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The Nottingham group

Let p be a prime number. The Nottingham group N(Fp) consists of power
series of the form

t + a2t2 + a3t3 + · · ·

with coefficients from Fp with substitution as group multiplication.

It can be described as the pro-p-Sylow subgroup of the group of ring
automorphisms Aut(Fp~t�) of the formal power series ring Fp~t�, with
composition as multiplication.

Camina and Jennings proved that every metrisable pro-p group embeds
into N(Fp); in particular, every finite p-group embeds into N(Fp).

Aim
The group N(Fp) has many elements of finite order (the order is necessarily
a power of p). Describe them explicitly!



Klopsch theorem

Theorem (Klopsch, 1990)
Every element of order p in N(Fp) is conjugate to a unique element of the
form

σ(t) =
t

m√1 + atm

with a ∈ F∗p and m ∈ N coprime to p.

In fact,

σ◦k(t) =
t

m√1 + katm
.

What about series of order p2, p3, etc.?



Examples

Previously, the only known examples of explicit power series of order > p2

were of order 4 for p = 2.
I Example of Chinburg and Symonds:

σCS := t + t2 +
∑
k>0

2k−1∑
`=0

t6·2k+2` = t + t2 + O(t6).

I Its compositional inverse, computed by Scherr and Zieve:

σ◦3CS =
∑
k>0

(
t3·2k−2 + t4·2k−2

)
= t + t2 + t4 + O(t6).

I Example of Jean:

σJ(t) := t + t2 1 + t5

1 + t8 +
∑
k>2

t2k t2k+1
+ t

t2k+2
+ 1

= t + t2 + t5 + O(t6).



Break sequence

Definition
The depth of σ = σ(t) ∈ N(Fp) is

d(σ) = ordt(σ(t) − t) − 1

(and d(t) = ∞), so if σ(t) = t + aktk + O(tk+1) with ak , 0, then d(σ) = k − 1.

The (lower) break sequence of σ ∈ N(Fp) with finite order pn is defined as

bσ = (bi)n−1
i=0 = (d(σ◦pi

))n−1
i=0 .

The break sequence is an invariant of conjugation.

The power series t/ m√1 + atm has break sequence (m) (for a ∈ F∗p).
The examples of Chinburg–Symonds, Scherr–Zieve and Jean all have
‘minimal’ break sequence (1, 3).



Classifying torsion elements

One can use local class field theory to describe all torsion elements. There
are only finitely many elements with given order and break sequence.
However, the classification is not quite explicit.

Theorem (Lubin, 2011)
Write U1 = 1 + t Fp[[t]]. There is a bijection between conjugacy classes of
order-pn elements in N(Fp) and strict equivalence classes of continuous
surjective characters η : U1 → Z/pnZ.
We say that η and η′ are strictly equivalent if there exists u ∈ N(Fp) with

η(u(z)/z) = 0 and η′(x) = η(x ◦ u) for all x ∈ U1.

Via this bijection, one may also read off the break sequence of an element
from the corresponding character. However, there is no known formula for
the number of conjugacy classes of elements of given order and break
sequence, and while the coefficients of the corresponding power series can
be computed recursively, this usually does not lead to explicit formulæ.



Harbater–Katz–Gabber covers

By a rather deep result of Harbater, every embedding of a finite p-group in
N(Fp) comes from a G-covering π : X → P1, where X is a smooth curve with
an action of G, and the map π is totally ramified over ∞ and unramified
elsewhere.

Corollary
Every finite order automorphism in N(Fp) is conjugate to a power series
that is algebraic over Fp(t).

Every finite group of automorphism in N(Fp) is conjugate to a group whose
elements are power series that are algebraic over Fp(t).

Hence, by Christol’s theorem every conjugacy class contains a series whose
coefficients are produced by an automaton!



Automata and automatic sequences

Example:
Consider Klopsch’s series

σK,3 := t/
3√
1 + t3 =

∑
k>0

a3k+1t3k+1 = t + t4 + t13 + · · · ∈ N(F2)

The coefficients can be described explicitly: ak = 1 if and only if the base-4

expansion of k − 1 contains only the digits 0 or 3, or by an automaton:

0

0 0

1 1

0

Start

1

1

1

0 0

0

0
1 1

0

0, 1



Christol’s theorem

Theorem (Christol, 1979)
A series

∑
n>0 antn ∈ Fp[[t]] is algebraic if and only if the sequence (an) is

p-automatic.

Klopsch’s series satisfies the equation (1 + t3)X3 + t = 0.

Thue–Morse’s series satisfies the equation t + (1 + t)2X + (1 + t)3X2 = 0.

Idea of the proof: a sequence (an) is p-automatic iff its p-kernel

N((an)) = {(apin+ j)n | i > 0, 0 6 j < pi}

is finite. This corresponds to Cartier operators Cr on power series:

Cr(
∑

aiti) =
∑

api+rti.

The essence of the proof is to show that if f is algebraic, then f lies in a
finitely dimensional Fp-vector space that is invariant under the action of the
Cartier operators.



Constructing finite order automorphism

Strategy

1. Write down explicit equations for a cyclic totally ramified pn-extension
of the field Fp((z)) which is defined over Fp(z). This can be done using
either Witt vectors or torsion of the Carlitz module.

2. Choose a uniformiser t as an algebraic function of the chosen field
generators.

3. Compute the action of a generator σ of the Galois group on the
uniformiser t and express it as an algebraic equation between t and σ(t).

4. Use (a proof of) Christol’s theorem to find an automaton producing
σ(t).



First example

We want to construct a totally ramified cyclic degree-4 extension K/F2((z)).
We can use Witt vectors to produce the extension K = F2((z))(x, y) with{

x2 + x = z−1;
y2 + y = xz−1 = x3 + x2,

An example of a uniformiser t for K is given by t = (y + 1)/(y + x2). A
generator σ of the Galois group is determined by the equations{

σ(x) = x + 1;
σ(y) = y + x + 1,

We compute

σ(t) =
y + x

y + x2 + x
.

To find an algebraic equation for σ over F2(t), we need to eliminate x and y:
y2 + y = x3 + x2 [equation of extension];
(y + x2)t = y + 1 [definition of uniformiser];
(y + x2 + x)σ(t) = y + x [action of σ on uniformiser],

from which we get that σ satisfies the equation

F(t, X) = (t + 1)3X3 + (t3 + t)X2 + (t3 + t + 1)X + t3 + t = 0. (1)

This equation has a unique solution of the form t + O(t2).



Constructing the automaton

To construct the automaton, one needs to explicitly construct a vector
space V, Cartier operators Cr : V → V, an element v ∈ V, and the output
map τ : V → Fp that emulates the behaviour of the Cartier operators on the
space spanned by f ∈ Fp[[t]] and its images via Cartier operators. There are
three main choices:

1. Ore form. Convert the algebraic equation to the form

an f pn
+ an−1 f pn−1

+ · · · + a0 = 0, ai ∈ Fp[[t]].

then take

V =

n−1⊕
i=0

Fp[t]6N Xpi
for sufficiently large N.

2. Differential forms. Let X be the curve defined by the (irreducible factor
of the) equation. Take

V = ΩX(D) for sufficiently large divisor D.

3. Diagonals of rational functions. Use Furstenberg’s theorem to write f
as the diagonal of a two-variable rational function P/Q ∈ Fp(X,Y). Take

V = {
P′

Q
| P′ ∈ Fp[X,Y], deg P′ 6 N} for sufficiently large N.



First example

For our element of order 4, this method produces the series σmin generated
by the following automaton:
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Ragnar Groot Koerkamp computed that this is the smallest automaton
producing an element of order 4.



Repertoire of examples

We construct automata producing series representing all the conjugacy
classes of the following series:
I of order 4 and break sequence (1, 3). There are two conjugacy classes

represented by σmin and σ◦3min. The Chinburg–Symonds series is
conjugate to σmin, and Jean series is conjugate to σ◦3min.

I of order 4 and break sequence (1, 5). There is one conjugacy class. Our
automaton has 13 states.

I of order 4 and break sequence (1, 9). There is one conjugacy class. Our
automaton has 110 states.

I of order 8 and ‘minimal’ break sequence (1, 3, 11). There are four
conjugacy classes represented by σ8,1, σ

◦3
8,1, σ8,2, σ

◦3
8,2. The automata

producing σ8,1 and σ8,2 have 320 and 926 states.

We also have automata generating:
I a series of order 9 and break sequence (1, 7). Our automaton has 3634

states.
I an embedding of the Klein four-group, given by automata with 14, 18

and 25 states.
I an embedding of Z/4Z × Z/2Z with generators produced by automata

with 128 states.



An automaton generating a power series of order 4 and break sequence
(1, 5)
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An automaton generating a power series of order 4 and break sequence
(1, 9)

0

1

0

1

0

1

0 1

0

1

0

1

0

1

0

1

01

0

1

0

1

01

0

1

0

1

0

1

1

0

0

1

1

0

0

1

0,1

0

1

0

1

0

1

0

1

0

1

0

1

1

0

1

0

0

1

1

0

10

0

1

1

0

0 1

1

0

0

1

0

1

0

1

1

0

1 0

0

1

1

0

0

1

0

1

1

0
1

0

1

0

0

1

1

0

0

1

0

1

0

1

1

0

1

0

0

1

1

0

1

0

0

1

1

0

1

0

0

1

0

1

1

0

1
0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

0

1
0

1 0
1

1

0

0

1

1

0

10

0

1

0

1

0

1 0

1

1

0

1

0

0

1

0

1

1
0

0

1

01

0
1

1

0

1

0
1

0

0
1

1

0

1 0

0
1

1

0 1

0

0

1

0

1

0

1

1

0

1

0

0

1

1

0

0

11

0

1

0

0

1

00

00

11

00

11

11

00
11

11

11

11

00

00
11

11
00

11

00

00

00
00

00

00

11

11

11

11
00

11

00

00

00

11

00

00

11

11

11

11

11

00

00

00

00

1111

00
00

00

11

11

11

11

11

11

00

11

00

11

11

11

00

11

00

11

00

11

00

11

00

00

11

11
11

11

00

11

11

11

00

00

00

00

00

11

11

11

11

11

00

00

11

00

00

11

00

11

00

11

00

00

11
00

11

11

00

11
00

00

00

Start



An automaton generating one of the generators of the Klein four-group

1

0

1

0

1 1

1 0

0

1

1

0

1
0

0

1

0

0

0

1

0

Start

1

00

1 1
1

1

0

1

0

1

0 1

0

1

0

0

0
0, 1

0
1

0
0

1

1

1

1

0

0 0

1

1



An automaton generating another of the generators of the Klein
four-group
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And so what?

Ok, so now that you have all these automata, what can you use them for?

What kind of new questions can you ask?



Sparseness

For a power series σ =
∑

aktk ∈ Fp~t�, the support of σ, i.e. the set of
integers k for which ak , 0.

Theorem (Cobham, 1972)
Let σ ∈ Fp[[t]] be an algebraic power series. Then exactly one of the
following conditions holds:

1. either #(E(σ) ∩ {0, 1, . . . ,N}) > Nα for some real α > 0 and large N;

2. or #(E(σ) ∩ {0, 1, . . . ,N}) 6 (log N)r for some r.

In the latter case, the series is called sparse, and the smallest such r is an
integer called the rank of sparseness.
Define a simple sparse set of rank at most r to be a set of integers whose
base-p expansion is of the form vrw

`r
r · · · v1w`1

1 v0 with `i ∈ Z>0 for some fixed
words v0, . . . , vr,w1, . . . ,wr.

Theorem (Szilard, Yu, Zhang and Shallit, 1992)
An algebraic series σ is sparse of rank at most r precisely if E(σ) is a finite
union of pairwise disjoint simple sparse sets of rank at most r.



Examples

I The series of Scherr–Zieve is sparse:

σ◦3CS =
∑
k>0

(
t3·2k−2 + t4·2k−2

)
= t + t2 + t4 + O(t6).

I The series of Chinburg–Symonds is a product of a sparse series and a
rational function:

σCS := t + t2 +
∑
k>0

2k−1∑
`=0

t6·2k+2` = t + t2 + O(t6).

I The series of Jean is a product of a sparse series and a rational
function after the substitution t 7→ t/(t + 1):

σJ(t) := t + t2 1 + t5

1 + t8 +
∑
k>2

t2k t2k+1
+ t

t2k+2
+ 1

= t + t2 + t5 + O(t6).

I The series σmin is not of this type.



Theorem of Albayrak–Bell

Theorem (Albayrak–Bell, special case)
Let σ ∈ Fp[[t]] denote a power series that is algebraic over Fp(t). Consider
the field

F =
⋃
`>1,
p-`

F2(t1/`),

where Fp is an algebraic closure of Fp. If σ is sparse, then the following
conditions hold:

1. σ is integral over Fp[t, t−1];

2. the extension Fp(t)(σ)/Fp(t) is unramified outside of 0,∞;

3. the splitting field of σ over F has degree a power of two.



Sparse representatives

Theorem
Let m be an integer of the form m = 2µ ± 1 for µ > 1. Then any power series
of order 2 and break sequence (m) is conjugate to a sparse power series.
More precisely, we have the following:

1. Any power series of order 2 and break sequence (1) is conjugate to the
sparse power series

σS,1 = t +
∑
k>2

(
t2k−2 + t2k−1

)
. (2)

2. If m = 2µ − 1 > 1, then any power series of order 2 and break sequence
(m) is conjugate to the sparse power series

σS,m = t +
∑
k>1

t
m+1
m−1

(
m·( m+1

2 )k−1
−1

)
. (3)

The set of exponents occurring in σ consists of the integers whose
base-2 representation is either 1 or 10µ−1(10µ−2)`0 for some ` ∈ Z>0.



Sparse representatives of automorphisms of order 2

Theorem (continued)

3 If m = 2µ + 1, then any power series of order 2 and break sequence (m) is
conjugate to the sparse power series

σS,m =
∑

∅,J⊆{0,...,µ−1}
k : J→Z>0

t

 ∑
j∈J

2 j(m−1)k( j)
m−m+1

. (4)

The support of σS,m consists precisely of the integers m(` − 1) + 1 with
` > 1 an integer whose base-2 expansion contains at most µ occurrences
of the digit 1 and all these occurrences are at distinct positions modulo
µ.

We also have sparse representatives of both conjugacy classes of minimally
ramified order-4 elements (one of them is given by Scherr–Zieve).



The automaton generating a sparse power series of order 2 and depth 1
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An automaton generating a sparse power series of order 2 and depth 3
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An automaton generating a sparse power series of order 2 and depth
2µ − 1, µ > 3
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The dashed arrow replaces a path consisting of µ − 3 vertices and µ − 2
edges, all with label zero. The remaining missing edges all connect to a
unique vertex with label 0, which has been omitted in order to simplify the
graphical representation of the automaton.



Open questions

I Give an automaton-theoretic characterisation of series that are sparse
up to multiplication with a rational function.

I Are the ‘p-automata of finite order’ somehow special from a
combinatorial or automaton-theoretic point of view? Is there a
characterisation in terms of the associated substitutions?

I How to test whether two algebraic power series are conjugate in N(Fp)?
I Is there a sparse series of order 2 with break sequence (11)? This is

equivalent to asking whether Klopsch’s series t/
11√

1 + t11 ∈ N(F2) is
conjugate to a sparse series. More generally, is every element of finite
order in N(F2) sparse up to conjugation?

I Devise an algorithm that finds all automata on at most N states that
represent series of finite order. For any given finite order this is easy, so
what one needs is a bound on the order of a series in terms of the
number of states of an automaton that generates it.


