
An abstract numeration system is a triple S = (L,A, <) where
• (A, <) is a totally ordered alphabet
• L is an infinite regular language over A

The words in L are ordered with respect to the radix order <rad
induced by the order < on A: for u, v ∈ A∗, u <rad v either if
|u| < |v |, or if |u| = |v | and u is lexicographically less than v .

The S-representation function repS : N→ L maps any
non-negative integer n onto the nth word in L.
The S-value function valS : L→ N is the reciprocal function of
repS .

Example: Let S = (a∗b∗, a < b) then repS(7) = aab and
valS(aaa) = 6.

ε <rad a <rad b <rad aa <rad ab <rad bb <rad aaa <rad aab <rad · · ·
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A sequence f : N→ K is called (S,K)-regular if the formal series∑
n∈N

f (n) repS(n)

is K-recognizable.
A sequence f : N→ N is (S,S ′)-synchronized ifßî repS(n)

repS′ (f (n))

ó$
: n ∈ N

™
is regular.

Theorem (Charlier, C. & Stipulanti)
If f : N→ N is an (S,S ′)-synchronized sequence and g : N→ K is
an (S ′,K)-regular sequence, then the sequence g ◦ f : N→ K is
(S,K)-regular.
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Second application

Let U be a (positional) numeration system.
A sequence f : N→ K is called (U,K)-regular if the series∑

n∈N
f (n) repU(n)

is K-recognizable.
In numeration systems, the U-value function can be extended over
all words over the numeration alphabet AU .
An alternative definition: f is (U,K)-regular if the series∑

w∈A∗U

f (valU(w)) w

is K-recognizable.
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Proposition
For any Pisot numeration system U, the normalization is effectively
computable.

N Su ∈ A∗U νU(u) k ∈ K

S ◦ N
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Theorem (Charlier, C. & Stipulanti 2020)
For f : N→ K and a Pisot numeration system U, the following
assertions are equivalent.

1 The sequence f is (U,K)-regular: that is, the series∑
n∈N

f (n) repU(n)

is K-recognizable.
2 The series ∑

w∈A∗U

f (valU(w)) w

is K-recognizable.
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