Eigenvalues and Constant Arithmetic Progressions for Substitutive Sequences

Fabien Durand, Valérie Goyheneche

Université de Picardie Jules Verne (Amiens) - LAMFA

One World Combinatorics on Words Seminar april 12, 2021

Table of contents

Introduction

Background

Rational eigenvalues

Arithmetic progressions

Background

Rational eigenvalues

Arithmetic progressions

Question: Does a substitutive sequence admit a constant arithmetic progression?

Question: Does a substitutive sequence admit a constant arithmetic progression?

Example : Period-doubling sequence. $\sigma: \begin{cases} 0 \mapsto 01 \\ 1 \mapsto 00 \end{cases}$

Question: Does a substitutive sequence admit a constant arithmetic progression?

Example : Period-doubling sequence. $\sigma: \begin{cases} 0 \mapsto 01 \\ 1 \mapsto 00 \end{cases}$

Question: Does a substitutive sequence admit a constant arithmetic progression?

Example : Period-doubling sequence. $\sigma: \begin{cases} 0 \mapsto 01 \\ 1 \mapsto 00 \end{cases}$

Question: Does a substitutive sequence admit a constant arithmetic progression?

Example : Period-doubling sequence. $\sigma: \begin{cases} 0 \mapsto 01 \\ 1 \mapsto 00 \end{cases}$

Question: Does a substitutive sequence admit a constant arithmetic progression?

Example : Period-doubling sequence. σ :

$$\sigma: \begin{cases} 0 \mapsto 01 \\ 1 \mapsto 00 \end{cases}$$

Question: Does a substitutive sequence admit a constant arithmetic progression?

Example : Period-doubling sequence. $\sigma: \begin{cases} 0 \mapsto 01 \\ 1 \mapsto 00 \end{cases}$

Question: Does a substitutive sequence admit a constant arithmetic progression?

Example : Period-doubling sequence. $\sigma: \begin{cases} 0 \mapsto 01 \\ 1 \mapsto 00 \end{cases}$

010<mark>0</mark>010<mark>1</mark>010**0**010**0**010**0**010<mark>1010**0**010<mark>1010**0**010<mark>1010**0**010**0**010**0**01 ····</mark></mark></mark>

Question: Does a substitutive sequence admit a constant arithmetic progression?

Example: Thue-Morse sequence.

$$\sigma: \begin{cases} 0 \mapsto 01 \\ 1 \mapsto 10 \end{cases}$$

Question: Does a substitutive sequence admit a constant arithmetic progression?

Example: Thue-Morse sequence.

$$\sigma: \begin{cases} 0 \mapsto 01 \\ 1 \mapsto 10 \end{cases}$$

Question: Does a substitutive sequence admit a constant arithmetic progression?

Example: Thue-Morse sequence.

$$\sigma: \begin{cases} 0 \mapsto 01 \\ 1 \mapsto 10 \end{cases}$$

Question: Does a substitutive sequence admit a constant arithmetic progression?

Example: Thue-Morse sequence.

$$\sigma: \begin{cases} 0 \mapsto 01 \\ 1 \mapsto 10 \end{cases}$$

Question: Does a substitutive sequence admit a constant arithmetic progression?

Example: Thue-Morse sequence.

$$\sigma: \begin{cases} 0 \mapsto 01 \\ 1 \mapsto 10 \end{cases}$$

Question: Does a substitutive sequence admit a constant arithmetic progression?

Example: Thue-Morse sequence.

$$\sigma: \begin{cases} 0 \mapsto 01 \\ 1 \mapsto 10 \end{cases}$$

Question: Does a substitutive sequence admit a constant arithmetic progression?

Example: Thue-Morse sequence.

$$\sigma: \begin{cases} 0 \mapsto 01 \\ 1 \mapsto 10 \end{cases}$$

Question: Does a substitutive sequence admit a constant arithmetic progression?

Example: Thue-Morse sequence.

$$\sigma: \begin{cases} 0 \mapsto 01 \\ 1 \mapsto 10 \end{cases}$$

Question: Does a substitutive sequence admit a constant arithmetic progression?

Example: Thue-Morse sequence.

$$\sigma: \begin{cases} 0 \mapsto 01 \\ 1 \mapsto 10 \end{cases}$$

Question: Does a substitutive sequence admit a constant arithmetic progression?

Question: Does a substitutive sequence admit a constant arithmetic progression?

decidability questions

Question: Does a substitutive sequence admit a constant arithmetic progression?

- decidability questions
- dynamical eigenvalues

Background

Rational eigenvalues

Arithmetic progressions

Substitutions

Definition.

A **substitution** is an endomorphism of \mathscr{A}^* such that there exist two letters $a,b\in\mathscr{A}$ satisfying :

- 1 σ is right-prolongable on a,
- 2 σ is left-prolongable on b,
- 3 σ is growing.

Substitutions

Definition.

A **substitution** is an endomorphism of \mathscr{A}^* such that there exist two letters $a,b\in\mathscr{A}$ satisfying :

1 - σ is right-prolongable on a,

2 - σ is left-prolongable on b,

3 - σ is growing.

Word : $u \in \mathcal{A}^+$

Sequence: $x \in \mathscr{A}^{\mathbb{Z}}$ or $\mathscr{A}^{\mathbb{N}}$

Substitutions

Definition.

A **substitution** is an endomorphism of \mathscr{A}^* such that there exist two letters $a,b\in\mathscr{A}$ satisfying :

1 - σ is right-prolongable on a,

2 - σ is left-prolongable on b,

3 - σ is growing.

Word : $u \in \mathcal{A}^+$

Sequence : $x \in \mathscr{A}^{\mathbb{Z}}$ or $\mathscr{A}^{\mathbb{N}}$

Definition.

Purely substitutive sequence:

admissible fixed point of a substitution

$$x = \sigma^{\infty}(b \, . \, a)$$

Substitutive sequence:

image of a purely substitutive sequence under a letter-to-letter morphism

$$y = \phi(x) = \phi(\sigma^{\infty}(b \cdot a))$$

Substitutions

Example.

$$\sigma: \begin{cases} 0 \mapsto 012 \\ 1 \mapsto 001 \text{ and } \phi: \begin{cases} 0 \mapsto a \\ 1 \mapsto b \\ 2 \mapsto b \end{cases}$$

Substitutions

Example.

$$\sigma: \begin{cases} 0 \mapsto 012 \\ 1 \mapsto 001 \text{ and } \phi: \begin{cases} 0 \mapsto a \\ 1 \mapsto b \\ 2 \mapsto b \end{cases}$$

$$x = \sigma^{\infty}(1.0) = \cdots 012012001.012001201 \cdots$$

is a purely substitutive sequence.

Substitutions

Example.

$$\sigma: \begin{cases} 0 \mapsto 012 \\ 1 \mapsto 001 \text{ and } \phi: \begin{cases} 0 \mapsto a \\ 1 \mapsto b \\ 2 \mapsto b \end{cases}$$

$$x = \sigma^{\infty}(1.0) = \cdots 012012001.012001201 \cdots$$

is a purely substitutive sequence.

$$y = \phi(x) = \phi \circ \sigma^{\infty}(1.0) = \cdots abbabbaab . abbaabbab \cdots$$

is a substitutive sequence.

Substitutive dynamical systems

Definition.

The substitutive dynamical system associated to a substitution σ is the system (X_{σ}, S) where S is the shift map and

$$X_{\sigma} = \{x \in \mathcal{A}^{\mathbb{Z}} : \mathcal{L}(x) \subset \mathcal{L}(\sigma)\}.$$

Periodicity of morphic sequences

- Pansiot, 1986: the periodicity of a fixed point of morphism is decidable.
- Harju and Linna, 1986: the ultimate periodicity of a fixed point of morphism is decidable.
- Honkala, 1986: the periodicity of automatic sequences is decidable.
- Halava, Harju, Kärki and Rigo, 2010: the ultimate p-periodicity of a morphic sequence is decidable, for any given period p.
- **Durand, 2012 and 2013:** the periodicity of morphic (primitive) sequences is decidable.

Constant arithmetic progression

Arithmetic progression of a sequence x: subsequence of the form $(x_{k+np})_{n\in\mathbb{Z}}$

Constant arithmetic progression if $x_{k+np} = x_k$, for all $n \in \mathbb{Z}$.

Constant arithmetic progression

Definition.

Arithmetic progression of a sequence x: subsequence of the form $(x_{k+np})_{n\in\mathbb{Z}}$.

Constant arithmetic progression if $x_{k+np} = x_k$, for all $n \in \mathbb{Z}$.

Constant arithmetic progression

Definition.

Arithmetic progression of a sequence x: subsequence of the form $(x_{k+np})_{n\in\mathbb{Z}}$.

Constant arithmetic progression if $x_{k+np} = x_k$, for all $n \in \mathbb{Z}$.

An integer p is an **essential period** for the constant arithmetic progression $(x_{k+np})_{n\in\mathbb{Z}}$ if, for all divisor q of p, the arithmetic progression $(x_{k+nq})_{n\in\mathbb{Z}}$ is not constant.

Background

Rational eigenvalues

Arithmetic progressions

Motivation

Proposition [folklore; Durand, G].

Let σ be a **primitive** substitution and x a fixed point of σ .

If x has a constant arithmetic progression of essential period p, then $\exp(2i\pi lp)$ is an eigenvalue of the dynamical system (X_{σ}, S) .

Motivation

Proposition [folklore; G].

Let σ be a **primitive** substitution and x a fixed point of σ .

If x has a constant arithmetic progression of essential period p, then $\exp(2i\pi lp)$ is an eigenvalue of the dynamical system (X_{σ}, S) .

Idea.

- Compute the rational eigenvalues.
- Check if there exist some periods among this set.

Eigenvalues associated to a dynamical system

Definition.

A complex number $\lambda \in \mathbb{C}$ is an **eigenvalue** for the dynamical system (X, \mathcal{B}, μ, T) if there exists a fonction $f \in L^2(X, \mu)$ such that

$$f \circ T = \lambda f$$
 for μ -almost all $x \in X$.

Eigenvalues associated to a dynamical system

Definition.

A complex number $\lambda \in \mathbb{C}$ is an **eigenvalue** for the dynamical system (X, \mathcal{B}, μ, T) if there exists a fonction $f \in L^2(X, \mu)$ such that

$$f \circ T = \lambda f$$
 for μ -almost all $x \in X$.

If, moreover, $\lambda \in \exp(2i\pi\mathbb{Q})$, we say λ is a **rational eigenvalue**.

Constant-length case

Theorem [Dekking 1978].

Let σ be a substitution of constant length l. Then, the set of eigenvalues associated to (X_{σ},S) is

$$\left\{ \exp\left(\frac{2ik\pi}{hl^m}\right) : k \in \mathbb{Z}, m \in \mathbb{N} \right\},\,$$

where h is the *height* of σ .

Constant-length case

Theorem [Dekking 1978].

Let σ be a substitution of constant length l. Then, the set of eigenvalues associated to (X_{σ},S) is

$$\left\{ \exp\left(\frac{2ik\pi}{hl^m}\right) : k \in \mathbb{Z}, m \in \mathbb{N} \right\},\,$$

where h is the *height* of σ .

Definition.

Let σ be a substitution of constant length l and x a fixed point of σ . The **height** of σ is the number h defined by

$$h = \max\{n \ge 1 : (n, l) = 1, n \text{ divides } \gcd\{i \ge 1 : x_i = x_0\}\}.$$

Constant-length case

Theorem [Dekking 1978].

Let σ be a substitution of constant length l and height h. Then, the set of eigenvalues associated to (X_{σ},S) is

$$\left\{ \exp\left(\frac{2ik\pi}{hl^m}\right) : k \in \mathbb{Z}, m \in \mathbb{N} \right\}.$$

$$\sigma: \begin{cases} 0 \mapsto 012 \\ 1 \mapsto 101 \\ 2 \mapsto 210 \end{cases} \qquad x = \dots 101012101.012101210101012101\dots$$

Constant-length case

Theorem [Dekking 1978].

Let σ be a substitution of constant length l and height h. Then, the set of eigenvalues associated to (X_{σ},S) is

$$\left\{ \exp\left(\frac{2ik\pi}{hl^m}\right) : k \in \mathbb{Z}, m \in \mathbb{N} \right\}.$$

$$\sigma: \begin{cases} 0 \mapsto 012 \\ 1 \mapsto 101 \\ 2 \mapsto 210 \end{cases} \qquad x = \dots 101012101.012101210101012101\dots$$

Constant-length case

Theorem [Dekking 1978].

Let σ be a substitution of constant length l and height h. Then, the set of eigenvalues associated to (X_{σ}, S) is

$$\left\{ \exp\left(\frac{2ik\pi}{hl^m}\right) : k \in \mathbb{Z}, m \in \mathbb{N} \right\}.$$

$$\sigma: \begin{cases} 0 \mapsto 012 \\ 1 \mapsto 101 \\ 2 \mapsto 210 \end{cases} \qquad x = \dots 101012101.012101210101012101 \dots$$
$$x_{2k} \in \{0,2\} \qquad x_{2k+1} \in \{1\}$$

Characterization of rational eigenvalues

Definition.

We call **periodic spectrum** of a dynamical system (X, T) the set of its essential periods :

 $\mathbb{P}(X,T) = \{p \geq 2 : p \text{ is an essential period for a clopen } U\}.$

Characterization of rational eigenvalues

Definition.

We call **periodic spectrum** of a dynamical system (X, T) the set of its essential periods:

$$\mathbb{P}(X,T) = \{p \geq 2 : p \text{ is an essential period for a clopen } U\}.$$

More precisely:

There exists $U \subset X$ and $x \in U$ such that

$$\mathrm{PS}_p(x,U) = \{ k \in \mathbb{Z} : T^{k+np} x \in U, \forall n \in \mathbb{Z} \}$$

is non-empty

Characterization of rational eigenvalues

Proposition [folklore; Durand, G].

Let (X, T) be a minimal dynamical system and $p \in \mathbb{N}^*$ an integer. The following properties are equivalent.

- 1. $\lambda = \exp(2i\pi/p)$ is a continuous eigenvalue of (X, T).
- 2. p belongs to $\mathbb{P}(X,T)$.
- 3. There exists a minimal closed subset V of X such that $\{V, T^{-1}V, ..., T^{-p+1}V\}$ is a partition of X.
- 4. (X, T) admits a periodic factor with period p.

Characterization of rational eigenvalues

$$\sigma: \begin{cases} 0 \mapsto 01 \\ 1 \mapsto 10 \end{cases}$$

Characterization of rational eigenvalues

Exemple. Dynamical system associated to the Thue-Morse sequence.

$$\sigma: \begin{cases} 0 \mapsto 01 \\ 1 \mapsto 10 \end{cases}$$

1. Eigenvalues: $\{\exp(2ik\pi/2^m): m \in \mathbb{N}\}$

Characterization of rational eigenvalues

$$\sigma: \begin{cases} 0 \mapsto 01 \\ 1 \mapsto 10 \end{cases}$$

- 1. Eigenvalues: $\{\exp(2ik\pi/2^m): m \in \mathbb{N}\}$
- 2. Periodic spectrum: $\{2^m : m \in \mathbb{N}\}$

Characterization of rational eigenvalues

$$\sigma: \begin{cases} 0 \mapsto 01 \\ 1 \mapsto 10 \end{cases}$$

- 1. Eigenvalues: $\{\exp(2ik\pi/2^m): m \in \mathbb{N}\}$
- 2. Periodic spectrum: $\{2^m : m \in \mathbb{N}\}$
- 3. For all $m \in \mathbb{N}$, there exists a minimal set V with period 2^m

Characterization of rational eigenvalues

$$\sigma: \begin{cases} 0 \mapsto 01 \\ 1 \mapsto 10 \end{cases}$$

- 1. Eigenvalues: $\{\exp(2ik\pi/2^m): m \in \mathbb{N}\}$
- 2. Periodic spectrum: $\{2^m : m \in \mathbb{N}\}$
- 3. For all $m \in \mathbb{N}$, there exists a minimal set V with period 2^m
- 4. For all $m \in \mathbb{N}$, $(\mathbb{Z}/2^m\mathbb{Z}, +)$ is a factor of (X_{σ}, S) .

Characterization of rational eigenvalues

$$\sigma: \begin{cases} 0 \mapsto 01 \\ 1 \mapsto 0 \end{cases}$$

Characterization of rational eigenvalues

Example. Fibonacci dynamical system.

$$\sigma: \begin{cases} 0 \mapsto 01 \\ 1 \mapsto 0 \end{cases}$$

1. Eigenvalues: $\{\exp(n\varphi \pmod{1}) : n \in \mathbb{N}\}$, rational eigenvalues : $\{1\}$

Characterization of rational eigenvalues

$$\sigma: \begin{cases} 0 \mapsto 01 \\ 1 \mapsto 0 \end{cases}$$

- 1. Eigenvalues: $\{\exp(n\varphi \pmod{1}) : n \in \mathbb{N}\}$, rational eigenvalues : $\{1\}$
- 2. Periodic spectrum : {1}

Characterization of rational eigenvalues

$$\sigma: \begin{cases} 0 \mapsto 01 \\ 1 \mapsto 0 \end{cases}$$

- 1. Eigenvalues: $\{\exp(n\varphi \pmod{1}) : n \in \mathbb{N}\}$, rational eigenvalues : $\{1\}$
- 2. Periodic spectrum : {1}
- 3. There exist no proper periodic subset

Characterization of rational eigenvalues

$$\sigma: \begin{cases} 0 \mapsto 01 \\ 1 \mapsto 0 \end{cases}$$

- 1. Eigenvalues: $\{\exp(n\varphi \pmod{1}) : n \in \mathbb{N}\}$, rational eigenvalues : $\{1\}$
- 2. Periodic spectrum : {1}
- 3. There exist no proper periodic subset
- 4. The dynamical system (X_{σ}, S) has no proper factor

Computation of rational eigenvalues

Proposition [Durand, G].

The set of rational eigenvalues associated to a substitutive dynamical system (X_{σ},S) is computable.

If, moreover, the substitution σ is *proper*, then these eigenvalues only depend on the incidence matrix of σ .

Computation of rational eigenvalues

Proposition [Durand, G].

The set of rational eigenvalues associated to a substitutive dynamical system (X_{σ},S) is computable.

If, moreover, the substitution σ is *proper*, then these eigenvalues only depend on the incidence matrix of σ .

Remark. Case σ is not proper [Durand 2000].

There exists a proper substitution ϕ such that the dynamical system (X_σ,S) is conjugated to (X_ϕ,S)

Computation of the periodic spectrum - step 1/3

Example.

Computation of rational eigenvalues for the substitution

$$\sigma: \begin{cases} 0 \mapsto 01 \\ 1 \mapsto 0011 \end{cases}$$

Computation of the periodic spectrum - step 1/3

Example.

Computation of rational eigenvalues for the substitution

$$\sigma: \begin{cases} 0 \mapsto 01 \\ 1 \mapsto 0011 \end{cases}$$

Lemma [Durand 2000; Durand, G].

Let σ be a proper, non-periodic substitution, and M_{σ} its incidence matrix.

- 1. An integer p belongs to $\mathbb{P}(X_{\sigma}, S)$ if and only if there exists $m \in \mathbb{N}$ such that $1M_{\sigma}^m \in p\mathbb{Z}^d$.
- 2. A prime number p belongs to $\mathbb{P}(X_{\sigma}, S)$ if and only if $1M_{\sigma}^d \in p\mathbb{Z}^d$.

Computation of the periodic spectrum - step 1/3

Example.

Computation of rational eigenvalues for the substitution

$$\sigma: \begin{cases} 0 \mapsto 01 \\ 1 \mapsto 0011 \end{cases}$$

$$M_{\sigma} = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$$
 thus $M_{\sigma}^2 = \begin{pmatrix} 3 & 6 \\ 3 & 6 \end{pmatrix}$ and $(1,1)$ $M_{\sigma}^2 = (6,12)$.

Lemma [Durand 2000; Durand, G].

Let σ be a proper, non-periodic substitution, and M_{σ} its incidence matrix.

- 1. An integer p belongs to $\mathbb{P}(X_{\sigma}, S)$ if and only if there exists $m \in \mathbb{N}$ such that $1M_{\sigma}^m \in p\mathbb{Z}^d$.
- 2. A prime number p belongs to $\mathbb{P}(X_{\sigma}, S)$ if and only if $1M_{\sigma}^d \in p\mathbb{Z}^d$.

Computation of the periodic spectrum - step 1/3

Example.

Computation of rational eigenvalues for the substitution

$$\sigma: \begin{cases} 0 \mapsto 01 \\ 1 \mapsto 0011 \end{cases}$$

$$M_{\sigma} = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$$
 thus $M_{\sigma}^2 = \begin{pmatrix} 3 & 6 \\ 3 & 6 \end{pmatrix}$ and $(1,1)$ $M_{\sigma}^2 = (6,12)$.

Prime numbers belonging to the spectrum $\mathbb{P}(X_{\sigma}, S)$: 2 and 3.

Lemma [Durand 2000; Durand, G].

Let σ be a proper, non-periodic substitution, and M_{σ} its incidence matrix.

- 1. An integer p belongs to $\mathbb{P}(X_{\sigma}, S)$ if and only if there exists $m \in \mathbb{N}$ such that $1M_{\sigma}^m \in p\mathbb{Z}^d$.
- 2. A prime number p belongs to $\mathbb{P}(X_{\sigma}, S)$ if and only if $1M_{\sigma}^d \in p\mathbb{Z}^d$.

Computation of the periodic spectrum - step 2/3

Example.

Computation of rational eigenvalues for the substitution

$$\sigma: \begin{cases} 0 \mapsto 01 \\ 1 \mapsto 0011 \end{cases}$$

Computation of the periodic spectrum - step 2/3

Example.

Computation of rational eigenvalues for the substitution

$$\sigma: \begin{cases} 0 \mapsto 01 \\ 1 \mapsto 0011 \end{cases}$$

Lemma [Durand 2000].

Let M be a $d \times d$ -matrix and p a prime number. The following properties are equivalent.

- 1. $\forall n \in \mathbb{N}, \exists k \in \mathbb{N} : 1M^k \in p^n \mathbb{Z}^d$
- 2. p divides $GCD(a_0, ..., a_r)$ with $r = \max\{i \in \mathbb{N} : \{1, 1M, ... 1M^r\}$ is free $\{i \in \mathbb{N} : \{1, 1M, ... 1M^r\}\}$

and $Q(X) = \sum_{i=0}^{r+1} a_i X^i$ is the characteristic polynom of the restriction of M to the subspace generated by $1, 1M, \dots 1M^r$.

Computation of the periodic spectrum - step 2/3

Example.

Computation of rational eigenvalues for the substitution

$$\sigma: \begin{cases} 0 \mapsto 01 \\ 1 \mapsto 0011 \end{cases}$$

$$M_{\sigma} = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$$
 thus $1M_{\sigma} = (2,4)$.

We compute $Q(X) = X^2 - 3X$ and GCD(0, -3) = 3.

Lemma [Durand 2000].

Let M be a $d \times d$ -matrix and p a prime number. The following properties are equivalent.

- 1. $\forall n \in \mathbb{N}, \exists k \in \mathbb{N} : 1M^k \in p^n \mathbb{Z}^d$
- 2. p divides $GCD(a_0, ..., a_r)$ with $r = \max\{i \in \mathbb{N} : \{1, 1M, ... 1M^r\}$ is free $\{i \in \mathbb{N} : \{1, 1M, ... 1M^r\}\}$

and
$$Q(X) = \sum_{i=0}^{r+1} a_i X^i$$
 is the characteristic polynom of the restriction of M to the subspace generated by $1, 1M, \dots 1M^r$.

Computation of the periodic spectrum - step 2/3

Example.

Computation of rational eigenvalues for the substitution

$$\sigma: \begin{cases} 0 \mapsto 01 \\ 1 \mapsto 0011 \end{cases}$$

$$M_{\sigma} = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$$
 thus $1M_{\sigma} = (2,4)$.

We compute $Q(X) = X^2 - 3X$ and GCD(0, -3) = 3.

Conclusion: 3 has unbounded exponent in $\mathbb{P}(X_{\sigma}, S)$.

Lemma [Durand 2000].

Let M be a $d \times d$ -matrix and p a prime number. The following properties are equivalent.

- 1. $\forall n \in \mathbb{N}, \exists k \in \mathbb{N} : 1M^k \in p^n \mathbb{Z}^d$
- 2. p divides $GCD(a_0, ..., a_r)$ with $r = \max\{i \in \mathbb{N} : \{1, 1M, ... 1M^r\}$ is free $\{i \in \mathbb{N} : \{1, 1M, ... 1M^r\}\}$

and $Q(X) = \sum_{i=0}^{r+1} a_i X^i$ is the characteristic polynom of the restriction of M to the subspace generated by $1,1M,\ldots 1M^r$.

Computation of the periodic spectrum - step 3/3

Example.

Computation of rational eigenvalues for the substitution

$$\sigma: \begin{cases} 0 \mapsto 01 \\ 1 \mapsto 0011 \end{cases}$$

Computation of the periodic spectrum - step 3/3

Example.

Computation of rational eigenvalues for the substitution

$$\sigma: \begin{cases} 0 \mapsto 01 \\ 1 \mapsto 0011 \end{cases}$$

Lemma [Durand, G].

Let p be a prime number and m an integer.

If the maximal power of p that divides $1M^m$ is the same as the one that divides

 $1M^{m+d}$, then it is equal to the maximal power that divides each $1M^k, k \in \mathbb{N}$.

Moreover, this maximal power divides $1M^{p^d}$.

Computation of the periodic spectrum - step 3/3

Example.

Computation of rational eigenvalues for the substitution

$$\sigma: \begin{cases} 0 \mapsto 01 \\ 1 \mapsto 0011 \end{cases}$$

$$M_{\sigma}^4 = \begin{pmatrix} 27 & 54 \\ 27 & 54 \end{pmatrix}$$
 thus $(1,1)M_{\sigma}^4 = (54,108) = (2 \times 3^4, 2^2 \times 3^4)$.

Lemma [Durand, G].

Let p be a prime number and m an integer.

If the maximal power of p that divides $1M^m$ is the same as the one that divides

 $1M^{m+d}$, then it is equal to the maximal power that divides each $1M^k, k \in \mathbb{N}$.

Moreover, this maximal power divides $1M^{p^d}$.

Computation of the periodic spectrum - step 3/3

Example.

Computation of rational eigenvalues for the substitution

$$\sigma: \begin{cases} 0 \mapsto 01 \\ 1 \mapsto 0011 \end{cases}$$

$$M_{\sigma}^4 = \begin{pmatrix} 27 & 54 \\ 27 & 54 \end{pmatrix}$$
 thus $(1,1)M_{\sigma}^4 = (54,108) = (2 \times 3^4, 2^2 \times 3^4)$.

Conclusion: the maximal exponent of 2 in $\mathbb{P}(X_{\sigma}, S)$ is 1.

Lemma [Durand, G].

Let p be a prime number and m an integer.

If the maximal power of p that divides $1M^m$ is the same as the one that divides

 $1M^{m+d}$, then it is equal to the maximal power that divides each $1M^k, k \in \mathbb{N}$.

Moreover, this maximal power divides $1M^{p^d}$.

Rational eigenvalues

Computation of the periodic spectrum - conclusion

Example.

Computation of rational eigenvalues for the substitution

$$\sigma: \begin{cases} 0 \mapsto 01 \\ 1 \mapsto 0011 \end{cases}$$

Conclusion: $\mathbb{P}(X_{\sigma}, S) = \{3^m, 2 \times 3^m : m \in \mathbb{N}\}$

Rational eigenvalues

Computation of the periodic spectrum - conclusion

Example.

Computation of rational eigenvalues for the substitution

$$\sigma: \begin{cases} 0 \mapsto 01 \\ 1 \mapsto 0011 \end{cases}$$

Conclusion: $\mathbb{P}(X_{\sigma}, S) = \{3^m, 2 \times 3^m : m \in \mathbb{N}\}$

Set of eigenvalues : $\{\exp(2ik\pi/3^m), \exp(2ik\pi/(2\times 3^m)) : m \in \mathbb{N}, k \in \mathbb{Z}\}$

Introduction

Background

Rational eigenvalues

Arithmetic progressions

General case

Proposition [Durand, G].

Let σ be a primitive substitution and x a fixed point of σ .

If x admits a constant arithmetic progression with essential period p, then p belongs to the periodic spectrum $\mathbb{P}(X_{\sigma}, S)$.

General case

Proposition [Durand, G].

Let σ be a primitive substitution and x a fixed point of σ .

If x admits a constant arithmetic progression with essential period p, then p belongs to the periodic spectrum $\mathbb{P}(X_{\sigma}, S)$.

Idea of the proof.

- \blacktriangleright Define a p-periodic set defined by the constant arithmetic progression.
- Apply the following proposition.

General case

Proposition [folklore; Durand, G].

Let (X, T) be a minimal dynamical system and $p \in \mathbb{N}^*$ an integer. The following properties are equivalent.

- 1. $\lambda = \exp(2i\pi/p)$ is a continuous eigenvalue of (X, T)
- 2. p belongs to $\mathbb{P}(X,T)$
- 3. There exists a closed subset V of X such that $\{V, T^{-1}V, ..., T^{-p+1}V\}$ is a partition of X
- 4. (X, T) admits a periodic factor with period p.

Proper case

Algorithm. For a given integer p, check if a sequence admits a constant arithmetic progression with period p:

- compute the periodic spectrum $\mathbb{P}(X_{\sigma}, S)$,
- compute the essential period $\tilde{p} \in \mathbb{P}(X_{\sigma}, S)$ corresponding to p,
- check if the images of letters under σ^{m_p} , contain a constant arithmetic progression.

These words have lengths multiple of \tilde{p} .

Proper case

Algorithm. For a given integer p, check if a sequence admits a constant arithmetic progression with period p:

- compute the periodic spectrum $\mathbb{P}(X_{\sigma}, S)$,
- compute the essential period $\tilde{p} \in \mathbb{P}(X_{\sigma}, S)$ corresponding to p,
- check if the images of letters under σ^{m_p} , contain a constant arithmetic progression.

These words have lengths multiple of \tilde{p} .

Lemma [Durand 2000; Durand, G].

Let σ be a proper, non-periodic substitution, and M_{σ} its incidence matrix.

- 1. An integer \tilde{p} belongs to $\mathbb{P}(X_{\sigma}, S)$ if and only if there exists $m_{\tilde{p}} \in \mathbb{N}$ such
- that $1M_{\sigma}^{m_{\tilde{p}}} \in \tilde{p}\mathbb{Z}^d$
- 2. A prime number \tilde{p} belongs to $\mathbb{P}(X_{\sigma}, S)$ if and only if $1M_{\sigma}^d \in \tilde{p}\mathbb{Z}^d$

Proper case

For
$$\sigma:$$
 $\begin{cases} 0\mapsto 01 \\ 1\mapsto 0011 \end{cases}$ we have $\mathbb{P}(X_{\sigma},S)=\{3^m,\,2\times 3^m:m\in\mathbb{N}\}$

- → Arithmetic progression of period 10?
- → Arithmetic progression of period 12?

Proper case

For
$$\sigma:$$
 $\begin{cases} 0\mapsto 01 \\ 1\mapsto 0011 \end{cases}$ we have $\mathbb{P}(X_{\sigma},S)=\{3^m,\,2\times 3^m:m\in\mathbb{N}\}$

- ightharpoonup Arithmetic progression of period 10 ? $\tilde{p}=2$
- → Arithmetic progression of period 12 ?

Proper case

For
$$\sigma: \begin{cases} 0 \mapsto 01 \\ 1 \mapsto 00 \end{cases}$$
 we have $\mathbb{P}(X_{\sigma}, S) = \{3^m, 2 \times 3^m : m \in \mathbb{N}\}$

- ightharpoonup Arithmetic progression of period 10 ? $\tilde{p}=2$
- → Arithmetic progression of period 12 ?

Proper case

For
$$\sigma: \begin{cases} 0 \mapsto \boxed{01} \\ 1 \mapsto \boxed{001} \end{cases}$$
 we have $\mathbb{P}(X_{\sigma}, S) = \{3^m, 2 \times 3^m : m \in \mathbb{N}\}$

- ightharpoonup Arithmetic progression of period 10 ? $\tilde{p}=2$
- → Arithmetic progression of period 12?

Proper case

For
$$\sigma: \begin{cases} 0 \mapsto 0 \\ 1 \mapsto 0 \\ 0 \end{cases}$$
 we have $\mathbb{P}(X_{\sigma}, S) = \{3^m, 2 \times 3^m : m \in \mathbb{N}\}$

- ightharpoonup Arithmetic progression of period 10 ? $\tilde{p}=2$
- → Arithmetic progression of period 12 ?

Proper case

For
$$\sigma:$$
 $\begin{cases} 0\mapsto 01 \\ 1\mapsto 0011 \end{cases}$ we have $\mathbb{P}(X_{\sigma},S)=\{3^m,\,2\times 3^m:m\in\mathbb{N}\}$

- → Arithmetic progression of period 10? No.
- → Arithmetic progression of period 12?

Proper case

For
$$\sigma:$$
 $\begin{cases} 0\mapsto 01 \\ 1\mapsto 0011 \end{cases}$ we have $\mathbb{P}(X_{\sigma},S)=\{3^m,\,2\times 3^m:m\in\mathbb{N}\}$

- → Arithmetic progression of period 10? No.
- \rightarrow Arithmetic progression of period 12 ? $\tilde{p}=6$

Proper case

For
$$\sigma:$$
 $\begin{cases} 0\mapsto 01 \\ 1\mapsto 0011 \end{cases}$ we have $\mathbb{P}(X_{\sigma},S)=\{3^m,\,2\times 3^m:m\in\mathbb{N}\}$

- → Arithmetic progression of period 10? No.
- ightharpoonup Arithmetic progression of period 12 ? $\tilde{p}=6$

$$\sigma^2: \begin{cases} 0 \mapsto 010011 \\ 1 \mapsto 010100110011 \end{cases}$$

Proper case

For
$$\sigma:$$
 $\begin{cases} 0\mapsto 01 \\ 1\mapsto 0011 \end{cases}$ we have $\mathbb{P}(X_{\sigma},S)=\{3^m,\,2\times 3^m:m\in\mathbb{N}\}$

- → Arithmetic progression of period 10? No.
- \rightarrow Arithmetic progression of period 12 ? $\tilde{p}=6$

$$\sigma^2: \begin{cases} 0 \mapsto 010011 \\ 1 \mapsto 010100110011 \end{cases}$$

Proper case

For
$$\sigma:$$
 $\begin{cases} 0\mapsto 01 \\ 1\mapsto 0011 \end{cases}$ we have $\mathbb{P}(X_{\sigma},S)=\{3^m,\,2\times 3^m:m\in\mathbb{N}\}$

- → Arithmetic progression of period 10? No.
- \rightarrow Arithmetic progression of period 12 ? $\tilde{p}=6$

$$\sigma^2: \begin{cases} 0 \mapsto \boxed{010011} \\ 1 \mapsto \boxed{010100110011} \end{cases}$$

Proper case

For
$$\sigma:$$
 $\begin{cases} 0\mapsto 01 \\ 1\mapsto 0011 \end{cases}$ we have $\mathbb{P}(X_{\sigma},S)=\{3^m,\,2\times 3^m:m\in\mathbb{N}\}$

- → Arithmetic progression of period 10? No.
- ightharpoonup Arithmetic progression of period 12 ? $\tilde{p}=6$

$$\sigma^2: \begin{cases} 0 \mapsto 0 \boxed{10011} \\ 1 \mapsto 0 \boxed{10100} 1 \boxed{10011} \end{cases}$$

Proper case

For
$$\sigma:$$
 $\begin{cases} 0\mapsto 01 \\ 1\mapsto 0011 \end{cases}$ we have $\mathbb{P}(X_{\sigma},S)=\{3^m,\,2\times 3^m:m\in\mathbb{N}\}$

- → Arithmetic progression of period 10 ? No.
- \rightarrow Arithmetic progression of period 12 ? $\tilde{p}=6$

$$\sigma^2: \begin{cases} 0 \mapsto 010011 \\ 1 \mapsto 010100110011 \end{cases}$$

Proper case

For
$$\sigma$$
:
$$\begin{cases} 0 \mapsto 01 \\ 1 \mapsto 0011 \end{cases}$$
 we have $\mathbb{P}(X_{\sigma}, S) = \{3^m, 2 \times 3^m : m \in \mathbb{N}\}$

- → Arithmetic progression of period 10? No.
- → Arithmetic progression of period 12 ? Yes.

$$\sigma^{2}: \begin{cases} 0 \mapsto 010011 \\ 1 \mapsto 010100110011 \end{cases}$$
$$x_{6n+1} = 1 \text{ and } x_{6n+2} = 0$$

Constant length case

Question: Describe all the essential periods of constant arithmetic progressions.

Constant length case

Question: Describe all the essential periods of constant arithmetic progressions.

Idea.

- ▶ Description of the eigenvalues \Rightarrow each essential period divides a hl^m .
- Describe the letters appearing in the arithmetic progressions of the form $(x_{k+nhl^m})_{n\in\mathbb{Z}}$.
- ▶ Recursive construction in a graph.

Constant length case

Definition.

Let σ be a substitution of constant length with height h. We define the **directed** labelled graph $G(\sigma)$ by the following process :

- the first h vertices are the alphabet \mathcal{A}_i , $0 \le i \le h-1$ containing the letters with the same label when computing the height,
- $(\mathscr{C}, \mathscr{D})$ is an edge of the graph with label i if

$$\mathcal{D} = \{ \sigma(b)_i : b \in \mathcal{C} \}.$$

Constant length case

Example: purely substitutive sequence.

$$\sigma: \begin{cases} 0 \mapsto 012 \\ 1 \mapsto 001 \\ 2 \mapsto 201 \end{cases}$$

 $\{0,1,2\}$

Constant length case

Example: purely substitutive sequence.

$$\sigma: \begin{cases} 0 \mapsto 012 \\ 1 \mapsto 001 \\ 2 \mapsto 201 \end{cases}$$

 $\{0, 1, 2\}$

Constant length case

$$\sigma: \begin{cases} 0 \mapsto 0.12 \\ 1 \mapsto 0.01 \\ 2 \mapsto 2.01 \end{cases}$$

Constant length case

$$\sigma: \begin{cases} 0 \mapsto 012 \\ 1 \mapsto 001 \\ 2 \mapsto 201 \end{cases}$$

Constant length case

$$\sigma: \begin{cases} 0 \mapsto 012\\ 1 \mapsto 001\\ 2 \mapsto 201 \end{cases}$$

Constant length case

$$\sigma: \begin{cases} 0 \mapsto 0 \\ 1 \mapsto 001 \\ 2 \mapsto 201 \end{cases}$$

Constant length case

$$\sigma: \begin{cases} 0 \mapsto 012 \\ 1 \mapsto 001 \\ 2 \mapsto 201 \end{cases}$$

Constant length case

$$\sigma: \begin{cases} 0 \mapsto 012 \\ 1 \mapsto 001 \\ 2 \mapsto 201 \end{cases}$$

Constant length case

Proposition [Durand, G].

Let $x = \sigma^{\infty}(a)$ be a purely substitutive sequence and $y = \phi(x)$ a substitutive one, defined by a proper substitution σ and a letter-to-letter morphism ϕ .

- 1. The set $\mathscr{A}((x_{k+nhl^m})_{n\in\mathbb{Z}})$ is the final vertex of the admissible walk of $G(\sigma)$ starting from vertex \mathscr{A}_{k_m} and labelled (k_{m-1},\ldots,k_1,k_0) , where $k=k_ml^m+k_{m-1}l^{m-1}+\cdots k_1l+k_0.$
- 2. The set $\mathcal{A}((y_{k+nhl^m})_{n\in\mathbb{Z}})$ is the image under ϕ of the vertex described above.

Constant length case

Proposition [Durand, G].

Let $x = \sigma^{\infty}(a)$ be a purely substitutive sequence and $y = \phi(x)$ a substitutive one, defined by a proper substitution σ and a letter-to-letter morphism ϕ .

- 1. The set $\mathscr{A}((x_{k+nhl^m})_{n\in\mathbb{Z}})$ is the final vertex of the admissible walk of $G(\sigma)$ starting from vertex \mathscr{A}_{k_m} and labelled (k_{m-1},\ldots,k_1,k_0) , where $k=k_ml^m+k_{m-1}l^{m-1}+\cdots k_1l+k_0.$
- 2. The set $\mathcal{A}((y_{k+nhl^m})_{n\in\mathbb{Z}})$ is the image under ϕ of the vertex described above.

Proposition [Durand, G].

The sequence x (resp. y) admits a constant arithmetic progression if, and only if, there exists a vertex of $G(\sigma)$ (resp. of the image of $G(\sigma)$ under ϕ) that is a singleton.

Constant length case

$$\sigma: \begin{cases} 0 \mapsto 012 \\ 1 \mapsto 001 \\ 2 \mapsto 201 \end{cases}$$

Constant length case

$$\sigma: \begin{cases} 0 \mapsto 012 \\ 1 \mapsto 001 \\ 2 \mapsto 201 \end{cases}$$

Constant length case

Example: purely substitutive sequence.

$$\sigma: \begin{cases} 0 \mapsto 012 \\ 1 \mapsto 001 \\ 2 \mapsto 201 \end{cases}$$

Constant length case

Example: purely substitutive sequence.

$$\sigma: \begin{cases} 0 \mapsto 012 \\ 1 \mapsto 001 \\ 2 \mapsto 201 \end{cases}$$

Constant length case

Example: purely substitutive sequence.

$$\sigma: \begin{cases} 0 \mapsto 012 \\ 1 \mapsto 001 \\ 2 \mapsto 201 \end{cases}$$

We have, for example

$$x_{9n+8} = 1$$
, $x_{9n+3} = 0$, $x_{9n+7} = 0$,

 $\forall n \in \mathbb{Z}$

Constant length case

Example: substitutive sequence.

$$\sigma: \begin{cases} 0 \mapsto 012 \\ 1 \mapsto 001 \text{ and } \phi: \begin{cases} 0 \mapsto a \\ 1 \mapsto b \\ 2 \mapsto b \end{cases}$$

Constant length case

Example: substitutive sequence.

$$\sigma: \begin{cases} 0 \mapsto 012 \\ 1 \mapsto 001 \text{ and } \phi: \begin{cases} 0 \mapsto a \\ 1 \mapsto b \\ 2 \mapsto b \end{cases}$$

Constant length case

Example: substitutive sequence.

$$\sigma: \begin{cases} 0 \mapsto 012 \\ 1 \mapsto 001 \text{ and } \phi: \begin{cases} 0 \mapsto a \\ 1 \mapsto b \\ 2 \mapsto b \end{cases}$$

We have, for example

$$y_{9n+8} = b$$
, $y_{9n+3} = a$, $y_{9n+7} = a$,

Constant length case

Example: substitutive sequence.

$$\sigma: \begin{cases} 0 \mapsto 012 \\ 1 \mapsto 001 \text{ and } \phi: \begin{cases} 0 \mapsto a \\ 1 \mapsto b \\ 2 \mapsto b \end{cases}$$

We have, for example

$$y_{9n+8} = b$$
, $y_{9n+3} = a$, $y_{9n+7} = a$, $y_{3n+2} = b$, $\forall n \in \mathbb{Z}$

Constant length case

Proposition [Durand, G].

The graph $G(\sigma)$ satisfies exactly one of the following properties :

- 1. It has no singleton.
- 2. Every long enough path ends in a singleton.
- 3. There exists a cycle among vertices with cardinal greater or equal to 2, with a least one singleton in their descendants.

Constant length case

Proposition [Durand, G].

The graph $G(\sigma)$ satisfies exactly one of the following properties :

- 1. It has no singleton.
- Every long enough path ends in a singleton.
- 3. There exists a cycle among vertices with cardinal greater or equal to 2, with a least one singleton in their descendants.

 \longrightarrow x has no arithmetic progression.

Constant length case

Proposition [Durand, G].

The graph $G(\sigma)$ satisfies exactly one of the following properties :

- 1. It has no singleton.
- 2. Every long enough path ends in a singleton.
- 3. There exists a cycle among vertices with cardinal greater or equal to 2, with a least one singleton in their descendants.

 \longrightarrow x has no arithmetic progression.

 \longrightarrow x is periodic.

Constant length case

Proposition [Durand, G].

The graph $G(\sigma)$ satisfies exactly one of the

following properties:

- 1. It has no singleton.
- 2. Every long enough path ends in a singleton.
- There exists a cycle among vertices
 with cardinal greater or equal to 2, with
 a least one singleton in their
 descendants.

The essential periods of letters in x are unbounded.

Conclusion

→ General case : the set of rational eigenvalues is computable.

Conclusion

- General case: the set of rational eigenvalues is computable.
- Constant-length case : all the periods can be described by an automaton.

Conclusion

- General case: the set of rational eigenvalues is computable.
- Constant-length case : all the periods can be described by an automaton.
- ightharpoonup General case: given an integer p, we can check if there exists a constant arithmetic progression of period p.

Conclusion

- General case: the set of rational eigenvalues is computable.
- Constant-length case : all the periods can be described by an automaton.
- ightharpoonup General case: given an integer p, we can check if there exists a constant arithmetic progression of period p.
- Open question : describe the set of periods for constant arithmetic progressions in the general case.

Thank you.

F. Durand; V. Goyheneche

Decidability, arithmetic subsequences and eigenvalues of morphic subshifts. Bull. Belg. Math. Soc. Simon Stevin 26 (2019), no. 4, 591–618.

https://arxiv.org/abs/1811.03942