
Walnut: A Tool for Doing Combinatorics on
Words

Jeffrey Shallit
School of Computer Science

University of Waterloo
Waterloo, ON N2L 3G1

Canada
shallit@uwaterloo.ca

https://cs.uwaterloo.ca/~shallit

1 / 56

https://cs.uwaterloo.ca/~shallit

What is Walnut?

Walnut is a free software program written (in Java) by Hamoon
Mousavi that, in many cases, can ‘automatically’

I prove or disprove conjectures about automatic sequences;

I give simple, explicit characterizations of the factors of
automatic sequences having certain properties;

I provide explicit formulas for counting aspects of automatic
sequences.

2 / 56

What is Walnut?

In conjunction with other software it can be used to

I heuristically search for infinite sequences having certain
properties; and then

I prove that the candidate you found really does have the
property you want.

Restrictions:

I It is not a general-purpose tool. Its use is restricted to the
small domain of automatic sequences only.

I The statements it works with must be phrased in first-order
logic (an extension of Presburger arithmetic).

3 / 56

What can be done with Walnut

Walnut can

I Re-prove dozens of existing results published in the literature,
often with trivial proofs

I Prove new results (about 35 papers published so far)

I Correct or strengthen already-published results.

See https://cs.uwaterloo.ca/~shallit/walnut.html for
some of these papers and to download Walnut or the new
Ostrowski version.

4 / 56

https://cs.uwaterloo.ca/~shallit/walnut.html

Example 1: the Thue-Morse sequence is overlap-free

One of the most famous automatic sequences is the Thue-Morse
sequence

t = 0110100110010110 · · · ,

a fixed point of the morphism µ : 0→ 01, 1→ 10.

Let us see how to use Walnut to prove one of the oldest and most
famous results in combinatorics on words: Thue’s 1912 result that
t is overlap-free.

An overlap is a word of the form axaxa, where a is a single letter
and x is a (possibly empty) word, like the French word entente.

“Overlap-free” means t has no factor that is an overlap.

5 / 56

Example 1: the Thue-Morse sequence is overlap-free

If t has an overlap axaxa, then it must begin at some position i
and we must have |ax | = n for some n ≥ 1:

So an overlap in t means there are i , n such that

(n ≥ 1) and t[i ..i + n] = t[i + n..i + 2n]

or in other words

∃i , n (n ≥ 1) ∧ ∀s (0 ≤ s ≤ n) =⇒ t[i + s] = t[i + s + n].

This can be translated into Walnut as follows:

eval hasolap "Ei,n (n>=1) & As (s<=n) => T[i+s]=T[i+s+n]":

and this returns FALSE.
6 / 56

Automatic sequences

Walnut can determine the truth of well-formed first-order formulas
about automatic sequences a = (an)n≥0 .

a is automatic if

I there is a regular numeration system S and a

I deterministic finite automaton with output (DFAO) M such
that on input the S-representation of n, the DFAO M reaches
a state with output an.

Examples include the Thue-Morse sequence, the Rudin-Shapiro
sequence, the Fibonacci infinite word, the Tribonacci infinite word,
etc.

7 / 56

Regular numeration systems

A numeration system is a way of representing natural numbers n
by strings over a finite alphabet Σ.

A numeration system S is regular if

(a) Every natural number has exactly one representation (modulo
leading zeros);

(b) The set of valid representations is a regular language; and

(c) The set of representations of triples (x , y , z) such that
x + y = z is recognized by a deterministic finite automaton
(DFA).

(Shorter representations are padded with leading zeros, if
necessary, so that (x , y , z) is read digit-by-digit in parallel.)

8 / 56

Examples of regular numeration systems

Examples of regular numeration systems:

I Base-k representation, k ≥ 2 (built-in to Walnut)

I Fibonacci representation (built-in)

I Tribonacci representation (built-in)

I Ostrowski representation for quadratic irrationals (built-in to
the Ostrowski version written by Baranwal)

In the case of base-k representation, k-automatic sequences
coincide with images (under a coding) of the fixed points of
k-uniform morphisms (Cobham).

9 / 56

The theory behind Walnut

Very little is original with me. The theory behind how it works is
due to these people and more:

I J. Richard Büchi

I Bernard R. Hodgson

I Veronique Bruyère, Georges Hansel, Christian Michaux, Roger
Villemaire

I Christiane Frougny

I Hamoon Mousavi

I Luke Schaeffer, Aseem Raj Baranwal

But I’m not going to go into the theory today.

10 / 56

What Walnut needs

(a) Choice of a regular numeration system (the default is base 2);

(b) A DFAO computing a sequence s = (sn)n≥0 (a few, like the
Thue-Morse sequence, are automatically supplied with
Walnut—others you can define yourself);

(c) A first-order formula ϕ involving variables, quantifiers, logical
operations, addition & subtraction of natural numbers, and
indexing into s.

I No multiplication or division allowed (but can multiply or do
integer division with a natural number constant; e.g., 2*x is
understood as x+x)

I Subtraction must not result in a negative number (may be
relaxed in a future version of Walnut)

I No arithmetic with sequence values (only with indices), but
can compare with <, =, etc.

11 / 56

What Walnut produces

If the logical formula ϕ has no free variables (‘free’ = not bound to
a quantifier), Walnut produces either the answer TRUE or FALSE.

If the logical formula ϕ has one or more free variables, then
Walnut produces a DFA recognizing the values of the free variables
that make ϕ true.

For example, the formula n ≥ 6 corresponds to the following
automaton (in base-2 representation):

0

0

11

2
0

31

0, 1

40, 1

0, 1

The domain of all variables is assumed to be N = {0, 1, 2, . . .}.

12 / 56

Quick guide to Walnut syntax

I A means ∀, “for all”; E means ∃, “there exists”

I & means ∧, “and”; | means ∨, “or”; ~ means ¬, “logical not”;
=> means =⇒ , “logical implication”; <=> means ⇐⇒, “iff”

I Arithmetic operations are +, -, *, /

I def: defines a macro (automaton) that can be used later,
with multiple arguments

I eval: evaluates a statement and returns TRUE/FALSE

I reg: defines a regular expression for matching representation
of integers

I ?msd 3: says to evaluate the formula using base-3
representation (can also say ?msd fib, ?lsd 2, etc.)

I @0 represents the sequence value 0,
@1 represents the value 1, etc.

I When calling multi-parameter macro, order of parameters is
alphabetical in terms of original definition

13 / 56

Expressing bounded quantification

To say ∀n ≥ t p(n) in Walnut, say instead

An (n>=t) => $p(n)

To say ∃n ≥ t p(n) in Walnut, say instead

En (n>=t) & $p(n)

To say p(n) holds for infinitely many n in Walnut, say instead

Am En (n>=m) & $p(n)

14 / 56

Example 2: analyzing antipowers with Walnut

An r -antipower in a word consists of r consecutive distinct blocks,
all of the same length (Fici-Restivo-Silva-Zamboni, 2018).

For example, entanglement is a 3-antipower, but not a
4-antipower:

enta · ngle · ment
ent · ang · lem · ent

The Cantor word ca = 101000101 · · · is the fixed point of the
morphism 1→ 101, 0→ 000 starting with 1.

Fici, Postic, and Silva (2019) proved that ca avoids 11-antipowers.
We can improve this result optimally to:

Theorem. (Riasat) The Cantor word ca contains no
10-antipowers, but does contain a 9-antipower.

15 / 56

Proof of the result

Proof. It is easy to verify that

ca[157..246] = (0000010100)(0101000000)(0001010001)(0100000000)(0000000000)

(0000000001)(0100010100)(0000000101)(0001010000)

is a 9-antipower.

To show that ca has no 10-antipowers, it suffices to show that
every block of size 10n in it can be split into 10 consecutive blocks
of size n, with at least two blocks being identical.

At first glance, proving this would seem to require comparison of
10 · 9/2 = 45 different pairs of blocks: there are no 10-antipowers
provided

∀i , n (n ≥ 1) =⇒ ∃k , l (0 ≤ k < ` < 10) ∧ factoreq(i+kn, i+ln, n).

But this uses a disallowed operation (multiplication).

16 / 56

Finishing the proof

However, we can make it expressible by “unrolling” the
0 ≤ k < ` < 10 part to make it 45 individual statements with
multiplication by constants.

In fact, for the Cantor word ca we can get by with comparison of
only 14 of the 45 blocks, as follows:

def cfactoreq "?msd_3 At (t<n) => CA[i+t]=CA[j+t]":

eval cno10 "?msd_3 Ai,n (n>=1) => (

$cfactoreq(i+0*n,i+1*n,n) | $cfactoreq(i+0*n,i+5*n,n) |

$cfactoreq(i+2*n,i+3*n,n) | $cfactoreq(i+2*n,i+8*n,n) |

$cfactoreq(i+3*n,i+4*n,n) | $cfactoreq(i+3*n,i+7*n,n) |

$cfactoreq(i+3*n,i+9*n,n) | $cfactoreq(i+4*n,i+5*n,n) |

$cfactoreq(i+4*n,i+9*n,n) | $cfactoreq(i+5*n,i+6*n,n) |

$cfactoreq(i+5*n,i+8*n,n) | $cfactoreq(i+6*n,i+7*n,n) |

$cfactoreq(i+7*n,i+8*n,n) | $cfactoreq(i+8*n,i+9*n,n))":

which evaluates to TRUE.

17 / 56

Example 3: unbordered factors of Thue-Morse

Recall that a word w is bordered if it begins and ends with a
nonempty word different from w .

For example, meantime is bordered with border me.

Currie and Saari (2009) studied the unbordered factors of the
Thue-Morse sequence t.

They proved the implication: if n 6≡ 1 (mod 6), then t has an
unbordered factor of length n.

But t also has an unbordered factor of length 31, so their criterion
is sufficient, but not necessary.

Also their proof was rather long and case-based.

18 / 56

Unbordered factors of Thue-Morse

We can get a full characterization of the lengths n for which
there’s an unbordered factor by writing a formula for a factor
t[i ..i + n − 1] to be unbordered.

In Walnut this is (n is unbound variable):

def tmhasbord "Ej (j>=1) & (j<n) & At (t<j) =>

T[i+t]=T[(i+n+t)-j]": # T[i..i+n-1] is bordered

def unbordlen "Ei ~$tmhasbord(i,n)":

19 / 56

Unbordered factors of Thue-Morse

Walnut computes an automaton with 6 states recognizing exactly
these n:

0

0

11

2
0

3

1

0

1

0

41 50, 1

0, 1

By considering the paths that go from state 0 to state 4, we get:

Theorem. t has an unbordered factor of length n iff (n)2 is not of
the form 1(01∗0)∗10∗1.

20 / 56

Unbordered factors of Thue-Morse

Which n did the Currie-Saari characterization miss?

def missing "$unbordlen(n) & n=1+6*(n/6)":

This gives the following DFA:

0

0

11

20

31

1

4

0 0

51

0 1 6

0

71

0

1
0

81 0

1

So there are infinitely many (for example 22k+1 − 1 for k ≥ 2).

21 / 56

Example 4: Automated heuristic search for sequences with
certain properties

Example: construct an infinite binary sequence with only three
distinct squares. (Original result due to Fraenkel and Simpson).

Guess: an example exists that is k-automatic.

Algorithm: for all k , s with k ≥ 2 and ks ≤ B, do breadth-first
search on the space of all finite binary sequences having at most
three distinct squares, and recognizable by an automaton in base k
with at most s states (use Myhill-Nerode theorem).

For each automaton determined, compute 100, 200, 400, 800, etc.
terms from the automaton and see if the result still has at most
three squares.

If these tests are passed, we have a candidate that can be checked
with Walnut. (There is a first-order formula for “having at most
three squares”.)

22 / 56

Result for three squares

Theorem. (Gabric and Shallit, 2020). The following 2-uniform
morphism q on 22 letters, and coding γ are such that γ(qω(0)) has
only three squares.

a, p → ab b → cd c → ef d , q → gh

e, h→ ij f , r → kl g → mh i , u → no

j → pb k, n→ cq l → hr m→ ge

o, v → st s → uj t → kv

γ(abcdefghijklmnopqrstuv) = 1101001100011110010110.

This is the “simplest” infinite binary word containing at most three
distinct squares.

23 / 56

Example 5: Dean words

A recent preprint of Harju discusses Dean words: squarefree words
over {x , y , x−1, y−1} that are not reducible (no occurrences of
xx−1, x−1x , yy−1, y−1y).

Use the coding 0↔ x , 1↔ y , 2↔ x−1, 3↔ y−1.

Again, we can use breadth-first search to look for a candidate
automatic sequence.

It quickly converges on the sequence

0121032101230321 · · · ,

the fixed point of the morphism

0→ 01, 1→ 21, 2→ 03, 3→ 23.

24 / 56

Example 5: Dean words

We make a DFAO and store it under the name DE.txt in the Word

Automata library of Walnut.

Then we carry out the following commands:

eval dean1 "Ei,n (n>=1) & At (t<n) => DE[i+t]=DE[i+n+t]":

check if there’s a square

eval dean02 "Ei DE[i]=@0 & DE[i+1]=@2":

eval dean20 "Ei DE[i]=@2 & DE[i+1]=@0":

eval dean13 "Ei DE[i]=@1 & DE[i+1]=@3":

eval dean31 "Ei DE[i]=@3 & DE[i+1]=@1":

check for existence of factors 02, 20, 13, 31

All of these return FALSE, so this word is a Dean word.

25 / 56

Example 6: Comparing two different automatic sequences

Recall the automatic sequence 0121032101230321 · · · from the
previous example.

If we look at the even-indexed terms, they look like
020202 · · · = (02)ω.

If we look at the odd-indexed terms, they look like 1131133 · · · ,
which looks a lot like the regular paperfolding sequence.

We can check both of these claims as follows:

eval checkde1 "An DE[4*n]=@0 & DE[4*n+2]=@2":

eval checkde2 "An (DE[2*n+1]=@1 => P[n+1]=@0) &

(DE[2*n+1]=@3 => P[n+1]=@1)":

Both of these return TRUE.

26 / 56

Example 7: Quasiperiodicity

We say an infinite word x is quasiperiodic if there exists a finite
prefix of x (call it z) that covers x by shifts (allowing overlaps).
Such a z is called a quasiperiod .

For example, aba covers abaababa by shifts.

We can write a first-order logical formula for quasiperiodicity of
the infinite word x as follows:

(n > 0) ∧ ∀i ∃j (j ≤ i) ∧ (i < n+j) ∧ (∀` (` < n) =⇒ x[`] = x[j+`]).

Let us use Walnut to prove the following result of Christou,
Crochemore, and Iliopoulos (2016):

Theorem. A length-n prefix of the Fibonacci word f (fixed point
of 0→ 01, 1→ 0) is a quasiperiod of f if and only if n is not of
the form Fk − 1 for k ≥ 1.

27 / 56

Quasiperiodicity

To do so we write Walnut code as follows:

def fibfactoreq "?msd_fib At (t<n) => F[i+t]=F[j+t]":

def fibquasi "?msd_fib Ai Ej j<=i & i<n+j &

$fibfactoreq(0,j,n)": # F quasiperiodic with per n

reg isfib msd_fib "0*10*":

eval fibquasichk "?msd_fib An $fibquasi(n) <=> ~$isfib(n+1)":

In contrast it is easy to prove that the Thue-Morse word is not
quasiperiodic.

def tmfactoreq "At (t<n) => T[i+t]=T[j+t]":

def tmquasi "Ai (Ej j<=i & i<n+j & $tmfactoreq(0,j,n))":

eval tmquasicheck "An ~$tmquasi(n)":

Both of these return TRUE.

28 / 56

Quasiperiodicity

However, the Thue-Morse word can be covered by a pair of words:
it is 2-quasiperiodic .

We can use Walnut to prove the following new result:

Theorem. The word t can be covered by the pairs

I µn(0), µn(1) for n ≥ 0, and

I µn(010), µn(0110) for n ≥ 0,

and no other pairs of words.

29 / 56

Example 8: Balanced words

Let |x |a denote the number of occurrences of the letter a in x .

We say a word x is balanced if ||y |a − |z |a| ≤ 1 for all equal-length
factors y , z of x and all letters a.

For example, the word banana is balanced, but apple is
unbalanced.

A priori there is no obvious way to state the balanced definition in
first-order logic, since it seems to require counting a finite subset
having a certain property.

However, there is an alternate characterization of balance for
binary words: a (finite or infinite) word x is balanced if it contains
no pairs of factors of the form 0v0 and 1v1.

30 / 56

Balanced words

We can create a formula asserting that x[i ..i + n − 1] is
unbalanced, as follows: there exist indices `1, r1, `2, r2 such that
(x[`1..r1] = 0v0) and (x[`2..r2] = 1v1). That is,

I i ≤ `1 < r1 < i + n, i ≤ `2 < r2 < i + n

I r1 − `1 = r2 − `2
I x[`1] = x[r1] = 0, x[`2] = x[r2] = 1

I x[`1 + 1..r1 − 1] = x[`2 + 1..r2 − 1]

For the Fibonacci word f this is

def unbalfib "?msd_fib E l1,l2,r1,r2 i<=l1 & l1<r1 & r1<i+n

& i<=l2 & l2<r2 & r2<i+n & r1+l2=r2+l1 & F[l1]=@0 & F[r1]=@0

& F[l2]=@1 & F[r2]=@1 & $fibfactoreq(l1+1,l2+1,r1-(l1+1))":

F[i..i+n-1] is unbalanced

eval balfib "?msd_fib Ai An ~$unbalfib(i,n)":

This returns TRUE, so every factor of f is balanced.

31 / 56

Balanced words

For Thue-Morse we can write

def unbaltm "E l1,l2,r1,r2 i<=l1 & l1<r1 & r1<i+n & i<=l2

& l2<r2 & r2<i+n & r1+l2=r2+l1 & T[l1]=@0 & T[r1]=@0 &

T[l2]=@1 & T[r2]=@1 & $tmfactoreq(l1+1,l2+1,r1-(l1+1))":

T[i..i+n-1] is unbalanced

eval baltm "Ei ~$unbaltm(i,n)":

Inspecting the result shows that t has balanced factors of length
≤ 8 only.

32 / 56

Example 9: Linear recurrence

Recall that a sequence x is linearly recurrent if there is a function
g(n) = O(n) such that every occurrence of a factor of length n in
x is followed by another occurrence of the same factor at distance
at most g(n). (Distance = difference in indices of starting points
of factor.)

In other words:

∃c ∀i , n (n ≥ 1) =⇒ ∃j (j ≥ 1 ∧ j ≤ cn) ∧ factoreq(i , i + j , n).

As stated, this is not expressible (because of the multiplication cn).

However, if we have a good guess for what g might be, we can
easily verify it (and verify it is best possible).

33 / 56

Example 9: Linear recurrence

Theorem. For the Thue-Morse sequence t we may take
g(n) = 9n − 18 for n ≥ 3, and this is optimal.

For the proof, we use Walnut:

def tmfactoreq "At (t<n) => T[i+t]=T[j+t]":

eval tmlinrec "Ai, n (n>=3) => Ej (j>=1 & j+18<=9*n) &

$tmfactoreq(i,i+j,n)": # for all i, n the next

occurrence of T[i..i+n-1] is at distance <= 9n-18

eval tmopt "Am Ei,n (n>=m) & Aj

(j>=1 & $tmfactoreq(i,i+j,n)) => j+18>=9*n":

there are arbitrarily large factors where next

occurrence is at distance >= 9n-18.

34 / 56

Example 10: Additive number theory

Let’s do some number theory with Walnut!

Let S ,T ⊆ N be subsets of natural numbers. Define the sumset

S + T = {s + t : s ∈ S , t ∈ T}.

Let ϕ = (1 +
√

5)/2 be the golden ratio. The lower Wythoff
sequence is

L = (bϕnc)n≥1 = (1, 3, 4, 6, 8, 9, . . .)

and the upper Wythoff sequence is

U = (bϕ2nc)n≥1 = (2, 5, 7, 10, 13, 15, . . .).

Recently Kawsumarng et al. looked at sumsets of the lower and
upper Wythoff sequences.

35 / 56

Additive number theory

They proved theorems like

L + U + U = N− {0, 1, 2, 3, 4, 6, 9}.

But their proofs were long, case-based, and complicated.
We can re-prove their results with Walnut, using Fibonacci
representation and a theorem of Silber:

n ∈ L⇐⇒ (n − 1)F ends in 0;

n ∈ U ⇐⇒ (n − 1)F ends in 1.

We can implement this in Walnut as follows:

reg end0 msd_fib "(0|1)*0":

reg end1 msd_fib "(0|1)*1":

def lower "?msd_fib $end0(n-1)":

def upper "?msd_fib $end1(n-1)":

36 / 56

Additive number theory

And we can prove their theorem by just evaluating

eval kaw "?msd_fib ~Ea,b,c (n=a+b+c) & $lower(a) &

$upper(b) & $upper(c)":

which gives the Fibonacci representation of all numbers not in the
sumset L + U + U.

The result is provided as an automaton recognizing the Fibonacci
representation of those n /∈ L + U + U.

Here’s the automaton:

0

0

11 20

3
0 4

1

1

5
0 1

By inspection we see this DFA recognizes the Fibonacci
representations of {0, 1, 2, 3, 4, 6, 9}.

37 / 56

Using Walnut for enumeration

Walnut can also be used to find a representation for various kinds
of integer-valued functions of automatic sequences.

The simplest is a so-called linear representation for a function f (n).
It consists of a row vector u, a column vector v , and a
matrix-valued morphism γ : Σ∗ → N such that

f (n) = u · γ(x) · v

where x is the representation of n.

Let us do this for subword complexity of the Thue-Morse sequence
(previously computed by Brlek, de Luca & Varricchio, and
Avgustinovich).
Here f (n) = number of distinct length-n factors of t.

38 / 56

Subword complexity of the Thue-Morse sequence I

To compute f , we count the number of length-n novel factors:
those beginning at some position i , but not occurring at any earlier
position. We can do this with the following Walnut commands:

def tmfactoreq "At (t<n) => T[i+t]=T[j+t]":

eval tmsw n "Aj (j<i) => ~$tmfactoreq(i,j,n)":

T[i..i+n-1] is a novel factor

The output is a Maple file with the definitions of u, γ(0), γ(1), v .

For technical reasons I won’t go in to here, one needs to replace u
by u′ := uγ(0) until the value stabilizes. This gives a linear
representation for f (n), of rank 8.

39 / 56

The linear representation

We have

f (n) = the number of distinct length-n factors of t

= u′ · γ((n)2) · v ,

where

u′ =

 1
1
0
0
1
0
0
0

T

; γ(0) =

 1 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 2 0 0 0 0 0
0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 2 0

 ; γ(1) =

 0 0 1 1 0 0 0 0
0 0 0 0 0 1 1 0
0 0 2 0 0 0 0 0
0 0 2 0 0 0 0 0
0 0 0 0 0 0 1 1
0 0 2 0 0 0 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 2 0 0

 ; v =

 1
0
1
1
0
0
0
0

This gives

I An explicit formula for f (n) that we can evaluate in
O((log n)3) time

I An exact formula for f (2n) and similar subsequences in terms
of the eigenvalues of γ(0), etc.

40 / 56

Getting an exact formula for some cases

We have
f (2n) = u′ · γ(1) · γ(0)n · v .

Each entry of γ(0)n satisfies a linear recurrence corresponding to
the minimal polynomial of γ(0), which is X 2(X − 1)(X − 2).

Since f (2n) is a linear combination of these entries, it also satisfies
the same linear recurrence.

By the fundamental theorem of linear recurrences, we have
f (2n) = a · 2n + b for some constants a, b and n ≥ 2.

We can now solve for a and b by substituting two values for n.

This gives a = 3, b = −2, so f (2n) = 3 · 2n − 2 for n ≥ 2.

41 / 56

Subword complexity II: Via right special factors

We know from a theorem of Cassaigne that the first difference of
the subword complexity function of an automatic sequence is
bounded above by a constant.

It is easy to see that f (n + 1)− f (n) is the number of length-n
factors x that are right special , that is, both x0 and x1 occur in t.

So we can count these as follows in Walnut:

def tmfactoreq "At (t<n) => T[i+t]=T[j+t]":

def rtspec "Ej $tmfactoreq(i,j,n) & T[i+n]!=T[j+n]":

eval tmrs n "$rtspec(i,n) & Aj (j<i) => ~$tmfactoreq(i,j,n)":

This gives us a linear representation of rank 6 for f (n + 1)− f (n):

u =

[
1
1
0
0
0
0

]T
; γ(0) =

[
1 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 1
0 0 1 0 1 0
0 0 0 0 1 0
0 0 0 0 0 1

]
; γ(1) =

[
0 0 1 1 0 0
0 0 0 0 1 0
0 0 0 0 1 1
0 0 0 0 0 2
0 0 0 0 1 1
0 0 0 0 0 0

]
; v =

[
1
0
1
1
0
1

]

42 / 56

Subword complexity II: Via right special factors

We can now minimize this using an algorithm of Schützenberger
(see the book of Berstel and Reutenauer) to get the following
linear representation:

u =

[1
0
0
0

]T
; γ(0) =

[1 0 0 0
0 0 1 0
0 0 1 0
0 0 0 1

]
; γ(1) =

 0 1 0 0
0 0 0 1

0 0 2
3

2
3

0 0 1
3

1
3

 ; v =

[1
2
2
4

]

We can now turn this into a DFAO as follows:

I states are 4-element vectors

I the initial state is u

I transition function δ(s, a) := s · γ(a)

I output function of state s is s · v

43 / 56

Computing the DFAO

This gives the following DFAO computing the first difference of the
subword complexity function for Thue-Morse:

0/1

0

1/21

2/2

0

3/4

1

0

4/41

0

5/21

0, 1

0, 1

For example, the right-special factors of length 5 are
00110, 01001, 10110, 11001.

44 / 56

Subword complexity III: Via synchronized sequences

As we’ve seen, subword complexity is the number of length-n novel
factors.

I observed and Luke Schaeffer proved that for automatic
sequences, the starting positions of length-n novel factors lie in a
finite number of clumps (consecutive positions).

So we can compute subword complexity by adding up the clump
lengths.

We just “guess” (with ∃) the left and right endpoints of the
clumps, and verify that

I inside a clump, all the length-n factors beginning there are
novel, and

I outside the guessed clumps, the factors are not novel.

45 / 56

Subword complexity III: Via synchronized sequences

For Thue-Morse there are at most 5 clumps for each n.

This gives the following Walnut code:

def nf "Aj (j<i) => Et (t<n) & T[i+t] != T[j+t]": # novel factor

def allnovel "Ai (x<=i & i<y) => $nf(i,z)":

def allnotnov "Ai (x<=i & i<y) => ~$nf(i,z)":

def tmsub "E a2,a3,a4,a5,b1,b2,b3,b4,b5 (b1<=a2 &

a2<=b2 & b2<=a3 & a3<=b3 & b3<=a4 & a4<=b4 & b4<=a5 & a5<=b5)

& $allnovel(0,b1,n) & $allnovel(a2,b2,n) & $allnovel(a3,b3,n) &

$allnovel(a4,b4,n) & $allnovel(a5,b5,n) & $allnotnov(b1,a2,n) &

$allnotnov(b2,a3,n) & $allnotnov(b3,a4,n) & $allnotnov(b4,a5,n) &

(Ai (i>=b5) => ~$nf(i,n)) & s = b1+(b2-a2)+(b3-a3)+(b4-a4)+(b5-a5)":

This gives us a 14-state “synchronized” automaton recognizing, in
parallel, the base-2 representations of n and s = f (n).

46 / 56

Subword complexity via synchronized sequences

With such an automaton, one can easily use Walnut to verify the
following formula for the subword complexity of Thue-Morse:

ρt(n) =

{
3 · 2r + 4(i − 1), if n = 2r + i , 1 ≤ i ≤ 2r−1;

5 · 2r + 2(i − 1), if n = 3 · 2r−1 + i , 1 ≤ i ≤ 2r−1.

reg power2 msd_2 "0*10*":

eval tmsubcheck "Ax,i,s,n (((n>=3 & $power2(x) & n=x+i & i>=1

& 2*i<=x & s+4=3*x+4*i) => $tmsub(n,s)) & ((n>=3 & $power2(x) &

2*n=3*x+2*i & i>=1 & 2*i<=x & s+2=5*x+2*i) => $tmsub(n,s)))":

In general, synchronized representations for functions are the most
useful, because we can use them to prove guessed exact formulas
like the one above.

Unfortunately it’s not always possible to find a synchronized
representation for a function given by a linear representation.

47 / 56

Paperfolding sequences

The paperfolding sequences are an uncountable set of infinite
sequences F , each one determined by a specific infinite sequence of
unfolding instructions u = u0, u1, . . . ∈ {−1,+1}, as follows:

P0 = ε

Pi+1 = Pi , ui , −PR
i .

and P = limi→∞ Pi .

There is a single finite automaton that specifies all these
sequences: it takes as input n in base 2 in parallel with the
unfolding instructions, and returns the ith bit of the appropriate
paperfolding sequence.

48 / 56

Paperfolding sequences

So we can prove assertions about some or all paperfolding
sequences using this one automaton and Walnut, such as:

Theorem. (Allouche & Bousquet-Mélou) No paperfolding
sequence contains a repetition larger than a cube (i.e., a
3+-power).

eval pfhaslcube "?lsd_2 En (n>0) & Ef Ei i>=1 &

Ak (k<=2*n) => PF[f][i+k] = PF[f][i+k+n]":

which returns FALSE.

49 / 56

Alternate formulations of queries can save time

Consider comparing two factors of the Tribonacci word:
TR[i ..i + n − 1] and TR[j ..j + n − 1]:

def tribfaceq "?msd_trib At (t<n) => TR[i+t]=TR[j+t]":

Does TR[i..i+n-1]=TR[j..j+n-1] ?

This didn’t run to completion, even after allocating 120 gigs of
storage (by invoking java -Xmx120000M Main.Prover).

But a simple reformulation runs very quickly.

def tribfaceq2 "?msd_trib Ax Ay (x>=i & x<i+n & x+j=y+i)

=> TR[x]=TR[y]": # Does TR[i..i+n-1]=TR[j..j+n-1] ?

This takes only 35 secs of CPU time and uses 7.2 gigs of storage
to produce the required 26-state automaton.

50 / 56

Limitations of Walnut

I Only works with automatic sequences, not with arbitrary
morphic sequences
I Cannot be remedied in general, because the characteristic

sequence of the squares is morphic, and FO(N,+, x → x2) is
not decidable (Tarski)

I Some queries might require ridiculously large amounts of time
and space
I Cannot be remedied in general, because there is a double

exponential lower bound just for Presburger arithmetic
I In practice, most queries run to completion, or can be

reformulated to do so

I Can work with two or more sequences at once, but only if
they are defined over the same numeration system (e.g.,
Thue-Morse and Rudin-Shapiro, but not Thue-Morse and
Fibonacci)

51 / 56

Things Walnut can’t handle because they’re not
expressible

I Arbitrary words (can only handle factors of automatic
sequences and simple variations on them)

I Arbitrary-length (scattered) subsequences of automatic
sequences (fixed-length ok)

I Abelian properties of factors (except in special cases, like the
Thue-Morse sequence and Fibonacci word)

I Comparing the number of 1’s in two different factors (except
in special cases)

I Adding up the elements of a factor (except in special cases)

I Checking if terms of one sequence are arbitrary linear
combinations of another (except if coefficients and number of
terms are bounded)

52 / 56

Common Walnut pitfalls for beginners

I forgetting to specify the numeration system (if different from
base 2)

I forgetting about edge conditions (empty factors, etc.)
I Example: all conjugates of f[i ..i + n − 1] appear in f. Wrong:

asserts that F[j..j+n-1] is F[i..i+n-1], shifted by t

def fibshift "?msd_fib $fibfactoreq(j,i+t,n-t) &

$fib(i,(j+n)-t,t)":

asserts that F[j..j+n-1] is a conjugate of F[i..i+n-1]

def fibconj "?msd_fib Et (t<n) & $fibshift(i,j,n,t)":

It fails for the empty string (so need t<=n instead).

I using parameters in the wrong order

I subexpression with subtraction resulting in negative number

I self-defined DFAO’s must be placed in the Word Automata

library and name must consist of capital letters, not starting
with A or E

53 / 56

Conclusions

I First-order properties of automatic sequences are now
“trivially decidable” (usually)

I Some properties (like balance for binary sequences) at first
glance don’t seem to be expressible, but can be reformulated
to satisfy this requirement

I Conjectures about enumeration can similarly be “easily
verified” if they involve synchronized automatic sequences

I You can replace long case-based arguments, prone to error,
with a simple computation

I Rephrasing properties in first-order logic helps you make your
definitions precise (handle edge cases like empty word
correctly, etc.)

I Your mind is now free to work on harder properties, such as
abelian and additive properties of sequences!

54 / 56

For further research

I Is there a first-order formula for the balanced property for
words over a larger alphabet than size two? Or for
generalizations of balance?

I Can one produce “automatic reformulation” of queries to
make them more efficient? (compare tribfaceq discussion
previously)

I implement a multicore version of Walnut

55 / 56

Walnut

To download Walnut, visit
https://cs.uwaterloo.ca/~shallit/walnut.html

Thanks to Hamoon Mousavi and Aseem Baranwal for their
wonderful software!

Hamoon Mousavi Aseem Baranwal

56 / 56

https://cs.uwaterloo.ca/~shallit/walnut.html

