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Subsequences

i1 i2 i3 ik· · ·w

Subsequence
We call w ′ a subsequence of length k of a word w , where |w | = n,
if there exist positions 1 ≤ i1 < i2 < . . . < ik ≤ n, such that
w ′ = w [i1]w [i2] · · ·w [ik ].

Set of Subsequences of length k
Let Subseqk(i , w) denote the set of subsequences of length k of
w [i : n]. Accordingly, the set of subsequences of length k of the
entire word w will be denoted by Subseqk(1, w).

Example: Subseq2(1, abaca) = {aa, ab, ac, ba, bc, ca}



Simon’s Congruence

Simon’s Congruence
(i) Let w , w ′ ∈ Σ∗. We say that w and w ′ are equivalent under
Simon’s congruence ∼k if Subseqk(1, w) = Subseqk(1, w ′).

(ii) Let 1 ≤ i < j ≤ |w |. We define i ∼k j (w.r.t. w) if
w [i : n] ∼k w [j : n], and we say that the positions i and j are
k-equivalent.
(iii) A word u of length k distinguishes w and w ′ w.r.t. ∼k if u
occurs in exactly one of the sets Subseqk(1, w) and Subseqk(1, w ′).
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Problem Definition

SimK
Given two words s and t over an alphabet Σ, with |s| = n and
|t| = n′, with n ≥ n′, and a natural number k, decide whether
s ∼k t.

MaxSimK
Given two words s and t over an alphabet Σ, with |s| = n and
|t| = n′, with n ≥ n′, find the maximum k for which s ∼k t.



History

I Line of research originating in the PhD thesis of Imre Simon
from 1972

I Long history of algorithm designs and improvements for
associated problems. State of the art:
– SimK linear time solution for constant alphabets, via
shortlex form [Kufleitner, Fleischer, MFCS 2018]
– SimK optimal linear time solution for integer alphabets (and
optimal solution in general), via shortlex form [DLT 2020]
– MaxSimK O(n log n) time [based on DLT 2020]
– Simon claimed a linear time solution for MaxSimK in
2003, but never published it.

I Today: the first optimal linear-time algorithm for the
MaxSimK problem. [STACS 2021]
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Simon-tree
Equivalence Classes

i l jw

SFk(i, w) ⊃ SFk(l, w) ⊃ SFk(j, w)

I Splitting a word suffixwise into blocks of equivalence classes
w.r.t. ∼k

I If i ∼k j , then Subseqk(i , w) = Subseqk(l , w) = Subseqk(j , w)
and we say that i , l , and j are in the same k-block

I ∼k+1 is a refinement of ∼k
I Index i is a (k + 1)-splitting position if i ∼k i + 1 but not

i ∼k+1 i + 1



Equivalence Classes

Use these properties to build a block structure for a word
1. i ∼1 j iff alph(w [i : n]) = alph(w [j : n]) for any

1 ≤ i < j ≤ |w |
→ We can go from right to left through the word and
determine 1-splitting positions

2. Split a k-block w [ma : na] into:
– the (k + 1)-block containing na only and then
– the (k + 1)-blocks obtained by going from right to left
through w [ma : na − 1] and determining the (k + 1)-splitting
positions exactly as for 1-splitting positions.
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Simon-tree Definition

I New data structure: Simon-tree
I Represents presented block structure
I Efficiently partition positions of a given word
I Construction takes linear time



k = 0

k = 1
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position 1 2 3 4 5 6 7 8 9 10 11
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[10]
a

[9]
d

[8]
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[7]
b

[6]
a

[5]
a

[5:6]
aa

k = 3

[4]
b

[4 : 7]
baab

[3]
c

[2]
ab

[1]

[1:3]
bac

[1 : 10]
bacbaabada



Simon-tree Definition

Simon-tree
The Simon-tree Tw associated to the word w , with |w | = n, is an
ordered rooted tree. The nodes represent k−blocks of w , for
0 ≤ k ≤ n, and are defined recursively.
I The root corresponds to the 0-block of the word w , i.e., the

interval [1 : n].
I For k > 1 and for a node b on level k − 1, which represents a

(k − 1)-block [i : j] with i < j , the children of b are exactly
the blocks of the partition of [i : j] in k-blocks, ordered
decreasingly by their starting position.

I For k > 1, each node on the level k − 1 which represents a
(k − 1)-block [i : i ] is a leaf.



Simon-tree Construction

I Algorithm: Build the Simon-tree right to left as the word is
traversed right to left. Only the leftmost branch is edited
during construction.

1. Insert the new position/letter into the tree by moving up the
leftmost branch from leaf to root.

2. Find lowest node that is not split by this position (and close all
the others on the way).

3. Insert the new position/letter as a leftmost child of this node.
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[7]
b

[6]
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[5]
a

[5:6]
aa

k = 3

[4]
b

[4 : 7]
baab

3]
. . . c
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. . . c
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. . . a



Simon-tree Construction
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. . . c
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. . . b



Simon-tree Construction

k = 0

k = 1

k = 2

position 1 2 3 4 5 6 7 8 9 10 11
w b a c b a a b a d a $
X 4 5 ∞ 7 6 8 ∞ 10 ∞ ∞ ∞

11]
. . . $

[11]
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[9]
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[8]
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[8:9]
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[7]
b

[6]
a

[5]
a

[5:6]
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3]
. . . c

[3]
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Simon-tree Construction

k = 0

k = 1

k = 2

position 1 2 3 4 5 6 7 8 9 10 11
w b a c b a a b a d a $
X 4 5 ∞ 7 6 8 ∞ 10 ∞ ∞ ∞

11]
. . . $
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$
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a

[9]
d

[8]
a

[8:9]
ad

[7]
b

[6]
a

[5]
a

[5:6]
aa

k = 3

[4]
b

[4 : 7]
baab

[3]
c

[2]
ab

[1]

[1:3]
bac



Simon-tree Construction

k = 0

k = 1

k = 2

position 1 2 3 4 5 6 7 8 9 10 11
w b a c b a a b a d a $
X 4 5 ∞ 7 6 8 ∞ 10 ∞ ∞ ∞

[11]
$

[10]
a

[9]
d

[8]
a

[8:9]
ad

[7]
b

[6]
a

[5]
a

[5:6]
aa

k = 3

[4]
b

[4 : 7]
baab

[3]
c

[2]
ab

[1]

[1:3]
bac

[1 : 11]
bacbaabada$



Simon-tree Construction

k = 0

k = 1

k = 2

position 1 2 3 4 5 6 7 8 9 10 11
w b a c b a a b a d a $
X 4 5 ∞ 7 6 8 ∞ 10 ∞ ∞ ∞

[10]
a

[9]
d

[8]
a

[8:9]
ad

[7]
b

[6]
a

[5]
a

[5:6]
aa

k = 3

[4]
b

[4 : 7]
baab

[3]
c

[2]
ab

[1]

[1:3]
bac

[1 : 10]
bacbaabada



Simon-tree Construction

I Algorithm: Build the Simon-tree right to left as the word is
traversed right to left. Only the leftmost branch is edited
during construction.

I Complexity: linear! All nodes appear only once on the
leftmost path, until they are closed.



Short Recap

So far:
structure for one word representing the equivalence classes
w.r.t. ∼k

MaxSimK
Given two words s and t over an alphabet Σ, with |s| = n and
|t| = n′, with n ≥ n′, find the maximum k for which s ∼k t.

Now:
set two words in relation to each other by using their respective
Simon-trees



Connecting Two Simon-trees

I Transform the words s and t into Simon-trees as shown.
I Use the tree structure to connect equivalent nodes of the two

words.

S-Connection
The k-node a of Ts and the k-node b of Tt are S-connected (i.e.,
the pair (a, b) is in the S-connection) if and only if
s[i : n] ∼k t[j : n′] for all positions i in block a and positions j in
block b.



Connecting Two Simon-trees

I Transform the words s and t into Simon-trees as shown.
I Use the tree structure to connect equivalent nodes of the two

words.

S-Connection
The k-node a of Ts and the k-node b of Tt are S-connected (i.e.,
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From P-Connection to S-Connection

Starting from a larger relation (P-Connection) which contains the
S-Connection, and refine it.
I The 0-nodes of Ts and Tt are P-connected.
I For all levels k of Ts , if the explicit or implicit k-nodes a and

b (from Ts and Tt , respectively) are P-connected, then the
i th child of a is P-connected to the i th child of b, for all i .

I No other nodes are P-connected.



From P-Connection to S-Connection

abac

abacab$

a b $

ab a c

a b

baac

baacabba$

abb a $

ba a c

b a

a b b

a c

a b $

a c a b b

a $



From P-Connection to S-Connection

How to refine the P-Connection:
I Let k ≥ 1 and a, b be k-blocks in the word t, resp. s, which

are S-connected.
I Let a′ be child of a, b′ be child of b.
I a′ �k+1 b′ if and only if there exists a letter x such that

s[next(a′, x) + 1 : n] �k t[next(b′, x) + 1 : n′].



From P-Connection to S-Connection
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From P-Connection to S-Connection
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From P-Connection to S-Connection
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From P-Connection to S-Connection
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ba a c

b a
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From P-Connection to S-Connection

abac

abacab$

a b $

ab a c

a b

baac

baacabba$

abb a $

ba a c

b a

a b b

a c

a b $

a c a b b
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From P-Connection to S-Connection

abac

abacab$

a b $

ab a c

a b

baac

baacabba$

abb a $

ba a c

b a

a b b

a c

a b $

a c a b b
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From P-Connection to S-Connection

abac

abacab$

a b $

ab a c

a b

baac

baacabba$

abb a $

ba a c

b a

a b b

a c

a b $

a c a b b

a $



Additional Notes and Analysis

I Solution of MaxSimK: last level k where the k-blocks
containing position 1 of the input words are equivalent.

I Distinguishing word can be obtained.
I By efficiently using interval-union-find and -split-find data

structures the algorithm achieves an optimal linear runtime.

Theorem
MaxSimKcan be solved in optimal linear time.



The End

Future Work
I Edit/Hamming Distance to ∼k -equivalence.

First steps: [Day, Fleischmann, Kosche, Tore Koß, M., Siemer:
The Edit Distance to k-Subsequence Universality, STACS’21]

Thank You!
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