COUNTING SCATTERED PALINDROMES IN FINITE WORDS

PALAK PANDOH

Assistant Professor School of Mathematics, SMVD university, JK, India.

Jun 21, 2021

OUTLINE

- Introduction and Motivation
- Basic Terminologies
- Scattered palindromes in 1D words
- Conclusions and Future directions.

INTRODUCTION AND MOTIVATION

- Palindromes, i.e., words symmetric under reversal, have been the subject of many works in the past especially in the study of Sturmian words.
- There has been an interest in the identification of palindromes in the areas of mathematics, theoretical computer science, and biology and have applications to sting processing, bio-informatics, error correcting codes, etc.
- Bounds on the number of palindromic factors in words have been extensively studied. (Droubay, X. et al¹, M.C., Anisiu, et.al², Fici, Zamboni ³, etc.).

¹Droubay, X., Justin, J. and Pirillo, G. (2001).Episturmian words and some constructions of de Luca and Rauzy. Theoretical Computer Science.

²Anisiu, Mira Cristiana and Anisiu, Valeriu and Kasa, Zoltan (2010). Total palindromic complexity of finite words. Discrete Mathematics.

³Gabriele, F. and Zamboni, L. Q. (2013). On the least number of palindromes contained in an infinite word. Theoretical Computer Science.

BASIC TERMINOLOGIES (ONE-DIMENSIONAL WORDS)

- Alphabet Σ : A finite non-empty set of symbols
- Word $u: u_1u_2\cdots u_n; u_i \in \Sigma$
- Factor of $u : u_i u_{i+1} \cdots u_j; 1 \le i \le j \le n$
- $v = \alpha_1 \cdots \alpha_n$ is a scattered subword of $u = \beta_0 \alpha_1 \beta_1 \cdots \alpha_n \beta_n$
- |u|: Length of a finite word u is the number of letters in u

Example

- Let $\Sigma = \{a, b, c\}$. Then u = abcaba is a word over Σ .
 - |u| = 6.
 - bca is a factor of u.
 - *abba* is a scattered subword of *u*.

BASIC TERMINOLOGIES (ONE-DIMENSIONAL WORDS)

- Σ^n : Set of all words of length n over Σ
- Σ^* : Set of all possible words over Σ
- Alph(u): Set of all sub-strings of u of length 1
- u is said to be primitive if $u = v^n$ for n > 0, implies n = 1

• For
$$u = u_1 u_2 \cdots u_n$$
, $u^R = u_n \cdots u_2 u_1$

• u is a palindrome if $u = u^R$

Example

The word *abccba* is a palindrome over $\Sigma = \{a, b, c\}$.

SCATTERED PALINDROMES IN 1D WORDS

- Palindromic subsequences, i.e., scattered palindromic subwords, in words are studied in Holub, S. et al.⁴, Mullner, C. et al.⁵ Ago, K. et al.⁶.
- The authors in Holub, S. et al. and Ago, K. et al. studied some properties of the scattered palindromic subwords of binary and ternary words.
- Mullner, C. et al. provided bounds on the minimum length of the longest scattered palindromic subword in some restricted classes of words of a given length.
- We enumerate scattered palindromic subwords in one-dimensional words.

⁴Holub, S. and Saari, K. (2009). On highly palindromic words. Discrete Applied Mathematics. ⁵Mullner, C. Ryzhikov, A.(2019). Palindromic Subsequences in Finite Words. In. Language and automata theory and applications, Lecture Notes in Computer Science, Springer.

⁶Ago, K. and Basic, B. (2020).On highly palindromic words: The ternary case. Discrete Applied Mathematics.

TERMINOLOGIES

- *PAL(u)* : Set of all non-empty palindromic factors of *u*
- P(u) = |PAL(u)|
- SPAL(u) : Set of all non-empty scattered palindromic subwords of u
- SP(u) = |SPAL(u)|

Example

Let u = abaa. Then

$$PAL(u) = \{a, b, aba, aa\} \implies P(u) = 4$$

 $SPAL(u) = \{a, b, aba, aa, aaa\} \implies SP(u) = 5.$

Droubay, X. et al.⁷ proved that at most one new palindromic factor can be created on the concatenation of a letter to a 1D word, thus $P(u) \le |u|$.

Theorem (Mahalingam, Pandoh)

For a given finite word $u, P(u) \leq |u| \leq SP(u)$.

Block word u: $u = v_1 v_2 \cdots v_r$; $v_i = a_i^{n_i}$ such that $a_i \in \Sigma$ are distinct.

Theorem (Mahalingam, Pandoh)

For a finite word u, SP(u) = |u| if and only if u is a block word.

⁷Droubay, X., Justin, J. and Pirillo, G. (2001).Episturmian words and some constructions of de Luca and Rauzy. Theoretical Computer Science.

Lemma (Mahalingam , Pandoh)

At most F_n scattered palindromic subwords can be created on the concatenation of a letter to a word of length n - 1.

- Let u = u'x be a word of length n for $x \in \Sigma$ and $u' \in \Sigma^*$
- Let n_1 be the number of scattered palindromic subwords added by the concatenation of x to the word u'

• If
$$|u'|_x = 0$$
, then $n_1 = 1 \le F_n$

- If $|u'|_x \neq 0$, then $u' = \alpha x \beta$ such that $|\alpha|_x = 0$ and $\beta \in \Sigma^*$
- $n_1 \leq SP(\beta) + 1$
- Since $|\alpha x\beta| = n-1$ and $|\beta| \le n-2$, by induction, $n_1 \le F_n 1 + 1 = F_n$

Theorem (Mahalingam , Pandoh)

A word of length n has at most $F_{n+2} - 1$ scattered palindromic subwords.

Scattered Palindromes of a given length

We investigate the maximum number of scattered palindromic subwords of length *i* in a word *u*, denoted by $SP_i(u)$, of length *n*.

• $SP_1(u) < n$. • $SP_2(u) < |\frac{n}{2}|$. • $SP_3(u) \leq \begin{cases} \frac{n^2 - 2n}{4}, & \text{if } n \text{ is even,} \\ (\frac{n-1}{2})^2, & \text{if } n \text{ is odd.} \end{cases}$ • $SP_4(u) \leq \begin{cases} \frac{n^2 - 2n}{4}, & \text{if } n \text{ is even}, \\ (\frac{n-1}{2})^2, & \text{if } n \text{ is odd}. \end{cases}$ • $SP_{n-2}(u) \leq \lfloor \frac{n}{2} \rfloor$, for $n \geq 6$. • $SP_{n-1}(u) \leq \begin{cases} 1, & \text{if } n \text{ is odd,} \\ 2, & \text{if } n \text{ is even.} \end{cases}$ • $SP_n(u) < 1$.

Scattered palindromes in 1D words

We deduce the following:

Proposition

The number of scattered palindromic subwords in a word of length $n \ge 7$, with alphabet size q is bounded above by

$$\frac{n^2 + 2n + 4}{2} + \sum_{i=5}^{n-3} q^{\lceil \frac{i}{2} \rceil}.$$

We show that the maximum number of scattered palindromic subwords in a word depends on both the length and the number of distinct letters in the word.

SCATTERED PALINDROMES IN 1D WORDS

Let $a_i \in \Sigma$ be distinct and

 $SP^{n,q} = \max\{SP(w) \mid w \in \Sigma^n \text{ and } |Alph(w)| = q\}.$

	a p4 a		q	$SP^{5,q}$	Words		
q	$SP^{4,q}$	Words	1	5	a.a.a.a.a.		
1	4	$a_1 a_1 a_1 a_1$	1	- 5	$a_1a_1a_1a_1a_1$		
2	6		2	9	$a_1 a_2 a_1 a_2 a_1$		
4	0	$a_1a_2a_1a_2, a_1a_2a_2a_1$	3	10	$a_1 a_2 a_3 a_2 a_1$		
3	6	$a_1 a_2 a_3 a_1$					
4	4	01000004	4	8	$a_1 a_2 a_3 a_4 a_1$		
-	Ŧ	$a_1 a_2 a_3 a_4$	5	5	$a_1 a_2 a_3 a_4 a_5$		

Theorem (Mahalingam , Pandoh)

Let $SP^{n,q} = Max\{SP(u) \mid u \in \Sigma^n \text{ and } |Alph(u)| = q\}$, then for $q \geq \frac{n}{2}$,

$$SP^{n,q} = 2^{n-q}(2q - n + 2) - 2.$$

If $q \geq \frac{n}{2},$ the maximum number of scattered palindromic subwords in a word of length n is

$$\begin{cases} 3(2^{\lceil \frac{n}{2} \rceil - 1}) - 2, & if \ n \ is \ odd, \\ 2^{\frac{n}{2} + 1} - 2, & if \ n \ is \ even \end{cases}$$

and this bound is achieved when $q = \begin{cases} \lceil \frac{n}{2} \rceil, & if \ n \ is \ odd \\ \frac{n}{2} \ \text{and} \ \frac{n}{2} + 1, & if \ n \ is \ even. \end{cases}$

Theorem (Pandoh)

Let w be a word of length n with $|Alph(w)| = q < \lceil \frac{n}{2} \rceil$. Then there exists a word w' of length n with |Alph(w')| = q + 1 such that SP(w) < SP(w').

For the alphabet size $q \leq \lceil \frac{n}{2} \rceil$, the maximum number of scattered palindromic subwords in a word of length *n* is achieved only when $q = \lceil \frac{n}{2} \rceil$.

Theorem (Pandoh)

The maximum number of scattered palindromic subwords in a word of length n

$$= \begin{cases} 3(2^{\lceil \frac{n}{2} \rceil - 1}) - 2, & \text{if } n \text{ is odd,} \\ 2^{\frac{n}{2} + 1} - 2, & \text{if } n \text{ is even} \end{cases}$$

and this bound is achieved only when the alphabet size

$$q = \begin{cases} \lceil \frac{n}{2} \rceil, & \text{if } n \text{ is odd,} \\ \frac{n}{2} \text{ and } \frac{n}{2} + 1, & \text{if } n \text{ is even.} \end{cases}$$

A word w of length n is called scattered palindromic rich if

$$SP(w) = \begin{cases} 3(2^{\lceil \frac{n}{2} \rceil - 1}) - 2, & \text{if } n \text{ is odd,} \\ 2^{\frac{n}{2} + 1} - 2, & \text{if } n \text{ is even.} \end{cases}$$

Theorem (Pandoh)

A word w of length n is scattered palindromic rich if and only if it is one of the following forms:

$$\begin{cases} a_1 a_2 a_2 a_1, \ a_1 a_2 a_1 a_2, \ a_1 a_2 a_3 a_1; & for \ n = 4, \\ a_1 \cdots a_{\frac{n}{2}} a_{\frac{n}{2}} \cdots a_1, \ a_1 \cdots a_{\frac{n}{2}} a_{\frac{n}{2}+1} a_{\frac{n}{2}-1} \cdots a_1; & for \ n \ge 6 \text{ and even,} \\ a_1 a_2 \cdots a_{\frac{n-1}{2}-1} a_{\frac{n+1}{2}} a_{\frac{n-1}{2}-1} \cdots a_1; & for \ n \text{ odd,} \end{cases}$$

$n \setminus q$	1	2	3	4	5	6	7	8	9	10
1	1	_	-	_	_	_	-	_	_	_
2	2	2	_	_	_	_	_	_	_	_
3	3	4	3	_	_	-	_	-	_	_
4	4	6	6	4	_	_	-	_	_	_
5	5	9	10	8	5	_	-	_	_	_
6	6	12	14	14	10	6	_	_	_	_
7	7	17	21	22	18	12	7	_	_	_
8	8	22	28	30	30	22	14	8	_	_
9	9	30	41	45	46	38	26	16	9	_
10	10	38	54	60	62	62	46	30	18	10

Table: Values of $SP^{n,q}$ for $1 \le n,q \le 10$

A word w of length n with |Alph(w)| = q is called scattered q-ary palindromic rich if $SP(w) = SP^{n,q}$.

- Mahalingam, Pandoh proved:
 - A word of length n with |Alph(w)| = q such that q ≥ n/2 is scattered q-ary palindromic rich if and only if SP(w) = 2^{n-q}(2q − n + 2) − 2.
 - A word of length n is scattered 2-ary palindromic rich if and only if

$$\left\{ \begin{array}{ll} F_{\frac{n+9}{2}}-4, & \mbox{ if }n\mbox{ is odd},\\ 2F_{\frac{n}{2}+3}-4, & \mbox{ if }n\mbox{ is even}. \end{array} \right.$$

where F_n is the *n*-th Fibonacci number.

Classification of scattered *q*-ary palindromic rich words:

Pandoh: A word w of length n with |Alph(w)| = q such that q > n/2 is scattered q-ary palindromic rich if and only if w is of the form

$$a_1a_2\cdots a_qa_{n-q}a_{n-q-1}\cdots a_1,$$

where $a_i \in \Sigma$ are distinct.

٠

• Mahalingam, Pandoh: A word w of length n is scattered palindromic 2-ary rich if and only if

$$w = \begin{cases} (xy)^{\frac{n-1}{2}}x, & \text{if } n \text{ is odd,} \\ (xy)^{\frac{n}{2}}, vv^{R} \text{ for } v = (xy)^{(\frac{n}{4})} & \text{if } n \text{ is even;} \end{cases}$$

- We have studied scattered palindromic subwords in a word of length n.
- We have obtained lower and upper bounds for the number of scattered palindromic subwords in any word.
- We gave the value of $SP^{n,q}$ for $q \geq \frac{n}{2}$ and q = 2.
- Finding a tight bound of $SP^{n,q}$ for all values of q is one of our future work.
- Characterizing scattered palindromic rich words is another future direction.

Thank you!