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Subsequences

i1 i2 i3 ik· · ·w

Subsequence

We call w ′ a subsequence of length k of a word w , where |w | = n,
if there exist positions 1 ≤ i1 < i2 < . . . < ik ≤ n, such that
w ′ = w [i1]w [i2] · · ·w [ik ].

Set of Subsequences of length k

Let Subseqk(i ,w) denote the set of subsequences of length k of
w [i : n]. Accordingly, the set of subsequences of length k of the
entire word w will be denoted by Subseqk(1,w).

Example: Subseq2(1, abaca) = {aa, ab, ac, ba, bc, ca}



Simon’s Congruence

Simon’s Congruence

(i) Let w ,w ′ ∈ Σ∗. We say that w and w ′ are equivalent under
Simon’s congruence ∼k if Subseqk(1,w) = Subseqk(1,w ′).

(ii) A word u of length k distinguishes w and w ′ w.r.t. ∼k if u
occurs in exactly one of the sets Subseqk(1,w) and Subseqk(1,w ′).
(iii) Let i , j ∈ w . We define i ∼k j (w.r.t. w) if
w [i : n] ∼k w [j : n], and we say that the positions i and j are
k-equivalent.
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Problem Definition

SimK

Given two words s and t over an alphabet Σ, with |s| = n and
|t| = n′, with n ≥ n′, and a natural number k, decide whether
s ∼k t.

MaxSimK

Given two words s and t over an alphabet Σ, with |s| = n and
|t| = n′, with n ≥ n′, find the maximum k for which s ∼k t.

Basic Assumption

Σ integer alphabet, i.e., Σ ⊆ {1, . . . , n}.



History

I Line of research originating in the PhD thesis of Imre Simon
from 1972

I Long history of algorithm designs and improvements for
associated problems. State of the art:
– SimK optimal linear time [DLT 2020], prompted by linear
time solution for constant alphabets, via shortlex form
[Kufleitner, Fleischer, MFCS 2018]
– MaxSimK O(n log n) time
– Simon claimed a linear time solution for MaxSimK in
2003, but never published it
– optimal linear-time algorithm for the MaxSimK problem
using a new data structure called Simon-Tree [STACS 2021]



SimK

Definition

The shortlex normal form of a word w ∈ Σ∗ w.r.t. ∼k , where Σ is
an ordered alphabet, is the shortest word u with u ∼k w which is
also lexicographically smallest (w.r.t. the given order on Σ)
amongst all words v ∼k w with |v | = |u|.

Idea

Checking whether w ′ ∼k w ′′ is equivalent to checking whether the
shortlex normal forms w.r.t. ∼k of w ′ and w ′′ are equal.



SimK

[Kufleitner and Fleischer, MFCS 2018]

To compute the shortlex normal form of a word w ∈ Σn w.r.t. ∼k ,
we define for each position of w define the x- and y -coordinates:

I The x-coordinate of i , denoted xi , is the length of the shortest
sequence of indices 1 ≤ i1 < i2 < . . . < it = i such that i1 is
the position where the letter w [i1] occurs in w for the first
time and, for 1 < j ≤ t, ij is the first position where w [ij ]
occurs in w [ij−1 + 1..i ]. Obviously, if a occurs for the first
time on position i in w , then xi = 1.

Property

If w [`] = w [i ] = a for some i > ` such that w [j ] 6= a for all
`+ 1 ≤ j ≤ i − 1, then xi = min{x`, x`+1, . . . , xi−1}+ 1.



SimK

[Kufleitner and Fleischer, MFCS 2018]

To compute the shortlex normal form of a word w ∈ Σn w.r.t. ∼k ,
we define for each position of w define the x- and y -coordinates:

I The y -coordinate of a position i , denoted yi , is defined
symmetrically: yi is the length of the shortest sequence of
indices n ≥ i1 > i2 > . . . > it = i such that i1 is the position
where the letter w [i1] occurs last time in w and, for 1 < j ≤ t,
ij is the last position where w [ij ] occurs in w [i ..ij−1 − 1].

Property

If w [`] = w [i ] = a for some i < ` such that w [j ] 6= a for all
`− 1 ≥ j ≥ i + 1, then yi = min{yi+1, . . . , y`−1, y`}+ 1.



SimK

[Kufleitner and Fleischer, MFCS 2018]

Computing the coordinates is done in two phases:

I The x-coordinates are computed and stored (in an array x : x1, . . . , xn)
from left to right, and the y -coordinates are stored in an array
y : y1, . . . , yn and computed from right to left (while dynamically deleting
a position whenever the sum of its coordinates is greater then k + 1).

I To compute the shortlex normal form, go left to right in the word: if
letters b > a occur consecutively, they are interchanged whenever they
have the same x- and y -coordinates and the sum of these coordinates is
k + 1 (until this situation does not occur anymore).

[DLT 2020]

This can be done in linear time for integer alphabets (based on interval
union-find data structures + radix-sort).



SimK

Theorem

I Given a word w over an integer alphabet Σ, with |w | = n, and
a number k ≤ n, we can compute the shortlex normal form of
w w.r.t. ∼k in time O(n).

I Given two words w ′,w ′′ over an integer alphabet Σ, with
|w ′| ≤ |w ′′| = n, and a number k ≤ n, we can test if
w ′ ∼k w ′′ in time O(n).



MaxSimK: Simon-tree – Equivalence Classes

i l jw

Subseqk(i, w) ⊃ Subseqk(l, w) ⊃ Subseqk(j, w)

I Splitting a word suffixwise into blocks of equivalence classes
w.r.t. ∼k

I If i ∼k j , then
Subseqk(i ,w) = Subseqk(l ,w) = Subseqk(j ,w)
and we say that i , l , and j are in the same k-block

I ∼k+1 is a refinement of ∼k

I Index i is a (k + 1)-splitting position if i ∼k i + 1 but not
i ∼k+1 i + 1



Equivalence Classes

Use these properties to build a block structure for a word

1. i ∼1 j iff alph(w [i : n]) = alph(w [j : n]) for any i , j ∈ w
→ We can go from right to left through the word and
determine 1-splitting positions

2. Split a k-block into (k + 1)-blocks by going from right to left
through the block (without its last letter, which forms a
singleton (k + 1)-block) and determine (k + 1)-splitting
positions exactly as for 1-splitting positions (but w.r.t. the
block only)

b a c b a a b a d a
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Simon-tree Definition
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b a c b a a b a d a

b a c b a a b a d a

b a c b a a b a d a

2-blocks

1-blocks

3-blocks

b a c b a a b a d a 0-block



Simon-tree Definition

I New data structure: Simon-tree

I Represents presented block structure

I Efficiently partition positions of a given word

I Construction takes linear time

b a c b a a b a d a

b a c b a a b a d a

b a c b a a b a d a

2-blocks

1-blocks

3-blocks

b a c b a a b a d a 0-block



k = 0

k = 1

k = 2

[10]
a

[9]
d

[8]
a

[8 : 9]
ad

[7]
b

[6]
a

[5]
a

[5 : 6]
aa

k = 3

[4]
b

[4 : 7]
baab

[3]
c

[2]
ab

[1]

[1 : 3]
bac

[1 : 10]
bacbaabadaw = bacbaabada

I The root corresponds to the 0-block of w

I Children correspond to the blocks obtained by refinement

I Nodes corresponding to singletons have no children



Simon-tree Construction

I Algorithm: Build the Simon-tree right to left as the word is
traversed right to left. Only the leftmost branch is edited
during construction.

1. Insert the new position/letter into the tree by moving up the
leftmost branch from leaf to root.

2. Find lowest node that is not split by this position (and close all
the others on the way).

3. Insert the new position/letter as a leftmost child of this node.
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Simon-tree Construction
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Short Recap

So far:
Structure for one word representing the equivalence classes
w.r.t. ∼k

MaxSimK

Given two words s and t over an alphabet Σ, with |s| = n and
|t| = n′, with n ≥ n′, find the maximum k for which s ∼k t.

Now:
Set two words in relation to each other by using their respective
Simon-trees



Connecting Two Simon-trees

I Transform the words s and t into Simon-trees as shown

I Use the tree structure to connect equivalent nodes of the two
words.

S-Connection

The k-node a of Ts and the k-node b of Tt are S-connected (i.e.,
the pair (a, b) is in the S-connection) if and only if
s[i : n] ∼k t[j : n′] for all positions i in block a and positions j in
block b.
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From P-Connection to S-Connection

Starting from a larger relation (P-Connection) which contains the
S-Connection, and refine it

I The 0-nodes of Ts and Tt are P-connected.

I For all levels k of Ts , if the explicit or implicit k-nodes a and
b (from Ts and Tt , respectively) are P-connected, then the
i th child of a is P-connected to the i th child of b, for all i .

I No other nodes are P-connected.
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From P-Connection to S-Connection

How to refine the P-Connection:

I Let k ≥ 1. Let a, b be k-blocks in the word t, resp. s, with
a ∼k b.

I Let a′ be child of a, b′ be child of b.

I a′ �k+1 b
′ if and only if there exists a letter x such that

s[nexts(a′, x) + 1 : n] �k t[nextt(b
′, x) + 1 : n′].

...where next is defined as...

nextw (j , x) : the leftmost position of x in w [j : |w |].
For block a = [ma : na] of w and letter x :
nextw (a, x) = nextw (na, x).
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Additional Notes and Analysis

I Solution of MaxSimK: last level k where the k-blocks
containing position 1 of the input words are equivalent

I Distinguishing word can be obtained

I By efficiently using interval-union-find and -split-find data
structures the algorithm achieves an optimal linear runtime

Theorem

MaxSimK can be solved in linear time.



Connected and Future Work

Edit distance to ∼k -equivalence:

I What is the minimum number of edit operations we need to
apply to u such that we obtain a word ∼k -equivalent to w?

I Preliminary results [STACS 2021]: what is the minimum
number of edit-operations we need to apply to u such that we
obtain a word which has all possible words of length k as
subsequences (i.e., it is k-universal)?
I To increase (respectively, decrease) the universality insertions

(respectively, deletions) are enough. Substitutions only →
Hamming distance

I O(nk), based on dynamic programming + efficient data
structures.

I (n logO(1) σ) when we are interested in increasing the
universality. The problem is equivalent to computing a
minimum weight k-link path in a DAG which fulfills the
concave Monge property.

I So O(n) for constant k or constant σ (but only when
increasing the universality).
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Connected and Future Work

Absent subsequences:

I Absent substrings: an important topic in stringology. How about absent
subsequences?

I Preliminary results:

I Minimal absent subsequences: absent subsequences whose every
subsequence is not absent,

I Shortest absent subsequences: absent subsequences of minimal
length,

I Deep connection to the notion of universality,

I Precise characterizations of the set of minimal absent subsequences
and shortest absent subsequences occurring in a word,

I Examples of words w having an exponential number (w.r.t. the
length of |w |) of minimal absent subsequences and shortest absent
subsequences, respectively.

I We identified the word with a maximum number of shortest absent
subsequences among all k-universal words

I We can compute efficiently minimal/shortest absent subsequences,

as well as compact representations of all such words.
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The End

Thank You!

And many thanks to my co-authors:
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