On Balanced Sequences with the Minimal Asymptotic Critical Exponent

Lubomíra Dvořáková and Edita Pelantová

FNSPE Czech Technical University in Prague

Februrary, 22, 2021

Introduction & Motivation

 Dejean's theorem (conjecture), 1972–2011: (proved by Currie, Rampersad; Rao) the least critical exponent of sequences over an alphabet of size d equals d/d-1 for d ≥ 5

• the least critical exponent for particular classes of sequences

- Carpi and de Luca, 2000: Sturmian sequences
- Currie, Mol, and Rampersad, 2020: binary rich sequences
- Baranwal, Rampersad, Shallit, Vandomme, 2019: balanced sequences over alphabets of size 3 to 8 conjecture for alphabets of size d : d-2/d-3

Introduction & Motivation

- Dejean's theorem (conjecture), 1972–2011: (proved by Currie, Rampersad; Rao) the least critical exponent of sequences over an alphabet of size d equals d/d-1 for d ≥ 5
- the least critical exponent for particular classes of sequences
 - Carpi and de Luca, 2000: Sturmian sequences
 - Currie, Mol, and Rampersad, 2020: binary rich sequences
 - Baranwal, Rampersad, Shallit, Vandomme, 2019: balanced sequences over alphabets of size 3 to 8 conjecture for alphabets of size d : d-2/d-3
- Narad Rampersad, May 2020: Ostrowski numeration and repetitions in words at One World Numeration Seminar
 Julien Cassaigne: "What about the asymptotic version?"

Introduction & Motivation

- Dejean's theorem (conjecture), 1972–2011: (proved by Currie, Rampersad; Rao) the least critical exponent of sequences over an alphabet of size *d* equals d/d-1 for *d* ≥ 5
- the least critical exponent for particular classes of sequences
 - Carpi and de Luca, 2000: Sturmian sequences
 - Currie, Mol, and Rampersad, 2020: binary rich sequences
 - Baranwal, Rampersad, Shallit, Vandomme, 2019: balanced sequences over alphabets of size 3 to 8 conjecture for alphabets of size d : d-2/d-3
- Narad Rampersad, May 2020: Ostrowski numeration and repetitions in words at One World Numeration Seminar Julien Cassaigne: "What about the asymptotic version?"

Program

2 Balanced sequences with the least asymptotic critical exponent

Definitions CoW

- sequence $\mathbf{u} = u_0 u_1 u_2 \dots$ over \mathcal{A}
- bispecial factor of u
- power $z = u^e$ if z is a prefix of u^{ω} and $e = \frac{|z|}{|u|}$
- Parikh vector $\vec{V}(v)$ of a word v

Example

$$\mathbf{u}_F = abaababaabaabaabaabaa \dots$$
, $\mathcal{A} = \{a, b\}$
 $\mathbf{u}_F = \varphi(\mathbf{u}_F)$, where $\varphi : a \to ab$, $b \to a$
 aba is a bispecial factor since $aaba$, $baba$ and $abab$, $abaa$ are
factors of \mathbf{u}_F
 $z = ababa = (ab)^{5/2}$
 $\vec{V}(ababa) = (\frac{3}{2})$

Definitions CoW

- return word to a factor v of u
- derived sequence $\mathbf{d}_{\mathbf{u}}(v)$ to a factor v of \mathbf{u}

Example

 $\mathbf{u}_F = \underline{aba}\underline{aba}\underline{baaba}\underline{aba}\underline{a}\dots$

- r = aba and s = ab are return words to the factor v = aba
- $\mathbf{d}_{\mathbf{u}}(\mathbf{v}) = \mathbf{a}\mathbf{b}\mathbf{a}\mathbf{a}\mathbf{b}\mathbf{a}\mathbf{b}\mathbf{a}\mathbf{b}\mathbf{a}\cdots = \mathbf{r}\mathbf{s}\mathbf{r}\mathbf{s}\mathbf{r}\cdots$

Program

2 Balanced sequences with the least asymptotic critical exponent

(Asymptotic) critical exponent

critical exponent
 E(u) = sup{e ∈ Q | u^e is a non-empty factor of u}

• asymptotic critical exponent $E^*(\mathbf{u}) = \lim_{n \to \infty} \sup\{e \in \mathbb{Q} \mid u^e \text{ is a factor of } \mathbf{u} \text{ and } |u| \ge n\}$ Evidently, $E^*(\mathbf{u}) \le E(\mathbf{u})$.

Proposition

Let **u** be a uniformly recurrent aperiodic sequence. Let v_n be the n-th bispecial of **u** and w_n a shortest return word to v_n . Then $E(\mathbf{u}) = 1 + \sup\{\frac{|v_n|}{|w_n|} \mid n \in \mathbb{N}\}$ and $E^*(\mathbf{u}) = 1 + \limsup_{n \to \infty} \frac{|v_n|}{|w_n|}$.

(Asymptotic) critical exponent

- critical exponent
 E(u) = sup{e ∈ Q | u^e is a non-empty factor of u}
- asymptotic critical exponent $E^*(\mathbf{u}) = \lim_{n \to \infty} \sup\{e \in \mathbb{Q} \mid u^e \text{ is a factor of } \mathbf{u} \text{ and } |u| \ge n\}$ Evidently, $E^*(\mathbf{u}) \le E(\mathbf{u})$.

Proposition

Let **u** be a uniformly recurrent aperiodic sequence. Let v_n be the n-th bispecial of **u** and w_n a shortest return word to v_n . Then $E(\mathbf{u}) = 1 + \sup\{\frac{|v_n|}{|w_n|} \mid n \in \mathbb{N}\}$ and $E^*(\mathbf{u}) = 1 + \limsup_{n \to \infty} \frac{|v_n|}{|w_n|}$.

Example

 $|v_n| = F_{n+2} + F_{n+1} - 2$ and $|w_n| = F_{n+1}$ with $F_0 = 0, F_1 = 1$ $E(\mathbf{u}_F) = 2 + \tau = 2 + \frac{1+\sqrt{5}}{2} = E^*(\mathbf{u}_F)$ – minimal for Sturmian

(Asymptotic) critical exponent

- critical exponent
 E(u) = sup{e ∈ Q | u^e is a non-empty factor of u}
- asymptotic critical exponent $E^*(\mathbf{u}) = \lim_{n \to \infty} \sup\{e \in \mathbb{Q} \mid u^e \text{ is a factor of } \mathbf{u} \text{ and } |u| \ge n\}$ Evidently, $E^*(\mathbf{u}) \le E(\mathbf{u})$.

Proposition

Let **u** be a uniformly recurrent aperiodic sequence. Let v_n be the n-th bispecial of **u** and w_n a shortest return word to v_n . Then $E(\mathbf{u}) = 1 + \sup\{\frac{|v_n|}{|w_n|} \mid n \in \mathbb{N}\}$ and $E^*(\mathbf{u}) = 1 + \limsup_{n \to \infty} \frac{|v_n|}{|w_n|}$.

Example

$$|v_n| = F_{n+2} + F_{n+1} - 2$$
 and $|w_n| = F_{n+1}$ with $F_0 = 0, F_1 = 1$
 $E(\mathbf{u}_F) = 2 + \tau = 2 + \frac{1+\sqrt{5}}{2} = E^*(\mathbf{u}_F)$ – minimal for Sturmian

Return words and bispecials in Sturmian sequences

u a standard Sturmian sequence of slope $\alpha \in (0, 1)$ **u** starting in $b \rightarrow \theta = \frac{1-\alpha}{\alpha} = [0; a_1, a_2, a_3, \dots] \in (0, 1)$ $\frac{p_N}{q_N}$ the *N*-th convergent to θ

Proposition

Let **b** be a bispecial of **u**, **r** the more frequent, **s** the less frequent return word to **b**. There is a unique (N, m), $0 \le m < a_{N+1}$

$$\vec{V}(r) = \begin{pmatrix} p_N \\ q_N \end{pmatrix}$$
 $\vec{V}(s) = m \begin{pmatrix} p_N \\ q_N \end{pmatrix} + \begin{pmatrix} p_{N-1} \\ q_{N-1} \end{pmatrix}$ $|\boldsymbol{b}| = |\boldsymbol{r}| + |\boldsymbol{s}| - 2.$

Moreover, $\mathbf{d}_{\mathbf{u}}(\mathbf{b})$ is a standard Sturmian sequence with $\theta_{\mathbf{b}} = [0, a_{N+1} - m, a_{N+2}, a_{N+3}, \dots].$

b is primary for m = 0; in this case |r| > |s|*b* is secondary for $m \ge 1$; in this case |r| < |s|

Return words and bispecials in Sturmian sequences

u a standard Sturmian sequence of slope $\alpha \in (0, 1)$ **u** starting in $b \rightarrow \theta = \frac{1-\alpha}{\alpha} = [0; a_1, a_2, a_3, \dots] \in (0, 1)$ $\frac{p_N}{q_N}$ the *N*-th convergent to θ

Proposition

Let **b** be a bispecial of **u**, **r** the more frequent, **s** the less frequent return word to **b**. There is a unique (N, m), $0 \le m < a_{N+1}$

$$\vec{V}(r) = \begin{pmatrix} p_N \\ q_N \end{pmatrix}$$
 $\vec{V}(s) = m \begin{pmatrix} p_N \\ q_N \end{pmatrix} + \begin{pmatrix} p_{N-1} \\ q_{N-1} \end{pmatrix}$ $|\boldsymbol{b}| = |\boldsymbol{r}| + |\boldsymbol{s}| - 2.$

Moreover, $\mathbf{d}_{\mathbf{u}}(\mathbf{b})$ is a standard Sturmian sequence with $\theta_{\mathbf{b}} = [0, a_{N+1} - m, a_{N+2}, a_{N+3}, \dots].$

b is primary for m = 0; in this case |r| > |s|*b* is secondary for $m \ge 1$; in this case |r| < |s|

Balanced sequences

Definition

u over \mathcal{A} balanced if $(\forall a \in \mathcal{A})(|u| = |v| \Rightarrow ||u|_a - |v|_a| \le 1)$.

Theorem (Graham 1973, Hubert 2000)

v recurrent aperiodic is balanced iff v obtained from a Sturmian sequence u over {a,b} by replacing

- a with a constant gap sequence \mathbf{y} over \mathcal{A} ,
- b with a constant gap sequence \mathbf{y}' over \mathcal{B} ,

where \mathcal{A} and \mathcal{B} disjoint. We write $\mathbf{v} = \operatorname{colour}(\mathbf{u}, \mathbf{y}, \mathbf{y}')$.

Balanced sequences

Definition

u over
$$\mathcal{A}$$
 balanced if $(\forall a \in \mathcal{A})(|u| = |v| \Rightarrow ||u|_a - |v|_a| \le 1)$.

Theorem (Graham 1973, Hubert 2000)

v recurrent aperiodic is balanced iff v obtained from a Sturmian sequence u over {a,b} by replacing

- a with a constant gap sequence \mathbf{y} over \mathcal{A} ,
- b with a constant gap sequence \mathbf{y}' over \mathcal{B} ,

where A and B disjoint. We write $\mathbf{v} = \operatorname{colour}(\mathbf{u}, \mathbf{y}, \mathbf{y}')$.

Example

$$\mathbf{v} = \operatorname{colour}(\mathbf{u}_F, \mathbf{y}, \mathbf{y}')$$
, where $\mathbf{y} = (0102)^{\omega}$ and $\mathbf{y}' = (34)^{\omega}$

- u_F = abaabaabaabaabab..
 - $\mathbf{v} = 031042301402304...$

Balanced sequences

Definition

u over
$$\mathcal{A}$$
 balanced if $(\forall a \in \mathcal{A})(|u| = |v| \Rightarrow ||u|_a - |v|_a| \le 1)$.

Theorem (Graham 1973, Hubert 2000)

v recurrent aperiodic is balanced iff v obtained from a Sturmian sequence u over $\{a,b\}$ by replacing

- a with a constant gap sequence y over A,
- b with a constant gap sequence \mathbf{y}' over \mathcal{B} ,

where A and B disjoint. We write $\mathbf{v} = \operatorname{colour}(\mathbf{u}, \mathbf{y}, \mathbf{y}')$.

Example

$$\mathbf{v} = \operatorname{colour}(\mathbf{u}_F, \mathbf{y}, \mathbf{y}')$$
, where $\mathbf{y} = (0102)^{\omega}$ and $\mathbf{y}' = (34)^{\omega}$

- \mathbf{u}_F = abaabaabaabaabab...
 - v = 031042301402304...

Return words and bispecials in balanced sequences

Proposition (Dolce, D., Pelantová, 2020)

Let $\mathbf{v} = \operatorname{colour}(\mathbf{u}, \mathbf{y}, \mathbf{y}')$. For a sufficiently long bispecial v in \mathbf{v} : $|v| = |\mathbf{b}|$ for some bispecial \mathbf{b} in \mathbf{u} . The shortest return word to v is of length min $\{k|r| + \ell|s|\}$, where

$$k \vec{V}(\mathbf{r}) + \ell \vec{V}(s) = \begin{pmatrix} 0 \mod \operatorname{Per}(\mathbf{y}) \\ 0 \mod \operatorname{Per}(\mathbf{y}') \end{pmatrix};$$

2 $\binom{k}{\ell}$ is the Parikh vector of a factor in $\mathbf{d}_{\mathbf{u}}(\mathbf{b})$.

Recall $E^*(\mathbf{u}) = 1 + \limsup_{n \to \infty} \frac{|v_n|}{|w_n|}$.

Return words and bispecials in balanced sequences

Proposition (Dolce, D., Pelantová, 2020)

Let $\mathbf{v} = \operatorname{colour}(\mathbf{u}, \mathbf{y}, \mathbf{y}')$. For a sufficiently long bispecial v in \mathbf{v} : $|v| = |\mathbf{b}|$ for some bispecial \mathbf{b} in \mathbf{u} . The shortest return word to v is of length min $\{k|r| + \ell|s|\}$, where

$$k \vec{V}(\mathbf{r}) + \ell \vec{V}(s) = \begin{pmatrix} 0 \mod \operatorname{Per}(\mathbf{y}) \\ 0 \mod \operatorname{Per}(\mathbf{y}') \end{pmatrix};$$

2 $\binom{k}{\ell}$ is the Parikh vector of a factor in $\mathbf{d}_{\mathbf{u}}(\mathbf{b})$.

Recall $E^*(\mathbf{u}) = 1 + \limsup_{n \to \infty} \frac{|v_n|}{|w_n|}$.

Program (implemented by D. Opočenská): Input: α quadratic irrational, $Per(\mathbf{y})$, $Per(\mathbf{y}')$. Output: $E^*(\mathbf{v})$, where $\mathbf{v} = colour(\mathbf{u}, \mathbf{y}, \mathbf{y}')$.

Return words and bispecials in balanced sequences

Proposition (Dolce, D., Pelantová, 2020)

Let $\mathbf{v} = \operatorname{colour}(\mathbf{u}, \mathbf{y}, \mathbf{y}')$. For a sufficiently long bispecial v in \mathbf{v} : $|v| = |\mathbf{b}|$ for some bispecial \mathbf{b} in \mathbf{u} . The shortest return word to v is of length min $\{k|r| + \ell|s|\}$, where

$$k \vec{V}(\mathbf{r}) + \ell \vec{V}(s) = \begin{pmatrix} 0 \mod \operatorname{Per}(\mathbf{y}) \\ 0 \mod \operatorname{Per}(\mathbf{y}') \end{pmatrix};$$

2 $\binom{k}{\ell}$ is the Parikh vector of a factor in $\mathbf{d}_{\mathbf{u}}(\mathbf{b})$.

Recall $E^*(\mathbf{u}) = 1 + \limsup_{n \to \infty} \frac{|v_n|}{|w_n|}$.

Program (implemented by D. Opočenská): Input: α quadratic irrational, $Per(\mathbf{y})$, $Per(\mathbf{y}')$. Output: $E^*(\mathbf{v})$, where $\mathbf{v} = colour(\mathbf{u}, \mathbf{y}, \mathbf{y}')$.

Minimal critical exponent

d	α	у	у′	$E(\mathbf{v})$	<i>E</i> *(v)
3	[0, 2]	$(01)^{\omega}$	2^{ω}	$2 + \frac{1}{\sqrt{2}}$	$2 + \frac{1}{\sqrt{2}}$
4	$[0, 2, \overline{1}]$	$(01)^{\omega}$	$(23)^{\omega}$	$1 + \frac{1 + \sqrt{5}}{4}$	$1 + \frac{1 + \sqrt{5}}{4}$
5	$[0, \overline{2}]$	$(0102)^{\omega}$	$(34)^{\omega}$	32	32
6	$[0, 1, 2, 1, 1, \overline{1, 1, 1, 2}]$	0^{ω}	$(123415321435)^{\omega}$	4 3	43
7	$[0,1,1,3,\overline{1,2,1}]$	$(01)^{\omega}$	$(234526432546)^{\omega}$	<u>5</u> 4	54
8	$[0, 1, 3, 1, \overline{2}]$	$(01)^{\omega}$	$(234526732546237526432576)^{\omega}$	$\frac{6}{5} = 1.2$	$\frac{12+3\sqrt{2}}{14} \doteq 1.16$
9	$[0, 1, 2, 3, \overline{2}]$	$(01)^{\omega}$	$(234567284365274863254768)^{\omega}$	$\frac{7}{6} \doteq 1.167$	$1 + \frac{2\sqrt{2}-1}{14} = 1.13$
10	$[0, 1, 4, 2, \overline{3}]$	$(01)^{\omega}$	$(234567284963254768294365274869)^{\omega}$	$\frac{8}{7} \doteq 1.14$	$1 + \frac{\sqrt{13}}{26} \doteq 1.139$

Table: Baranwal, Rampersad, Shallit, Vandomme: balanced sequences with the least critical exponent over alphabets of size d.

Program

Calculation of asymptotic critical exponent of balanced sequences

2 Balanced sequences with the least asymptotic critical exponent

Graph of admissible tails

Problem 1: Given $Per(\mathbf{y})$, $Per(\mathbf{y}')$ and $\beta \ge 1$, find $\mathbf{v} = colour(\mathbf{u}, \mathbf{y}, \mathbf{y}')$ with $E^*(\mathbf{v}) \le 1 + \frac{1}{\beta}$.

Graph of admissible tails:

An oriented graph $\Gamma = \Gamma_{Per(\mathbf{y}),Per(\mathbf{y}'),\beta}$ with labeled edges with the following property:

If $\mathbf{v} = \operatorname{colour}(\mathbf{u}, \mathbf{y}, \mathbf{y}')$ and $E^*(\mathbf{v}) \leq 1 + \frac{1}{\beta}$, then there is an infinite path in Γ such that the sequence of its edge labels is a suffix of the continued fraction of θ .

Graph of admissible tails

Problem 1: Given $Per(\mathbf{y})$, $Per(\mathbf{y}')$ and $\beta \ge 1$, find $\mathbf{v} = colour(\mathbf{u}, \mathbf{y}, \mathbf{y}')$ with $E^*(\mathbf{v}) \le 1 + \frac{1}{\beta}$.

Graph of admissible tails:

An oriented graph $\Gamma = \Gamma_{Per(\mathbf{y}),Per(\mathbf{y}'),\beta}$ with labeled edges with the following property:

If $\mathbf{v} = \operatorname{colour}(\mathbf{u}, \mathbf{y}, \mathbf{y}')$ and $E^*(\mathbf{v}) \leq 1 + \frac{1}{\beta}$, then there is an infinite path in Γ such that the sequence of its edge labels is a suffix of the continued fraction of θ .

Infinite paths associated to $\mathbf{v} = \operatorname{colour}(\mathbf{u}, \mathbf{y}, \mathbf{y}')$

Given $Per(\mathbf{y})$, $Per(\mathbf{y}')$ and $\theta = [0; a_1, a_2, a_3, \dots]$.

- Nth primary bispecial $b \to \text{matrix } M_b = (\vec{V}(r) \ \vec{V}(s)) \mod \operatorname{Per}$
- (N + 1)st primary bispecial has the matrix $M_b \begin{pmatrix} a_{N+1} & 1 \\ 1 & 0 \end{pmatrix}$ mod Per
- A, B unimodular matrices, define $A \sim_{\text{Per}} B$ if $A \begin{pmatrix} k \\ \ell \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \mod \text{Per}$ iff $B \begin{pmatrix} k \\ \ell \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \mod \text{Per}$

Graph associated to $\mathbf{v} = \operatorname{colour}(\mathbf{u}, \mathbf{y}, \mathbf{y}')$

$$\operatorname{Per}(\mathbf{y}) = 3, \operatorname{Per}(\mathbf{y}') = 4 \text{ and } \theta = [0; 3, \overline{1, 1, 1, 2}]$$

Construction of the graph of admissible tails **Г**

Given $\operatorname{Per}(\mathbf{y}), \operatorname{Per}(\mathbf{y}')$. $A \sim_{\operatorname{Per}} B$ if $A \begin{pmatrix} k \\ \ell \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ mod Per iff $B \begin{pmatrix} k \\ \ell \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ mod Per . Vertices of Γ = classes of equivalence $\sim_{\operatorname{Per}}$ on unimodular matrices. Edge with label $a \in \mathbb{N}$ from A to B if $B \sim_{\operatorname{Per}} A \begin{pmatrix} a & 1 \\ 1 & 0 \end{pmatrix}$ mod Per . Erasing edges we get $\Gamma_{\operatorname{Per}(\mathbf{y}), \operatorname{Per}(\mathbf{y}'), \beta}$.

Proposition (Dolce, D., Pelantová, 2020)

... The shortest return word to v is of length $\min\{k|r| + \ell|s|\}$, where

1
$$k\vec{V}(r) + \ell\vec{V}(s) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
 mod Per;

2 $\binom{k}{\ell}$ is the Parikh vector of a factor in $\mathbf{d}_{\mathbf{u}}(b)$.

Recall $E^*(\mathbf{u}) = 1 + \limsup_{n \to \infty} \frac{|v_n|}{|w_n|}$.

$\Gamma_{\operatorname{Per}(\mathbf{y}),\operatorname{Per}(\mathbf{y}'),\beta} = \Gamma_{2,16,7.5}$

Minimum: $E^*(\mathbf{v}) = \frac{39+2\sqrt{41}}{46} \doteq 1, 12622...$, where $\mathbf{v} = \operatorname{colour}(\mathbf{u}, \mathbf{y}, \mathbf{y}')$ with $\theta = [0; 3, \overline{3}, \overline{3}, 1]$. **Program** (implemented by D. Opočenská): Input: Period of θ , Per(\mathbf{y}), Per(\mathbf{y}'). Output: Optimal preperiod of θ guaranteeing minimal $E^*(\mathbf{v})$.

$\Gamma_{\operatorname{Per}(\mathbf{y}),\operatorname{Per}(\mathbf{y}'),\beta} = \Gamma_{3,4,3}$

Minimum: $E^*(\mathbf{v}) = 1 + \frac{1}{3}$, where $\mathbf{v} = \text{colour}(\mathbf{u}, \mathbf{y}, \mathbf{y}')$ with $\theta = [0; 3, \overline{1, 1, 1, 2}]$.

Minimal asymptotic critical exponent

Problem 1: Given $Per(\mathbf{y})$, $Per(\mathbf{y}')$ and $\beta \ge 1$, find $\mathbf{v} = colour(\mathbf{u}, \mathbf{y}, \mathbf{y}')$ with $E^*(\mathbf{v}) \le 1 + \frac{1}{\beta}$.

Problem 2: Given Per(y), Per(y'), find v = colour(u, y, y') with the minimal asymptotic critical exponent.

Minimal asymptotic critical exponent

Problem 1: Given $Per(\mathbf{y})$, $Per(\mathbf{y}')$ and $\beta \ge 1$, find $\mathbf{v} = colour(\mathbf{u}, \mathbf{y}, \mathbf{y}')$ with $E^*(\mathbf{v}) \le 1 + \frac{1}{\beta}$.

Problem 2: Given $Per(\mathbf{y})$, $Per(\mathbf{y}')$, find $\mathbf{v} = colour(\mathbf{u}, \mathbf{y}, \mathbf{y}')$ with the minimal asymptotic critical exponent.

Problem 3: Given $d \in \mathbb{N}$, find $\mathbf{v} = \operatorname{colour}(\mathbf{u}, \mathbf{y}, \mathbf{y}')$ with the minimal asymptotic critical exponent over alphabet of size d.

Minimal asymptotic critical exponent

Problem 1: Given $Per(\mathbf{y})$, $Per(\mathbf{y}')$ and $\beta \ge 1$, find $\mathbf{v} = colour(\mathbf{u}, \mathbf{y}, \mathbf{y}')$ with $E^*(\mathbf{v}) \le 1 + \frac{1}{\beta}$.

Problem 2: Given $Per(\mathbf{y})$, $Per(\mathbf{y}')$, find $\mathbf{v} = colour(\mathbf{u}, \mathbf{y}, \mathbf{y}')$ with the minimal asymptotic critical exponent.

Problem 3: Given $d \in \mathbb{N}$, find $\mathbf{v} = \operatorname{colour}(\mathbf{u}, \mathbf{y}, \mathbf{y}')$ with the minimal asymptotic critical exponent over alphabet of size d.

Minimal asymptotic critical exponent

d	α	$\operatorname{Per}(\mathbf{y})$	$\operatorname{Per}(\mathbf{y}')$	$E^*(\mathbf{v})$
3	$[0,1,1,\overline{2}]$	1	2	$2 + \frac{1}{\sqrt{2}}$
4	$[0,\overline{1}]$	2	2	$1 + \frac{1 + \sqrt{5}}{4}$
5	$[0, 1, 1, \overline{2}]$	2	4	$\frac{3}{2}$
6	$[0,\overline{1}]$	4	4	$\frac{5}{4} < \frac{4}{3} = \min E$
7	$[0,1,3,\overline{3,3,1}]$	2	16	$1.12622 < \frac{5}{4} = \min E$

Table: Balanced sequences with the least asymptotic critical exponent over alphabets of size d.

Thank you for attention