
Calculation of asymptotic critical exponent of balanced sequences
Balanced sequences with the least asymptotic critical exponent

On Balanced Sequences with the Minimal
Asymptotic Critical Exponent
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Balanced sequences with the least asymptotic critical exponent

Introduction & Motivation

Dejean’s theorem (conjecture), 1972–2011:
(proved by Currie, Rampersad; Rao)
the least critical exponent of sequences over an alphabet of
size d equals d

d−1 for d ≥ 5

the least critical exponent for particular classes of sequences

Carpi and de Luca, 2000: Sturmian sequences
Currie, Mol, and Rampersad, 2020: binary rich sequences
Baranwal, Rampersad, Shallit, Vandomme, 2019:
balanced sequences over alphabets of size 3 to 8
conjecture for alphabets of size d : d−2

d−3

Narad Rampersad, May 2020: Ostrowski numeration and
repetitions in words at One World Numeration Seminar
Julien Cassaigne: “What about the asymptotic version?”
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L. Dvǒráková & E. Pelantová Asymptotic Critical Exponent



Calculation of asymptotic critical exponent of balanced sequences
Balanced sequences with the least asymptotic critical exponent

Introduction & Motivation

Dejean’s theorem (conjecture), 1972–2011:
(proved by Currie, Rampersad; Rao)
the least critical exponent of sequences over an alphabet of
size d equals d

d−1 for d ≥ 5

the least critical exponent for particular classes of sequences

Carpi and de Luca, 2000: Sturmian sequences
Currie, Mol, and Rampersad, 2020: binary rich sequences
Baranwal, Rampersad, Shallit, Vandomme, 2019:
balanced sequences over alphabets of size 3 to 8
conjecture for alphabets of size d : d−2

d−3

Narad Rampersad, May 2020: Ostrowski numeration and
repetitions in words at One World Numeration Seminar
Julien Cassaigne: “What about the asymptotic version?”
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Definitions CoW

sequence u = u0u1u2 . . . over A
bispecial factor of u

power z = ue if z is a prefix of uω and e = |z|
|u|

Parikh vector ~V (v) of a word v

Example

uF = abaababaabaababaa . . . , A = {a, b}
uF = ϕ(uF ), where ϕ : a→ ab, b→ a

aba is a bispecial factor since aaba, baba and abab, abaa are
factors of uF
z = ababa = (ab)5/2

~V (ababa) = ( 3
2 )
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Definitions CoW

return word to a factor v of u

derived sequence du(v) to a factor v of u

Example

uF = abaababaabaababaa . . .
r = aba and s = ab are return words to the factor v = aba

du(v) = abaababaabaababa · · · = rsrrsr . . .
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(Asymptotic) critical exponent

critical exponent
E (u) = sup{e ∈ Q | ue is a non-empty factor of u}
asymptotic critical exponent
E ∗(u) = limn→∞ sup{e ∈ Q | ue is a factor of u and |u| ≥ n}

Evidently, E ∗(u) ≤ E (u).

Proposition

Let u be a uniformly recurrent aperiodic sequence. Let vn
be the n-th bispecial of u and wn a shortest return word to vn. Then
E (u) = 1 + sup{ |vn||wn| | n ∈ N} and E ∗(u) = 1 + lim supn→∞

|vn|
|wn| .

Example

|vn| = Fn+2 + Fn+1 − 2 and |wn| = Fn+1 with F0 = 0,F1 = 1

E (uF ) = 2 + τ = 2 + 1+
√

5
2 = E ∗(uF ) – minimal for Sturmian
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Return words and bispecials in Sturmian sequences

u a standard Sturmian sequence of slope α ∈ (0, 1)
u starting in b → θ = 1−α

α = [0; a1, a2, a3, . . . ] ∈ (0, 1)
pN
qN

the N-th convergent to θ

Proposition

Let b be a bispecial of u, r the more frequent, s the less frequent
return word to b. There is a unique (N,m), 0 ≤ m < aN+1

~V (r) = ( pN
qN ) ~V (s) = m ( pN

qN ) +
( pN−1
qN−1

)
|b| = |r |+ |s| − 2.

Moreover, du(b) is a standard Sturmian sequence with
θb = [0, aN+1 −m, aN+2, aN+3, . . . ].

b is primary for m = 0; in this case |r | > |s|
b is secondary for m ≥ 1; in this case |r | < |s|
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Balanced sequences

Definition

u over A balanced if (∀a ∈ A)(|u| = |v | ⇒ ||u|a − |v |a| ≤ 1).

Theorem (Graham 1973, Hubert 2000)

v recurrent aperiodic is balanced iff v obtained from a Sturmian
sequence u over {a, b} by replacing

a with a constant gap sequence y over A,

b with a constant gap sequence y′ over B,

where A and B disjoint. We write v = colour(u, y, y′).

Example

v = colour(uF , y, y
′), where y = (0102)ω and y′ = (34)ω

uF = abaababaabaabab . . .
v = 031042301402304 . . .
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Return words and bispecials in balanced sequences

Proposition (Dolce, D., Pelantová, 2020)

Let v = colour(u, y, y′). For a sufficiently long bispecial v in v:
|v | = |b| for some bispecial b in u. The shortest return word to v
is of length min{k |r |+ `|s|}, where

1 k ~V (r) + ` ~V (s) =
(

0 mod Per(y)
0 mod Per(y′)

)
;

2
(
k
`

)
is the Parikh vector of a factor in du(b).

Recall E ∗(u) = 1 + lim supn→∞
|vn|
|wn| .

Program (implemented by D. Opočenská):
Input: α quadratic irrational, Per(y), Per(y′).
Output: E ∗(v), where v = colour(u, y, y′).
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Minimal critical exponent

d α y y′ E (v) E ∗(v)

3 [0, 2] (01)ω 2ω 2 + 1√
2

2 + 1√
2

4 [0, 2, 1] (01)ω (23)ω 1 + 1+
√

5
4 1 + 1+

√
5

4

5 [0, 2] (0102)ω (34)ω 3
2

3
2

6 [0, 1, 2, 1, 1, 1, 1, 1, 2] 0ω (123415321435)ω 4
3

4
3

7 [0, 1, 1, 3, 1, 2, 1] (01)ω (234526432546)ω 5
4

5
4

8 [0, 1, 3, 1, 2] (01)ω (234526732546237526432576)ω 6
5 = 1.2 12+3

√
2

14
.

= 1.16

9 [0, 1, 2, 3, 2] (01)ω (234567284365274863254768)ω 7
6
.

= 1.167 1 + 2
√

2−1
14

.
= 1.13

10 [0, 1, 4, 2, 3] (01)ω (234567284963254768294365274869)ω 8
7
.

= 1.14 1 +
√

13
26

.
= 1.139

Table: Baranwal, Rampersad, Shallit, Vandomme: balanced sequences
with the least critical exponent over alphabets of size d .
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Graph of admissible tails

Problem 1: Given Per(y),Per(y′) and β ≥ 1, find
v = colour(u, y, y′) with E ∗(v) ≤ 1 + 1

β .

Graph of admissible tails:
An oriented graph Γ = ΓPer(y),Per(y′),β with labeled edges with the
following property:
If v = colour(u, y, y′) and E ∗(v) ≤ 1 + 1

β , then there is an infinite
path in Γ such that the sequence of its edge labels is a suffix of the
continued fraction of θ.
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Infinite paths associated to v = colour(u, y, y′)

Given Per(y),Per(y′) and θ = [0; a1, a2, a3, . . . ].

Nth primary bispecial b → matrix Mb = ( ~V (r) ~V (s)) mod Per

(N + 1)st primary bispecial has the matrix Mb

(
aN+1 1

1 0

)
mod Per

A,B unimodular matrices, define A ∼Per B if
A
(
k
`

)
= ( 0

0 ) mod Per iff B
(
k
`

)
= ( 0

0 ) mod Per
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Graph associated to v = colour(u, y, y′)

Per(y) = 3,Per(y′) = 4 and θ = [0; 3, 1, 1, 1, 2]
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Construction of the graph of admissible tails Γ

Given Per(y),Per(y′).
A ∼Per B if A

(
k
`

)
= ( 0

0 ) mod Per iff B
(
k
`

)
= ( 0

0 ) mod Per.
Vertices of Γ= classes of equivalence ∼Per on unimodular matrices.
Edge with label a ∈ N from A to B if B ∼Per A ( a 1

1 0 ) mod Per.
Erasing edges we get ΓPer(y),Per(y′),β.

Proposition (Dolce, D., Pelantová, 2020)

. . . The shortest return word to v is of length min{k|r |+ `|s|},
where

1 k ~V (r) + ` ~V (s) = ( 0
0 ) mod Per;

2
(
k
`

)
is the Parikh vector of a factor in du(b).

Recall E ∗(u) = 1 + lim supn→∞
|vn|
|wn| .
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ΓPer(y),Per(y′),β = Γ2,16,7.5

17

1,3,5,7

1

2,4,6

1

3

1

2 1,2

1
1

3

2

2

2

Minimum: E ∗(v) = 39+2
√

41
46

.
= 1, 12622 . . . , where

v = colour(u, y, y′) with θ = [0; 3, 3, 3, 1].
Program (implemented by D. Opočenská):
Input: Period of θ, Per(y), Per(y′).
Output: Optimal preperiod of θ guaranteeing minimal E ∗(v).
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ΓPer(y),Per(y′),β = Γ3,4,3

Minimum: E ∗(v) = 1 + 1
3 , where v = colour(u, y, y′) with

θ = [0; 3, 1, 1, 1, 2].

1

1

1

1

211
1

1 1
1

2

2

2

2

2

3

4

1

1

2

3

4
3

4

1,5

1

1
2
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Minimal asymptotic critical exponent

Problem 1: Given Per(y),Per(y′) and β ≥ 1, find
v = colour(u, y, y′) with E ∗(v) ≤ 1 + 1

β .

Problem 2: Given Per(y),Per(y′), find v = colour(u, y, y′) with
the minimal asymptotic critical exponent.

Problem 3: Given d ∈ N, find v = colour(u, y, y′) with the
minimal asymptotic critical exponent over alphabet of size d .
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Minimal asymptotic critical exponent

d α Per(y) Per(y′) E ∗(v)

3 [0, 1, 1, 2] 1 2 2 + 1√
2

4 [0, 1] 2 2 1 + 1+
√

5
4

5 [0, 1, 1, 2] 2 4 3
2

6 [0, 1] 4 4 5
4 <

4
3 = minE

7 [0, 1, 3, 3, 3, 1] 2 16 1.12622 < 5
4 = minE

Table: Balanced sequences with the least asymptotic critical exponent
over alphabets of size d .
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Thank you for attention
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