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Example : Thue-Morse sequence. o {1 10
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Definition.

A substitution is an endomorphism

of &/ * such that there exist two letters

a,b € g satisfying :

1 - o Is right-prolongable on «a,

2 - 0 is left-prolongable on b,

3 - 0 IS growing.
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Background

Substitutions

Definition.
A substitution is an endomorphism

of &/ * such that there exist two letters

a,b € g satisfying :
1 - o Is right-prolongable on «a,
2 - 0 is left-prolongable on b,

3 - 0 IS growing.

Word:u € of ™

Sequence : x € /< or N

Definition.

Purely substitutive sequence :
admissible fixed point of a substitution

x=0%0b.a)

Substitutive sequence:
Image of a purely substitutive sequence
under a letter-to-letter morphism

y = ¢(x) = ¢(c™(b . a))
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Substitutions
Example.

0~ 012 O a
c:4 1001l and ¢:51-0b

2 — 201 2 b

x=0>(1.0) =---012012001.012001201 ---
IS a purely substitutive sequence.




Background

Substitutions

Example.
0 — 012 0 a
c:4 1001 and ¢p: 310
2 — 201 2= b

x=0>(1.0) =---012012001.012001201 ---
IS a purely substitutive sequence.

y=@x)=¢o0°(1.0) = ---abbabbaab . abbaabbab---

IS a substitutive sequence.




Background

Substitutive dynamical systems

Definition.

The substitutive dynamical system associated to a substitution o is the system

(X, ,S) where § is the shift map and
X ={x€ d% . L(x) c L(o)}.




Background

Periodicity of morphic sequences

e Pansiot, 1986 : the periodicity of a fixed point of morphism is decidable.

e Harju and Linna, 1986 : the ultimate periodicity of a fixed point of morphism is
decidable.

e Honkala, 1986 : the periodicity of automatic sequences is decidable.

e Halava, Harju, Karki and Rigo, 2010 : the ultimate p-periodicity of a morphic
sequence is decidable, for any given period p.

e Durand, 2012 and 2013 : the periodicity of morphic (primitive) sequences is
decidable.



Background

Constant arithmetic progression

Arithmetic progression of a sequence x : subsequence of the form (x;, +np)n€Z

Constant arithmetic progression if X, = X, foralln € Z.



Background

Constant arithmetic progression

Definition.

Arithmetic progression of a sequence x : subsequence of the form (x;, +np)n€Z'

Constant arithmetic progression if x;,, = X, foraln € Z.




Background

Constant arithmetic progression

Definition.

Arithmetic progression of a sequence x : subsequence of the form (x;, +np)n€Z'

Constant arithmetic progression if x;,, = X, foraln € Z.

An integer p is an essential period for the constant arithmetic progression (x;, +np)nez
if, for all divisor g of p, the arithmetic progression (X ),z iS NOt constant.
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Rational eigenvalues

Motivation

Proposition [folklore ; Durand, G].
Let o be a primitive substitution and x a fixed point of o.

If x has a constant arithmetic progression of essential period p, then exp(2irz/p) is

an eigenvalue of the dynamical system (X, ).




Rational eigenvalues

Motivation

Proposition [folklore ; G].
Let o be a primitive substitution and x a fixed point of o.

If x has a constant arithmetic progression of essential period p, then exp(2irz/p) is

an eigenvalue of the dynamical system (X, ).

Idea.

= Compute the rational eigenvalues.

= Check if there exist some periods among this set.




Rational eigenvalues

Eigenvalues associated to a dynamical system

Definition.

A complex number 4 € C is an eigenvalue for the dynamical system (X, A, u, T')

if there exists a fonction f € L*(X, u) such that

foT = Affor u-almost all x € X.




Rational eigenvalues

Eigenvalues associated to a dynamical system

Definition.

A complex number 4 € C is an eigenvalue for the dynamical system (X, A, u, T')

if there exists a fonction f € L*(X, u) such that

foT = Affor u-almost all x € X.

If, moreover, A € exp(2ixQ), we say 4 is a rational eigenvalue.




Rational eigenvalues

Constant-length case

Theorem [Dekking 1978].

Let 0 be a substitution of constant length [. Then, the set of eigenvalues associated

2ik
exp o ke Z meN p,
hilm

to(X,,S)is

where h is the height of o.




Rational eigenvalues

Constant-length case

Theorem [Dekking 1978].

Let 0 be a substitution of constant length [. Then, the set of eigenvalues associated
to(X,,S)is

2iknm
exp( >:k€Z,mEN :

him
where h is the height of o.

Definition.

Let o be a substitution of constant length / and x a fixed point of 6. The height of o
is the number A defined by

h=max{n>1:m,])=1, ndvidesgcd{i > 1 : x; = x,} }.
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Rational eigenvalues

Constant-length case

Theorem [Dekking 1978].

Let o0 be a substitution of constant length [/ and height 4. Then, the set of

eigenvalues associated to (X, S) is

2ik
exp gt ke Z,meN
him

0~ 012
c.< 1~ 101 X =---101012101.012101210101012101---
2 210

Xk & {0,2} Xok+1 = {1}
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Definition.

We call periodic spectrum of a dynamical system (X, T') the
set of its essential periods

P(X,T)={p > 2 : pisan essential period for a clopen U}.




Rational eigenvalues

Characterization of rational eigenvalues

Definition.

We call periodic spectrum of a dynamical system (X, T') the

set of its essential periods

P(X,T)={p > 2 : pisan essential period for a clopen U}.

More precisely :
There exists U C X and x € U such that

PS,(x,U)={keZ:T"""xe UVne Z)

IS non-empty




Rational eigenvalues

Characterization of rational eigenvalues

Proposition [folklore ; Durand, G].
Let (X, T') be a minimal dynamical system and p € N* an integer. The following

properties are equivalent.

1. A = exp(2in/p) is a continuous eigenvalue of (X, T).

2. pbelongsto P(X,T).

3. There exists a minimal closed subset V of X such that {V, v, ..., T_p“V}

is a partition of X.

4. (X, T) admits a periodic factor with period p.
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Characterization of rational eigenvalues

Exemple. Dynamical system associated to the Thue-Morse sequence.
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2. Periodic spectrum: {2 : m € N}
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Characterization of rational eigenvalues

Exemple. Dynamical system associated to the Thue-Morse sequence.

- 0+ 01
|1~ 10

1. Eigenvalues: {exp(2ikzn/2"™) : m € N}

2. Periodic spectrum: {2 : m € N}

3. Forallm € N, there exists a minimal set V with period 2™




Rational eigenvalues

Characterization of rational eigenvalues

Exemple. Dynamical system associated to the Thue-Morse sequence.
- 0~ 01
|1 1~10
Eigenvalues: {exp(2ikz/2™) : m € N}

Periodic spectrum: {2™ : m € N}

For all m € N, there exists a minimal set V with period 2™

Forallm € N, (Z/2"Z, + ) is a factor of (X, S).
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Characterization of rational eigenvalues

Example. Fibonacci dynamical system.

- - 0+ 01
" l1~0
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Example. Fibonacci dynamical system.

- 0+ 01
" l1~0
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Rational eigenvalues

Characterization of rational eigenvalues

Example. Fibonacci dynamical system.

- 0+ 01
" l1~0

1. Eigenvalues:{exp(ngo(mod 1)) : n € N}, rational eigenvalues : {1}

2. Periodic spectrum : {1}

3. There exist no proper periodic subset




Rational eigenvalues

Characterization of rational eigenvalues

Example. Fibonacci dynamical system.

- - 0+ 01
" l1~0

Eigenvalues:{exp(ngo(mod 1)) : n € N}, rational eigenvalues : {1}

Periodic spectrum : {1}

There exist no proper periodic sulbset

The dynamical system (X, S) has no proper factor




Rational eigenvalues

Computation of rational eigenvalues

Proposition [Durand, G].

The set of rational eigenvalues associated to a substitutive dynamical system (X, S) is

computable.
If, moreover, the substitution o is proper, then these eigenvalues only depend on the

INncidence matrix of o.




Rational eigenvalues

Computation of rational eigenvalues

Proposition [Durand, G].

The set of rational eigenvalues associated to a substitutive dynamical system (X, S) is

computable.
If, moreover, the substitution o is proper, then these eigenvalues only depend on the

INncidence matrix of o.

Remark. Case o is not proper [Durand 2000].

= There exists a proper substitution ¢ such that the dynamical system (X _, S) is

conjugated to (X, )
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Computation of the periodic spectrum - step 1/3

Example.

Computation of rational eigenvalues for the substitution

- 0+~ 01
11+~ 0011
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Example.

Computation of rational eigenvalues for the substitution

- 0+~ 01
11+~ 0011

Lemma [Durand 2000 ; Durand, G].

Let o be a proper, non-periodic substitution, and M _ its incidence matrix.

1. Aninteger p belongs to P(X_, ) if and only if there exists m € N such that
IM™ € pZ°

2. A prime number p belongs to P(X _, S) if and only if 1Mg e pZ¢




Rational eigenvalues
Computation of the periodic spectrum - step 1/3

Example.

Computation of rational eigenvalues for the substitution
- 0+~ 01
|1~ 0011

! 2) thus M2 = <3 6> and (1,1) M = (6,12).

3 6

Lemma [Durand 2000 ; Durand, G].

Let o be a proper, non-periodic substitution, and M _ its incidence matrix.

1. Aninteger p belongs to P(X_, ) if and only if there exists m € N such that
IM™ € pZ°

2. A prime number p belongs to P(X _, S) if and only if 1Mg e pZ¢




Rational eigenvalues

Computation of the periodic spectrum - step 1/3

Example.

Computation of rational eigenvalues for the substitution
- 0+~ 01
|1~ 0011

_ 1 2 2 3 6 2 _
M0—<1 2) ’thusM6—<3 6> and (1,1) M = (6,12).

Prime numbers belonging to the spectrum P(X ,S) : 2 and 3.

Lemma [Durand 2000 ; Durand, G].
Let o be a proper, non-periodic substitution, and M _ its incidence matrix.

1. Aninteger p belongs to P(X_, ) if and only if there exists m € N such that
IM™ € pZ°

2. A prime number p belongs to P(X , S) if and only if IM? € pZ¢
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Computation of the periodic spectrum - step 2/3

Example.

Computation of rational eigenvalues for the substitution

- 0+~ 01
|1~ 0011
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Computation of the periodic spectrum - step 2/3

Example.

Computation of rational eigenvalues for the substitution

- 0+~ 0l
11+~ 0011

Lemma [Durand 2000].

Let M be a d X d-matrix and p a prime number. The following properties are equivalent.
1. Vne N,k e N : 1M* e pz?
2. pdiides GCD(ay, ...,a,) withr = max{i € N: {1,IM,...1M"} is free}

r+1
and O(X) = Z al-Xi is the characteristic polynom of the restriction of M to the subspace generated by 1,1M, ...1M".

i=0
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Computation of the periodic spectrum - step 2/3

Example.

Computation of rational eigenvalues for the substitution

- 0+~ 0l
11+~ 0011

M. = G %) thus IM_ = (2,4).

We compute O(X) = X? — 3X and GCD(0, — 3) = 3.

Lemma [Durand 2000].

Let M be a d X d-matrix and p a prime number. The following properties are equivalent.
1. Vne N,k e N : 1M* e pz?

2. pdiides GCD(ay, ...,a,) withr = max{i € N: {1,IM,...1M"} is free}

r+1
and O(X) = Z al-Xi is the characteristic polynom of the restriction of M to the subspace generated by 1,1M, ...1M".

i=0




Rational eigenvalues

Computation of the periodic spectrum - step 2/3

Example.

Computation of rational eigenvalues for the substitution
- 0+~ 0l
|1~ 0011

M. = G %) thus IM_ = (2,4).

We compute O(X) = X? — 3X and GCD(0, — 3) = 3.

Conclusion : 3 has unbounded exponent in P(X_, S).

Lemma [Durand 2000].

Let M be a d X d-matrix and p a prime number. The following properties are equivalent.
1. Vne N,k e N : 1M* e pz?

2. pdiides GCD(ay, ...,a,) withr = max{i € N: {1,IM,...1M"} is free}

r+1
and O(X) = Z al-Xi is the characteristic polynom of the restriction of M to the subspace generated by 1,1M, ...1M".

i=0
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Computation of the periodic spectrum - step 3/3

Example.

Computation of rational eigenvalues for the substitution

- 0+~ 01
11+~ 0011




Rational eigenvalues

Computation of the periodic spectrum - step 3/3

Example.

Computation of rational eigenvalues for the substitution

- 0+~ 01
11+~ 0011

Lemma [Durand, G].
Let p be a prime number and m an integer.
If the maximal power of p that divides 1M™ is the same as the one that divides

1M™*4 then it is equal to the maximal power that divides each 1M*, k € N.

d
Moreover, this maximal power divides 1MP".




Rational eigenvalues

Computation of the periodic spectrum - step 3/3

Example.

Computation of rational eigenvalues for the substitution
- 0+~ 01
|1~ 0011

> thus (1,1)M? = (54,108) = (2 x 3%, 22 x 3%).

27 54
27 54

Lemma [Durand, G].
Let p be a prime number and m an integer.
If the maximal power of p that divides 1M™ is the same as the one that divides

1M™*4 then it is equal to the maximal power that divides each 1M*, k € N.

d
Moreover, this maximal power divides 1MP".




Rational eigenvalues

Computation of the periodic spectrum - step 3/3

Example.

Computation of rational eigenvalues for the substitution
- 0+~ 01
|1~ 0011

> thus (1,1)M? = (54,108) = (2 x 3%, 22 x 3%).

- \27 54

o

4 — <27 54

Conclusion : the maximal exponent of 2 in P(X_,95)is 1.

Lemma [Durand, G].
Let p be a prime number and m an integer.

If the maximal power of p that divides 1M™ is the same as the one that divides

1M™*4 then it is equal to the maximal power that divides each 1M*, k € N.

d
Moreover, this maximal power divides 1MP".




Rational eigenvalues

Computation of the periodic spectrum - conclusion

Example.

Computation of rational eigenvalues for the substitution

- - 0+ 01
11~ 0011

Conclusion: P(X_,S) = {3", 2 X 3" : m € N}




Rational eigenvalues

Computation of the periodic spectrum - conclusion

Example.

Computation of rational eigenvalues for the substitution

- - 0+ 01
11~ 0011

Conclusion: P(X_,S) = {3", 2 X 3" : m € N}
Set of eigenvalues : {exp(2ikn/3™), expRikn/(2 %X 3™): me N,k e Z}
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General case

Proposition [Durand, G].
Let o be a primitive substitution and x a fixed point of o.

If X admits a constant arithmetic progression with essential period p, then p belongs

to the periodic spectrum P(X_, S).




Arithmetic progressions

General case

Proposition [Durand, G].
Let o be a primitive substitution and x a fixed point of o.

If X admits a constant arithmetic progression with essential period p, then p belongs

to the periodic spectrum P(X_, S).

Idea of the proof.

» Define a p-periodic set defined by the constant arithmetic progression.
» Apply the following proposition.




Arithmetic progressions

General case

Proposition [folklore ; Durand, G].
Let (X, T') be a minimal dynamical system and p € N* an integer. The following

properties are equivalent.

1. A =exp(2ir/p) is a continuous eigenvalue of (X, T')

2. pbelongsto P(X,T)
3. There exists a closed subset V of X such that {V, v, ..., T_p“V} is a

partition of X
4. (X, T) admits a periodic factor with period p.




Arithmetic progressions

Proper case

Algorithm. For a given integer p, check if a sequence admits a constant

arithmetic progression with period p :
- compute the periodic spectrum P(X_,S),
- compute the essential period p € P(X _, S) corresponding to p,

- check if the images of letters under ¢”"'», contain a constant arithmetic progression.

These words have lengths multiple of p.




Arithmetic progressions

Proper case

Algorithm. For a given integer p, check if a sequence admits a constant

arithmetic progression with period p :
- compute the periodic spectrum P(X_,S),
- compute the essential period p € P(X _, S) corresponding to p,

- check if the images of letters under ¢”"», contain a constant arithmetic progression.

These words have lengths multiple of p.

Lemma [Durand 2000 ; Durand, G].
Let o be a proper, non-periodic substitution, and M its incidence matrix.

1. An integer p belongs to P(X_, S) if and only if there exists m; € N such
that 1M? € pZ°

2. A prime number p belongs to P(X_, S) if and only if lMg e ﬁZd




Arithmetic progressions

Proper case

Example.

0~ 0l
; = {3" o N
For o {1|_)0011 we have P(X_,S) = {3", 2 x 3" : m € N}

= Arithmetic progression of period 10 ?
= Arithmetic progression of period 12 ?




Arithmetic progressions

Proper case

Example.

0~ 0l
: = {3" 2 x3": N
For o {1|_)0011 we have P(X_ ,S) = {3 X 3" :m e N}

= Arithmetic progression of period 107? p = 2
= Arithmetic progression of period 12 ?
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Example.

0~ 0l
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For o {1,_)()0.11 we have P(X_ ,S) = {3 X 3" :m e N}

= Arithmetic progression of period 107? p = 2
= Arithmetic progression of period 12 ?
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Proper case

Example.
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Proper case

Example.

Fora:{ : we have P(X_,S) = {3", 2 x 3" : m € N}

= Arithmetic progression of period 107? p = 2
= Arithmetic progression of period 12 ?




Arithmetic progressions

Proper case

Example.

0~ 0l
; = {3" o N
For o {1|_)0011 we have P(X_,S) = {3", 2 x 3" : m € N}

= Arithmetic progression of period 10 ? No.
= Arithmetic progression of period 12 ?




Arithmetic progressions

Proper case

Example.

0~ 0l
; = {3" o N
For o {1|_)0011 we have P(X_,S) = {3", 2 x 3" : m € N}

= Arithmetic progression of period 10 ? No.
= Arithmetic progression of period 12?7 p = 6




Arithmetic progressions

Proper case

Example.

0~ 0l
; = {3" o N
For o {1|_)0011 we have P(X_,S) = {3", 2 x 3" : m € N}

= Arithmetic progression of period 10 ? No.
= Arithmetic progression of period 12?7 p = 6

» ) 0~ 010011

o {1 — 010100110011




Arithmetic progressions

Proper case

Example.

0~ 0l
; = {3" o N
For o {1|_)0011 we have P(X_,S) = {3", 2 x 3" : m € N}

= Arithmetic progression of period 10 ? No.
= Arithmetic progression of period 12?7 p = 6

» . ) 0 01001

1
o {1 ~ 010100|110011




Arithmetic progressions

Proper case

Example.

0~ 0l
; = {3" o N
For o {1|_)0011 we have P(X_,S) = {3", 2 x 3" : m € N}

= Arithmetic progression of period 10 ? No.
= Arithmetic progression of period 12?7 p = 6

» . J 0 ~|010011
o° :
1 (010100110011




Arithmetic progressions

Proper case

Example.

0~ 0l
; = {3" o N
For o {1|_)0011 we have P(X_,S) = {3", 2 x 3" : m € N}

= Arithmetic progression of period 10 ? No.
= Arithmetic progression of period 12?7 p = 6

52 {O|—>01

1
1 100'10011




Arithmetic progressions

Proper case

Example.

0~ 0l
; = {3" o N
For o {1|_)0011 we have P(X_,S) = {3", 2 x 3" : m € N}

= Arithmetic progression of period 10 ? No.
= Arithmetic progression of period 12?7 p = 6

» J O 01

- 0p11
"1 1~ 010/100110011




Arithmetic progressions

Proper case

Example.

0~ 0l
; = {3" o N
For o {1|_)0011 we have P(X_,S) = {3", 2 x 3" : m € N}

= Arithmetic progression of period 10 ? No.
= Arithmetic progression of period 12 ? Yes.

» ) 0~ 010011

o {1 — 010100110011

x6n+1 = 1 and x6n+2 =0




Arithmetic progressions

Constant length case

Question : Describe all the essential periods of constant arithmetic progressions.



Arithmetic progressions

Constant length case

Question : Describe all the essential periods of constant arithmetic progressions.

Idea.
» Description of the eigenvalues = each essential period divides a hl™.

» Describe the letters appearing in the arithmetic progressions of the

form (Xt ppimdnez

» Recursive construction in a graph.
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Definition.
Let o be a substitution of constant length with height 4. We define the directed

labelled graph G(o) by the following process :
- the first h vertices are the alphabet &; , 0 < i < h — 1 containing the letters with

the same label when computing the height,
- (6, D) is an edge of the graph with label i if

P = {o(b), : b € €.
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Example : purely substitutive sequence.

0~ 012
c.<4 1~ 00
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Proposition [Durand, G].
Let x = 0™°(a) be a purely substitutive sequence and y = ¢(x) a substitutive one,
defined by a proper substitution o and a letter-to-letter morphism ¢.

1. The set A ((X;y,,jym)nez) is the final vertex of the admissible walk of G(o)

starting from vertex &/, and labelled (k,,,_1, ..., ky, k), where

k=kI"+k, "'+ -kl +k,

. The set A ((Vippim)nez) 1S the image under @ of the vertex described above.
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Proposition [Durand, G].
Let x = 0™°(a) be a purely substitutive sequence and y = ¢(x) a substitutive one,
defined by a proper substitution o and a letter-to-letter morphism ¢.

1. The set A (X, ym),e7) is the final vertex of the admissible walk of G(0)

starting from vertex &/, and labelled (k,,,_1, ..., ky, k), where

k=k 1™+ k,_ 0"+ kil + Ky

. The set A ((Vippim)nez) 1S the image under @ of the vertex described above.

Proposition [Durand, G].
The sequence x (resp. y) admits a constant arithmetic progression if, and only fif,

there exists a vertex of G(o) (resp. of the image of G(o) under @) that is a singleton.
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Example : purely substitutive sequence.

O~ 012
c.<1 1~ 001
2 — 201

We have, for example

Xoppg =15 X903 =0, Xg,,7 =0,

Vne 7/
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Example : substitutive sequence.

0~ 012 0O~ a
0:4 1001 and ¢p: < 1-b

2 — 201 20D

We have, for example

Yonig =0 5 Vo3 =0, Yo7 =0,

y3n+2=b >
Vne”/
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Proposition [Durand, G].

The graph G(o) satisfies exactly one of the

following properties :
It has no singleton.

Every long enough path ends in a
singleton.

. There exists a cycle among vertices
with cardinal greater or equal to 2, with
a least one singleton in their
descendants.
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Proposition [Durand, G].

The graph G(o) satisfies exactly one of the
following properties :

It has no singleton. €4— x has no arithmetic progression.

Every long enough path ends in a

4— s periodic.

singleton.

. There exists a cycle among vertices The essential periods of letters

with cardinal greater or equal to 2, with < in x are unbounded.
a least one singleton in their

descendants.
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Conclusion

= (General case : the set of rational eigenvalues is computable.

= (Constant-length case : all the periods can be described by an automaton.

= (General case : given an integer p, we can check if there exists a constant
arithmetic progression of period p.

= Open question : describe the set of periods for constant arithmetic progressions
In the general case.



Thank you.
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