# Efficiently Testing Simon's Congruence

Paweł Gawrychowski Florin Manea Maria Kosche Tore Koß Stefan Siemer

# Combinatorics on Words Online Seminar 22.02.2021









#### Subsequence

We call w' a subsequence of length k of a word w, where |w| = n, if there exist positions  $1 \le i_1 < i_2 < \ldots < i_k \le n$ , such that  $w' = w[i_1]w[i_2]\cdots w[i_k]$ .

## Set of Subsequences of length k

Let  $\text{Subseq}_k(i, w)$  denote the set of subsequences of length k of w[i:n]. Accordingly, the set of subsequences of length k of the entire word w will be denoted by  $\text{Subseq}_k(1, w)$ .

Example: Subseq<sub>2</sub>(1, *abaca*) = {aa, ab, ac, ba, bc, ca}

## Simon's Congruence

(i) Let  $w, w' \in \Sigma^*$ . We say that w and w' are equivalent under Simon's congruence  $\sim_k$  if Subseq<sub>k</sub>(1, w) =Subseq<sub>k</sub>(1, w').

## Simon's Congruence

(i) Let  $w, w' \in \Sigma^*$ . We say that w and w' are equivalent under Simon's congruence  $\sim_k$  if Subseq<sub>k</sub>(1, w) =Subseq<sub>k</sub>(1, w').

Example: w = abacab, w' = baacabba

## Simon's Congruence

(i) Let  $w, w' \in \Sigma^*$ . We say that w and w' are equivalent under Simon's congruence  $\sim_k$  if Subseq<sub>k</sub>(1, w) =Subseq<sub>k</sub>(1, w').

Example: w = abacab, w' = baacabba

 $Subseq_2(1, w) = \{aa, ab, ac, ba, bb, bc, ca, cb\}$ 

## Simon's Congruence

(i) Let  $w, w' \in \Sigma^*$ . We say that w and w' are equivalent under Simon's congruence  $\sim_k$  if Subseq<sub>k</sub>(1, w) =Subseq<sub>k</sub>(1, w').

Example: w = abacab, w' = baacabba

Subseq<sub>2</sub>(1, w) = {aa, ab, ac, ba, bb, bc, ca, cb} Subseq<sub>2</sub>(1, w') = {aa, ab, ac, ba, bb, bc, ca, cb}

## Simon's Congruence

(i) Let  $w, w' \in \Sigma^*$ . We say that w and w' are equivalent under Simon's congruence  $\sim_k$  if Subseq<sub>k</sub>(1, w) =Subseq<sub>k</sub>(1, w').

Example: w = abacab, w' = baacabba

Subseq<sub>2</sub>(1, w) = {aa, ab, ac, ba, bb, bc, ca, cb}  
Subseq<sub>2</sub>(1, w') = {aa, ab, ac, ba, bb, bc, ca, cb}  
Subseq<sub>2</sub>(1, w) = Subseq<sub>2</sub>(1, w') 
$$\Rightarrow$$
 w  $\sim_2$  w'

## Simon's Congruence

(i) Let  $w, w' \in \Sigma^*$ . We say that w and w' are equivalent under Simon's congruence  $\sim_k$  if Subseq<sub>k</sub>(1, w) =Subseq<sub>k</sub>(1, w').

Example: w = abacab, w' = baacabba

## Simon's Congruence

(i) Let  $w, w' \in \Sigma^*$ . We say that w and w' are equivalent under Simon's congruence  $\sim_k$  if Subseq<sub>k</sub>(1, w) =Subseq<sub>k</sub>(1, w').

Example: w = abacab, w' = baacabba

 $bbb \notin Subseq_3(1, w), bbb \in Subseq_3(1, w')$ 

## Simon's Congruence

(i) Let  $w, w' \in \Sigma^*$ . We say that w and w' are equivalent under Simon's congruence  $\sim_k$  if Subseq<sub>k</sub>(1, w) =Subseq<sub>k</sub>(1, w').

Example: w = abacab, w' = baacabba

 $bbb \notin Subseq_3(1, w), bbb \in Subseq_3(1, w')$ Subseq\_3(1, w)  $\neq$  Subseq\_3(1, w')  $\Rightarrow w \nsim_3 w'$ 

## Simon's Congruence

(i) Let  $w, w' \in \Sigma^*$ . We say that w and w' are equivalent under Simon's congruence  $\sim_k$  if  $\text{Subseq}_k(1, w) = \text{Subseq}_k(1, w')$ . (ii) Let  $1 \leq i < j \leq |w|$ . We define  $i \sim_k j$  (w.r.t. w) if  $w[i:n] \sim_k w[j:n]$ , and we say that the positions i and j are k-equivalent.

## Simon's Congruence

(i) Let  $w, w' \in \Sigma^*$ . We say that w and w' are equivalent under Simon's congruence  $\sim_k$  if  $\text{Subseq}_k(1, w) = \text{Subseq}_k(1, w')$ . (ii) Let  $1 \leq i < j \leq |w|$ . We define  $i \sim_k j$  (w.r.t. w) if  $w[i:n] \sim_k w[j:n]$ , and we say that the positions i and j are k-equivalent.

(iii) A word u of length k distinguishes w and w' w.r.t.  $\sim_k$  if u occurs in exactly one of the sets  $\text{Subseq}_k(1, w)$  and  $\text{Subseq}_k(1, w')$ .

# **Problem Definition**

## SimK

Given two words s and t over an alphabet  $\Sigma$ , with |s| = n and |t| = n', with  $n \ge n'$ , and a natural number k, decide whether  $s \sim_k t$ .

#### MAXSIMK

Given two words s and t over an alphabet  $\Sigma$ , with |s| = n and |t| = n', with  $n \ge n'$ , find the maximum k for which  $s \sim_k t$ .

#### Line of research originating in the PhD thesis of Imre Simon from 1972

- Line of research originating in the PhD thesis of Imre Simon from 1972
- Long history of algorithm designs and improvements for associated problems. State of the art:
  - $-~{\rm SIMK}$  linear time solution for constant alphabets, via shortlex form [Kufleitner, Fleischer, MFCS 2018]
  - SIMK optimal linear time solution for integer alphabets (and optimal solution in general), via shortlex form [DLT 2020]

- Line of research originating in the PhD thesis of Imre Simon from 1972
- Long history of algorithm designs and improvements for associated problems. State of the art:
  - $-\ {\rm SIMK}$  linear time solution for constant alphabets, via shortlex form [Kufleitner, Fleischer, MFCS 2018]
  - $-~{\rm SIMK}$  optimal linear time solution for integer alphabets (and optimal solution in general), via shortlex form [DLT 2020]
  - MAXSIMK  $O(n \log n)$  time [based on DLT 2020]
  - Simon claimed a linear time solution for  $\rm MAXSIMK$  in 2003, but never published it.

- Line of research originating in the PhD thesis of Imre Simon from 1972
- Long history of algorithm designs and improvements for associated problems. State of the art:
  - $-\ {\rm SIMK}$  linear time solution for constant alphabets, via shortlex form [Kufleitner, Fleischer, MFCS 2018]
  - $-~{\rm SIMK}$  optimal linear time solution for integer alphabets (and optimal solution in general), via shortlex form [DLT 2020]
  - MAXSIMK  $O(n \log n)$  time [based on DLT 2020]
  - Simon claimed a linear time solution for  $\rm MAXSIMK$  in 2003, but never published it.
- Today: the first optimal linear-time algorithm for the MAXSIMK problem. [STACS 2021]

## Simon-tree

Equivalence Classes



$$\mathcal{SF}_k(i,w) \supset \mathcal{SF}_k(l,w) \supset \mathcal{SF}_k(j,w)$$

- ► Splitting a word suffixwise into blocks of equivalence classes w.r.t. ~<sub>k</sub>
- If i ∼<sub>k</sub> j, then Subseq<sub>k</sub>(i, w) = Subseq<sub>k</sub>(I, w) = Subseq<sub>k</sub>(j, w) and we say that i, I, and j are in the same k-block
- $\triangleright \sim_{k+1}$  is a refinement of  $\sim_k$
- ► Index i is a (k + 1)-splitting position if i ~k i + 1 but not i ~k+1 i + 1

Use these properties to build a block structure for a word

1. 
$$i \sim_1 j$$
 iff  $alph(w[i : n]) = alph(w[j : n])$  for any  $1 \le i < j \le |w|$ 

 $\rightarrow$  We can go from right to left through the word and determine 1-splitting positions

Use these properties to build a block structure for a word

1. 
$$i \sim_1 j$$
 iff  $alph(w[i : n]) = alph(w[j : n])$  for any  
 $1 \le i < j \le |w|$   
 $\rightarrow$  We can go from right to left through the work

 $\rightarrow$  We can go from right to left through the word and determine 1-splitting positions

w

Use these properties to build a block structure for a word

1. 
$$i \sim_1 j$$
 iff  $alph(w[i : n]) = alph(w[j : n])$  for any  
 $1 \le i < j \le |w|$   
 $\rightarrow$  We can go from right to left through the word

 $\rightarrow$  We can go from right to left through the word and determine 1-splitting positions



| w | b | a | с | b | a | a | b | a | d | a |
|---|---|---|---|---|---|---|---|---|---|---|
|   |   |   |   |   |   |   |   |   |   |   |

Use these properties to build a block structure for a word

1. 
$$i \sim_1 j$$
 iff  $alph(w[i : n]) = alph(w[j : n])$  for any  
 $1 \le i < j \le |w|$ 

 $\rightarrow$  We can go from right to left through the word and determine 1-splitting positions

2. Split a k-block  $w[m_a : n_a]$  into:

- the (k + 1)-block containing  $n_a$  only and then

- the (k + 1)-blocks obtained by going from right to left through  $w[m_a : n_a - 1]$  and determining the (k + 1)-splitting positions **exactly** as for 1-splitting positions.

 $1 ext{-blocks}$ 

Use these properties to build a block structure for a word

1. 
$$i \sim_1 j$$
 iff  $alph(w[i:n]) = alph(w[j:n])$  for any  
 $1 \le i < j \le |w|$ 

 $\rightarrow$  We can go from right to left through the word and determine 1-splitting positions

2. Split a k-block  $w[m_a : n_a]$  into:

- the (k + 1)-block containing  $n_a$  only and then

- the (k + 1)-blocks obtained by going from right to left through  $w[m_a : n_a - 1]$  and determining the (k + 1)-splitting positions **exactly** as for 1-splitting positions.

 $1 ext{-blocks}$ 

Use these properties to build a block structure for a word

1. 
$$i \sim_1 j$$
 iff  $alph(w[i:n]) = alph(w[j:n])$  for any  
 $1 \le i < j \le |w|$ 

 $\rightarrow$  We can go from right to left through the word and determine 1-splitting positions

2. Split a k-block  $w[m_a : n_a]$  into:

- the (k + 1)-block containing  $n_a$  only and then

- the (k + 1)-blocks obtained by going from right to left through  $w[m_a : n_a - 1]$  and determining the (k + 1)-splitting positions **exactly** as for 1-splitting positions.

Use these properties to build a block structure for a word

1. 
$$i \sim_1 j$$
 iff  $alph(w[i : n]) = alph(w[j : n])$  for any  
 $1 \le i < j \le |w|$ 

 $\rightarrow$  We can go from right to left through the word and determine 1-splitting positions

- 2. Split a k-block  $w[m_a : n_a]$  into:
  - the (k + 1)-block containing  $n_a$  only and then

- the (k + 1)-blocks obtained by going from right to left through  $w[m_a : n_a - 1]$  and determining the (k + 1)-splitting positions **exactly** as for 1-splitting positions.

2-blocks

Use these properties to build a block structure for a word

1. 
$$i \sim_1 j$$
 iff  $alph(w[i : n]) = alph(w[j : n])$  for any  
 $1 \le i < j \le |w|$ 

 $\rightarrow$  We can go from right to left through the word and determine 1-splitting positions

- 2. Split a k-block  $w[m_a : n_a]$  into:
  - the (k + 1)-block containing  $n_a$  only and then

- the (k + 1)-blocks obtained by going from right to left through  $w[m_a : n_a - 1]$  and determining the (k + 1)-splitting positions **exactly** as for 1-splitting positions.

2-blocks

Use these properties to build a block structure for a word

1. 
$$i \sim_1 j$$
 iff  $alph(w[i:n]) = alph(w[j:n])$  for any  
 $1 \le i < j \le |w|$ 

 $\rightarrow$  We can go from right to left through the word and determine 1-splitting positions

2. Split a k-block  $w[m_a : n_a]$  into:

- the (k + 1)-block containing  $n_a$  only and then

- the (k + 1)-blocks obtained by going from right to left through  $w[m_a : n_a - 1]$  and determining the (k + 1)-splitting positions **exactly** as for 1-splitting positions.

Use these properties to build a block structure for a word

1. 
$$i \sim_1 j$$
 iff  $alph(w[i : n]) = alph(w[j : n])$  for any  
 $1 \le i < j \le |w|$ 

 $\rightarrow$  We can go from right to left through the word and determine 1-splitting positions

- 2. Split a k-block  $w[m_a : n_a]$  into:
  - the (k + 1)-block containing  $n_a$  only and then

- the (k + 1)-blocks obtained by going from right to left through  $w[m_a : n_a - 1]$  and determining the (k + 1)-splitting positions **exactly** as for 1-splitting positions.

3-blocks

## Simon-tree Definition

- New data structure: Simon-tree
- Represents presented block structure
- Efficiently partition positions of a given word
- Construction takes linear time

| position | 1 | 2 | 3        | 4 | 5 | 6 | 7        | 8  | 9        | 10       | 11       |
|----------|---|---|----------|---|---|---|----------|----|----------|----------|----------|
| W        | b | a | с        | b | a | a | b        | а  | d        | a        | \$       |
| Х        | 4 | 5 | $\infty$ | 7 | 6 | 8 | $\infty$ | 10 | $\infty$ | $\infty$ | $\infty$ |



## Simon-tree Definition

#### Simon-tree

The Simon-tree  $T_w$  associated to the word w, with |w| = n, is an ordered rooted tree. The nodes represent k-blocks of w, for  $0 \le k \le n$ , and are defined recursively.

- The root corresponds to the 0-block of the word w, i.e., the interval [1 : n].
- For k > 1 and for a node b on level k − 1, which represents a (k − 1)-block [i : j] with i < j, the children of b are exactly the blocks of the partition of [i : j] in k-blocks, ordered decreasingly by their starting position.</p>
- For k > 1, each node on the level k − 1 which represents a (k − 1)-block [i : i] is a leaf.

## Simon-tree Construction

- Algorithm: Build the Simon-tree right to left as the word is traversed right to left. Only the leftmost branch is edited during construction.
  - 1. Insert the new position/letter into the tree by moving up the leftmost branch from leaf to root.
  - 2. Find lowest node that is not split by this position (and close all the others on the way).
  - 3. Insert the new position/letter as a leftmost child of this node.

| position | 1 | 2 | 3        | 4 | 5 | 6 | 7        | 8  | 9        | 10       | 11       |
|----------|---|---|----------|---|---|---|----------|----|----------|----------|----------|
| W        | b | а | с        | b | a | a | b        | a  | d        | a        | \$       |
| Х        | 4 | 5 | $\infty$ | 7 | 6 | 8 | $\infty$ | 10 | $\infty$ | $\infty$ | $\infty$ |

| position | 1 | 2 | 3        | 4 | 5 | 6 | 7        | 8  | 9        | 10       | 11       |
|----------|---|---|----------|---|---|---|----------|----|----------|----------|----------|
| w        | b | а | с        | b | a | a | b        | а  | d        | а        | \$       |
| Х        | 4 | 5 | $\infty$ | 7 | 6 | 8 | $\infty$ | 10 | $\infty$ | $\infty$ | $\infty$ |

....\$ 11]

k = 0

| position | 1 | 2 | 3        | 4 | 5 | 6 | 7        | 8  | 9        | 10       | 11       |
|----------|---|---|----------|---|---|---|----------|----|----------|----------|----------|
| w        | b | а | с        | b | a | a | b        | а  | d        | а        | \$       |
| Х        | 4 | 5 | $\infty$ | 7 | 6 | 8 | $\infty$ | 10 | $\infty$ | $\infty$ | $\infty$ |



| position | 1 | 2 | 3        | 4 | 5 | 6 | 7        | 8  | 9        | 10       | 11       |
|----------|---|---|----------|---|---|---|----------|----|----------|----------|----------|
| w        | b | а | с        | b | a | a | b        | а  | d        | а        | \$       |
| Х        | 4 | 5 | $\infty$ | 7 | 6 | 8 | $\infty$ | 10 | $\infty$ | $\infty$ | $\infty$ |



| position | 1 | 2 | 3        | 4 | 5 | 6 | 7        | 8  | 9        | 10       | 11       |
|----------|---|---|----------|---|---|---|----------|----|----------|----------|----------|
| w        | b | а | с        | b | a | a | b        | а  | d        | а        | \$       |
| Х        | 4 | 5 | $\infty$ | 7 | 6 | 8 | $\infty$ | 10 | $\infty$ | $\infty$ | $\infty$ |



| position | 1 | 2 | 3        | 4 | 5 | 6 | 7        | 8  | 9        | 10       | 11       |
|----------|---|---|----------|---|---|---|----------|----|----------|----------|----------|
| w        | b | а | с        | b | a | a | b        | а  | d        | а        | \$       |
| Х        | 4 | 5 | $\infty$ | 7 | 6 | 8 | $\infty$ | 10 | $\infty$ | $\infty$ | $\infty$ |



| position | 1 | 2 | 3        | 4 | 5 | 6 | 7        | 8  | 9        | 10       | 11       |
|----------|---|---|----------|---|---|---|----------|----|----------|----------|----------|
| w        | b | а | с        | b | a | a | b        | а  | d        | а        | \$       |
| Х        | 4 | 5 | $\infty$ | 7 | 6 | 8 | $\infty$ | 10 | $\infty$ | $\infty$ | $\infty$ |



| position | 1 | 2 | 3        | 4 | 5 | 6 | 7        | 8  | 9        | 10       | 11       |
|----------|---|---|----------|---|---|---|----------|----|----------|----------|----------|
| w        | b | а | с        | b | a | a | b        | а  | d        | а        | \$       |
| Х        | 4 | 5 | $\infty$ | 7 | 6 | 8 | $\infty$ | 10 | $\infty$ | $\infty$ | $\infty$ |



| position | 1 | 2 | 3        | 4 | 5 | 6 | 7        | 8  | 9        | 10       | 11       |
|----------|---|---|----------|---|---|---|----------|----|----------|----------|----------|
| w        | b | а | с        | b | a | a | b        | a  | d        | a        | \$       |
| Х        | 4 | 5 | $\infty$ | 7 | 6 | 8 | $\infty$ | 10 | $\infty$ | $\infty$ | $\infty$ |



| position | 1 | 2 | 3        | 4 | 5 | 6 | 7        | 8  | 9        | 10       | 11       |
|----------|---|---|----------|---|---|---|----------|----|----------|----------|----------|
| w        | b | a | с        | b | а | a | b        | a  | d        | a        | \$       |
| Х        | 4 | 5 | $\infty$ | 7 | 6 | 8 | $\infty$ | 10 | $\infty$ | $\infty$ | $\infty$ |



| position | 1 | 2 | 3        | 4 | 5 | 6 | 7        | 8  | 9        | 10       | 11       |
|----------|---|---|----------|---|---|---|----------|----|----------|----------|----------|
| w        | b | a | с        | b | а | а | b        | a  | d        | a        | \$       |
| Х        | 4 | 5 | $\infty$ | 7 | 6 | 8 | $\infty$ | 10 | $\infty$ | $\infty$ | $\infty$ |



| position | 1 | 2 | 3        | 4 | 5 | 6 | 7        | 8  | 9        | 10       | 11       |
|----------|---|---|----------|---|---|---|----------|----|----------|----------|----------|
| w        | b | a | с        | b | а | a | b        | a  | d        | a        | \$       |
| Х        | 4 | 5 | $\infty$ | 7 | 6 | 8 | $\infty$ | 10 | $\infty$ | $\infty$ | $\infty$ |



| position | 1 | 2 | 3        | 4 | 5 | 6 | 7        | 8  | 9        | 10       | 11       |
|----------|---|---|----------|---|---|---|----------|----|----------|----------|----------|
| w        | b | a | с        | b | а | a | b        | a  | d        | a        | \$       |
| Х        | 4 | 5 | $\infty$ | 7 | 6 | 8 | $\infty$ | 10 | $\infty$ | $\infty$ | $\infty$ |



| position | 1 | 2 | 3        | 4 | 5 | 6 | 7        | 8  | 9        | 10       | 11       |
|----------|---|---|----------|---|---|---|----------|----|----------|----------|----------|
| w        | b | a | с        | b | а | a | b        | a  | d        | a        | \$       |
| Х        | 4 | 5 | $\infty$ | 7 | 6 | 8 | $\infty$ | 10 | $\infty$ | $\infty$ | $\infty$ |



| position | 1 | 2 | 3        | 4 | 5 | 6 | 7        | 8  | 9        | 10       | 11       |
|----------|---|---|----------|---|---|---|----------|----|----------|----------|----------|
| w        | b | a | с        | b | а | a | b        | a  | d        | a        | \$       |
| Х        | 4 | 5 | $\infty$ | 7 | 6 | 8 | $\infty$ | 10 | $\infty$ | $\infty$ | $\infty$ |



| position | 1 | 2 | 3        | 4 | 5 | 6 | 7        | 8  | 9        | 10       | 11       |
|----------|---|---|----------|---|---|---|----------|----|----------|----------|----------|
| w        | b | a | с        | b | а | a | b        | a  | d        | a        | \$       |
| Х        | 4 | 5 | $\infty$ | 7 | 6 | 8 | $\infty$ | 10 | $\infty$ | $\infty$ | $\infty$ |



| position | 1 | 2 | 3        | 4 | 5 | 6 | 7        | 8  | 9        | 10       | 11       |
|----------|---|---|----------|---|---|---|----------|----|----------|----------|----------|
| W        | b | а | с        | b | a | a | b        | a  | d        | а        | \$       |
| Х        | 4 | 5 | $\infty$ | 7 | 6 | 8 | $\infty$ | 10 | $\infty$ | $\infty$ | $\infty$ |



| position | 1 | 2 | 3        | 4 | 5 | 6 | 7        | 8  | 9        | 10       | 11       |
|----------|---|---|----------|---|---|---|----------|----|----------|----------|----------|
| W        | b | а | с        | b | a | a | b        | a  | d        | а        | \$       |
| Х        | 4 | 5 | $\infty$ | 7 | 6 | 8 | $\infty$ | 10 | $\infty$ | $\infty$ | $\infty$ |



| position | 1 | 2 | 3        | 4 | 5 | 6 | 7        | 8  | 9        | 10       | 11       |
|----------|---|---|----------|---|---|---|----------|----|----------|----------|----------|
| w        | b | а | с        | b | a | a | b        | a  | d        | a        | \$       |
| Х        | 4 | 5 | $\infty$ | 7 | 6 | 8 | $\infty$ | 10 | $\infty$ | $\infty$ | $\infty$ |



| position | 1 | 2 | 3        | 4 | 5 | 6 | 7        | 8  | 9        | 10       | 11       |
|----------|---|---|----------|---|---|---|----------|----|----------|----------|----------|
| w        | b | а | с        | b | a | a | b        | a  | d        | а        | \$       |
| Х        | 4 | 5 | $\infty$ | 7 | 6 | 8 | $\infty$ | 10 | $\infty$ | $\infty$ | $\infty$ |



| position | 1 | 2 | 3        | 4 | 5 | 6 | 7        | 8  | 9        | 10       | 11       |
|----------|---|---|----------|---|---|---|----------|----|----------|----------|----------|
| w        | b | а | с        | b | a | a | b        | a  | d        | а        | \$       |
| Х        | 4 | 5 | $\infty$ | 7 | 6 | 8 | $\infty$ | 10 | $\infty$ | $\infty$ | $\infty$ |



| position | 1 | 2 | 3        | 4 | 5 | 6 | 7        | 8  | 9        | 10       | 11       |
|----------|---|---|----------|---|---|---|----------|----|----------|----------|----------|
| w        | b | а | с        | b | a | a | b        | а  | d        | a        | \$       |
| Х        | 4 | 5 | $\infty$ | 7 | 6 | 8 | $\infty$ | 10 | $\infty$ | $\infty$ | $\infty$ |



| position | 1 | 2 | 3        | 4 | 5 | 6 | 7        | 8  | 9        | 10       | 11       |
|----------|---|---|----------|---|---|---|----------|----|----------|----------|----------|
| w        | b | а | с        | b | a | a | b        | а  | d        | а        | \$       |
| Х        | 4 | 5 | $\infty$ | 7 | 6 | 8 | $\infty$ | 10 | $\infty$ | $\infty$ | $\infty$ |



- Algorithm: Build the Simon-tree right to left as the word is traversed right to left. Only the leftmost branch is edited during construction.
- Complexity: linear! All nodes appear only once on the leftmost path, until they are closed.

## Short Recap

So far: structure for one word representing the equivalence classes w.r.t.  $\sim_k$ 

#### MAXSIMK

Given two words s and t over an alphabet  $\Sigma$ , with |s| = n and |t| = n', with  $n \ge n'$ , find the maximum k for which  $s \sim_k t$ .

Now:

set two words in relation to each other by using their respective  $\mathsf{Simon-trees}$ 

## Connecting Two Simon-trees

- ▶ Transform the words *s* and *t* into Simon-trees as shown.
- Use the tree structure to connect equivalent nodes of the two words.

## Connecting Two Simon-trees

- Transform the words s and t into Simon-trees as shown.
- Use the tree structure to connect equivalent nodes of the two words.

#### **S-Connection**

The *k*-node *a* of  $T_s$  and the *k*-node *b* of  $T_t$  are S-connected (i.e., the pair (a, b) is in the S-connection) if and only if  $s[i:n] \sim_k t[j:n']$  for all positions *i* in block *a* and positions *j* in block *b*.

Starting from a larger relation (P-Connection) which contains the S-Connection, and refine it.

- The 0-nodes of  $T_s$  and  $T_t$  are P-connected.
- For all levels k of T<sub>s</sub>, if the explicit or implicit k-nodes a and b (from T<sub>s</sub> and T<sub>t</sub>, respectively) are P-connected, then the i<sup>th</sup> child of a is P-connected to the i<sup>th</sup> child of b, for all i.
- No other nodes are P-connected.



How to refine the P-Connection:

- ▶ Let k ≥ 1 and a, b be k-blocks in the word t, resp. s, which are S-connected.
- Let a' be child of a, b' be child of b.
- ▶  $a' \sim_{k+1} b'$  if and only if there exists a letter x such that  $s[next(a', x) + 1 : n] \sim_k t[next(b', x) + 1 : n'].$

















## Additional Notes and Analysis

- Solution of MAXSIMK: last level k where the k-blocks containing position 1 of the input words are equivalent.
- Distinguishing word can be obtained.
- By efficiently using interval-union-find and -split-find data structures the algorithm achieves an optimal linear runtime.

#### Theorem

MAXSIMK*can* be solved in optimal linear time.

# The End

#### Future Work

 Edit/Hamming Distance to ~<sub>k</sub>-equivalence.
 First steps: [Day, Fleischmann, Kosche, Tore Koß, M., Siemer: The Edit Distance to k-Subsequence Universality, STACS'21]

# The End

#### Future Work

► Edit/Hamming Distance to ~<sub>k</sub>-equivalence. First steps: [Day, Fleischmann, Kosche, Tore Koß, M., Siemer: The Edit Distance to k-Subsequence Universality, STACS'21]

Thank You!