Avoiding large squares in trees and planar graphs

Daniel Gonçalves, Pascal Ochem, and Matthieu Rosenfeld

CNRS, LIRMM, Montpellier

One World Combinatorics on Words Seminar

Avoiding all squares

- Thue number π(G): smallest number of colors in a square-free coloring of G.
- $\pi(\mathcal{C}) = \max \{ \pi(\mathbf{G}) : \mathbf{G} \in \mathcal{C} \}.$
- π(path) = 3 [Thue 1906]
- *π*(*tree*) = 4 [Grytczuk 2007]
- $\pi(tw_t) \leq 4^t$ [Kündgen and Pelsmajer 2008]
- $7 \leq \pi(outerplanar) \leq 12$ [Barát and Varjú 2007]
- 11 ≤ π(planar ∩ tw₃) ≤ π(planar) ≤ 768 [O. 2011; Dujmovic, Esperet, Joret, Walczak, and Wood 2020]

Avoiding not all squares

Avoiding only small squares:

- Avoiding only squares of period 1: proper coloring.
- Avoiding only squares of period 1 and 2: star coloring.

Avoiding only large squares:

- Grytczuk proposed to avoid only squares of period $\geq k$.
- π_k(G): smallest number of colors in a coloring of G avoiding squares of period ≥ k.
- $\pi(G) = \pi_1(G) \ge \pi_2(G) \ge \pi_3(G) \ge \cdots$.
- $\pi_1(path) = \pi_2(path) = 3; \quad \pi_3(path) = 2$
- $\lambda(AA) = \lambda(ABAB) = 3;$ $\lambda(ABCABC) = 2.$

Our results

Avoiding large squares in trees:

Theorem

- $\pi_1(tree) = 4$
- $\pi_2(tree) = \pi_3(tree) = \pi_4(tree) = 3$
- $\pi_5(tree) = 2$

Avoiding large squares in planar graphs:

Theorem

For every fixed k, $\pi_k(planar \cap tw_3) \ge 11$.

This disproves a conjecture of Grytczuk that $\pi_k(planar) = 4$ for some *k*.

Trees I

W.I.o.g, a tree is *level colored*.

Just to confuse people, we consider the word W with reading direction towards the root.

If W contains ms, then the tree contains msm^R . So if msm^R contains a large square, then W cannot contain ms.

d-*directed* word:

if w contains f and $|f| \ge d$, then w does not contain f^R .

Trees II

W is the morphic image of any ternary $\left(\frac{7}{4}^+\right)$ -free word.

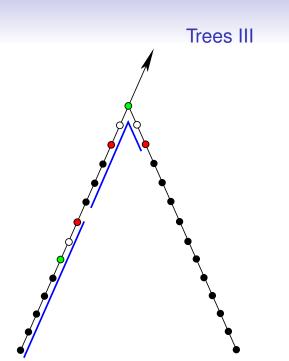
• A 12-uniform morphism to prove $\pi_2(tree) \leq 3$:

 $\begin{array}{rrrr} 0 \to & 011220012201 \\ 1 \to & 122001120012 \\ 2 \to & 200112201120 \end{array}$

W is 3-directed and $\left(\frac{19}{10}^+, 2\right)$ -free.

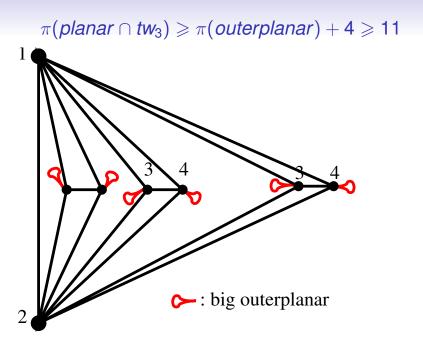
- A 21-uniform morphism to prove $\pi_5(tree) \leq 2$:
 - $\begin{array}{rrrr} 0 \to & 001101110001010110010 \\ 1 \to & 001101110001001110101 \\ 2 \to & 001101110001001101010 \end{array}$

W is 20-directed and $\left(\frac{83}{42}^+, 5\right)$ -free.

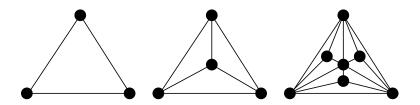


Theorem

For every fixed k, $\pi_k(planar \cap tw_3) \ge 11$.

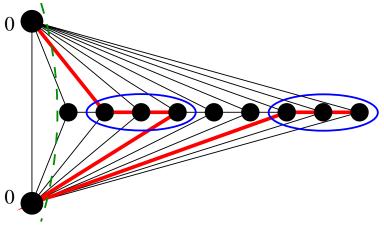


A universal family for *planar* \cap *tw*₃: *G*_{*i*}



Restriction to proper colorings

WLOG, a coloring of G_i avoiding large squares is proper.



Colored paths

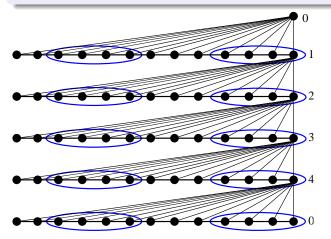
Lemma

Let k be a fixed integer and let P be a path. In every proper coloring of P avoiding squares of period at least k, every subpath of P with 4k vertices contains at least 3 colors.

Colored outerplanar graphs

Lemma

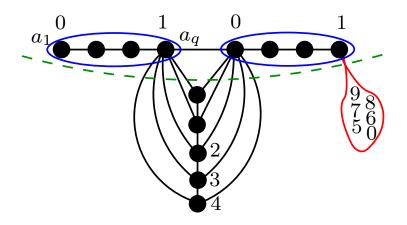
For every fixed k, there exists an outerplanar graph that admits no proper 5-coloring avoiding squares of period at least k.



For contradiction

- The *G_i*'s can be properly colored with {0,...,9} such that every square has period at most *q*.
- *q* is minimal.
- *q* ≥ 2.
- Some G_i contains a square of period q.

Trying to extend the 10-coloring



The contradiction

- Our square of period q extends to a repetition of period q and exponent ^{2q+1}/_q.
- This further extends to a repetition of period q and exponent $\frac{2q+2}{q}$.
- After 2*q* such extensions, we get a repetition of period *q* and exponent $\frac{4q}{a}$.
- This is a square of period 2*q*, contradicting the minimality of *q*.

Open problems

- $\pi(tw_t) \leq 4^t$
- $7 \leqslant \pi(\text{outerplanar}) \leqslant 12$
- $11 \leq \pi(planar) \leq 768$
- For every fixed k, $11 \leq \pi_k(planar \cap tw_3) \leq 64$

Thank you!