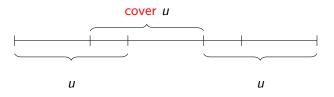
Coverable bi-infinite substitution subshifts

Jane D. Palacio

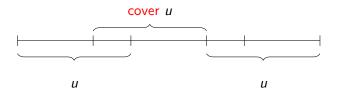
Joint work with Manuel Joseph Loquias and Eden Delight Miro

Day of Short Talks on Combinatorics on Words March 22, 2021

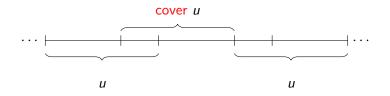
A finite word w over A is **coverable** if, for some proper subword u of w, w is formed by overlapping or adjacent occurrences of u.



A finite word w over A is **coverable** if, for some proper subword u of w, w is formed by overlapping or adjacent occurrences of u.



aaba-coverable:



- Apostolico and Ehrenfeucht (1993): Quasiperiodic finite words
- Gamard and Richomme (2015): Coverability in two dimensions

Example: Coverable bi-infinite sequences

Consider the Fibonacci substitution on $\mathcal{A} = \{a, b\}$ defined by

$$\phi_{Fib}$$
: $a \mapsto ab, b \mapsto a$.

• A word $w \in \mathcal{A}^{\mathbb{Z}}$ such that $\phi_{Fib}^2(w) = w$ is *aba*-coverable.

• If $x \in X_{Fib} = \overline{\{S^n(w) \mid n \in \mathbb{Z}\}}$, then x is *aba*-coverable.

Example: Coverable bi-infinite sequences

Consider the Fibonacci substitution on $\mathcal{A} = \{a, b\}$ defined by

 ϕ_{Fib} : $a \mapsto ab, b \mapsto a$.

• A word $w \in \mathcal{A}^{\mathbb{Z}}$ such that $\phi_{Fib}^2(w) = w$ is *aba*-coverable.

• If $x \in X_{Fib} = \overline{\{S^n(w) \mid n \in \mathbb{Z}\}}$, then x is *aba*-coverable.

Theorem. (Barbero, Gamard and Grandjean, 2020) Each bi-infinite Sturmian word has an infinite number of cover.

Problem posed by F. Levé and G. Richomme in 2013:

Given a morphism f prolongable on a letter a, can we decide whether the word

$$f^{\omega}(a) = \lim_{n \to \infty} f_n(a)$$

is coverable?

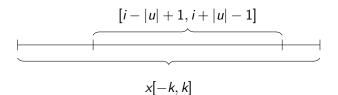
Coverable subshifts

Proposition.

If $w \in \mathcal{A}^{\mathbb{Z}}$ is coverable, then every element of $\mathbb{X}(w) = \overline{\{S^n(w) \mid n \in \mathbb{Z}\}}$ is coverable.

Outline of the proof:

- The shift map S preserves coverability in $\mathcal{A}^{\mathbb{Z}}$.
- Every limit point of $\mathbb{X}(w)$ is coverable. Consider $(x^{(n)})_{n \in \mathbb{N}} \subseteq \mathcal{O}(w)$ with $x^{(n)} \to x$.



Definition.

A subshift $X \subset \mathcal{A}^{\mathbb{Z}}$ is **coverable** if there is a coverable $w \in X$ such that $X = \mathbb{X}(w)$.

Definition.

A subshift $X \subset \mathcal{A}^{\mathbb{Z}}$ is **coverable** if there is a coverable $w \in X$ such that $X = \mathbb{X}(w)$.

Question: Is coverability of subshifts topologically invariant?

<u>Illustration</u>: With $w = {}^{\omega}(aba).a(aba)^{\omega}$, the subshift $\mathbb{X}(w)$ is coverable. However, the image of w under a 4-block code is not coverable.

$$^{\omega}(aba).a(aba)^{\omega}\mapsto ^{\omega}(541)23.(415)^{\omega}$$

abaa	baaa	aaab	aaba	baab
1	2	3	4	5

Definition.

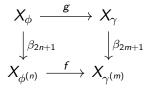
A coverable subshift $X \subset \mathcal{A}^{\mathbb{Z}}$ is said to have **non-special coverability** if X has a cover that is not left nor right special in $\mathcal{L} = \mathcal{B}(X)$.

For example, *baababaa* is not special in X_{Fib} . Thus, X_{Fib} has a non-special coverability.

Proposition.

Let ϕ and γ be primitive substitutions such that X_{ϕ} is topologically conjugate to X_{γ} . The subshift X_{ϕ} is non-special coverable if and only if X_{γ} is non-special coverable.

 $\begin{array}{l} \underbrace{\text{Outline of the proof:}}{\beta_i \text{ is an i-block code,}} \\ f \text{ is the 1-block code such that } \beta_{2m+1} \circ g = f \circ \beta_{2n+1}, \\ \phi^{(n)} \text{ is the } n\text{-(double) collared substitution of } \phi, \text{ and} \\ \gamma^{(m)} \text{ is the } m\text{-(double) collared substitution of } \gamma \end{array}$



1-collared Fibonacci substitution

Consider the Fibonacci substitution ϕ_{Fib} defined by $a \mapsto ab, b \mapsto a$.

• 1-collared substitution $\phi^{(1)}$ on $A_1 = \{b_{aba}, a_{baa}, a_{aab}, a_{bab}\}$:

 $\begin{array}{lcl} b_{aba} & \mapsto & a_{baa} \\ a_{baa} & \mapsto & a_{aab}b_{aba} \\ a_{aab} & \mapsto & a_{bab}b_{aba} \\ a_{bab} & \mapsto & a_{aab}b_{aba} \end{array}$

or $\phi^{(1)}: 0 \mapsto 1, 1 \mapsto 20, 2 \mapsto 30, 3 \mapsto 20$.

- $a \underline{baababaa} \overset{b}{\to} b_{aba} a_{baa} a_{aab} b_{aba} a_{bab} b_{aba} a_{baa} a_{aab}$
- $X_{\phi^{(1)}}$ is 01203012-coverable.

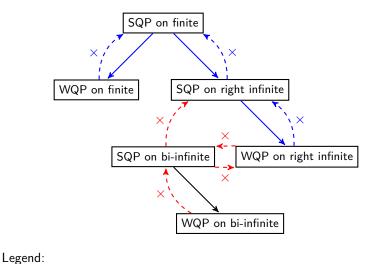
As defined by Levé and G. Richomme in 2007, a morphism $\varphi : \mathcal{A} \to \mathcal{B}$ is said to be **quasiperiodic** if for any coverable word *w*, $\varphi(w)$ is also coverable.

strongly quasiperiodic: w non-coverable implies $\varphi(w)$ is coverable (Eq. SQP on $\{a, b\}^{\mathbb{Z}}$: ϕ_{Fib}^2 : $a \mapsto aba, b \mapsto ab$)

weakly quasiperiodic: for some non-coverable w, $\varphi(w)$ is coverable (Eq. WQP on $\{a, b\}^{\mathbb{Z}}$: $\phi_{Fib} : a \mapsto ab, b \mapsto a$)

quasiperiod-free: *w* non-coverable implies $\varphi(w)$ is non-coverable (Eg. $\phi : a \mapsto bababaa, b \mapsto baababa$ is QP-free on $\{a, b\}^{\mathbb{N}}$)

- Partial results: Let ϕ be a primitive substitution on \mathcal{A} .
 - If ϕ is SQP on $\mathcal{A}^{\mathbb{Z}}$, then X_{ϕ} is coverable.
 - If $X_{\phi} \subset \mathcal{A}^{\mathbb{Z}}$ is coverable, then ϕ is not QP-free on $\mathcal{A}^{\mathbb{Z}}$.
- If ϕ is primitive and proper, then X_{ϕ} has a non-special coverability whenever it is coverable.
- Goal: Relate SQP/WQP substitutions on right infinite sequences to the bi-infinite case



Levé and G. Richomme, 2013

Thank you for your attention!