
Lie Complexity of words

Jason Bell (Joint with Jeffrey Shallit)

July 26, 2021

Let Σ be a finite alphabet and let w be a right-infinite word over
the alphabet Σ. We’re interested in the set of factors Fac(w) of w.
This is the set of words of the form w [i , . . . , i + n] with i , n ≥ 0.

In particular, we’re interested in the following question:

Can we determine the set of primitive factors v of w with the
property that vn is a factor of w for every n?

Motivating Problem

In the study of this problem, we’ll introduce some new invariants
for a word, which have not really been looked at and could be
interesting objects of study.

Given two right-infinite words w,w′ over Σ, we declare that w is
equivalent to w′ if

Fac(w) = Fac(w′).

Then this induces an equivalence relation ∼ on the set of
right-infinite words over Σ, and we let [w] denote the equivalence
class of w. Although equivalent words need not be the same, many
natural combinatorial properties are preserved under this
equivalence.

Equivalence of right-infinite words

We recall that a right-infinite word w is periodic if there is some
finite word v such that

w = vvv · · · = vω.

The word w is recurrent if every factor v occurs infinitely often in
w, and w is uniformly recurrent if every factor v occurs infinitely
often uniformly; i.e., there is some N = N(v) such that every
factor of w of length N contains a copy of v .

If w and w′ are equivalent right-infinite words over Σ, then the
following hold:

1. w is recurrent if and only if w′ is recurrent;

2. w is uniformly recurrent if and only if w′ is uniformly recurrent;

3. w is periodic if and only if w′ is periodic.

We put a partial order ≺ on the equivalence classes of right-infinite
words over Σ by declaring that [w] � [w′] if Fac(w) ⊇ Fac(w′).
Then [w] � [w′] and [w′] � [w] if and only if [w] = [w′].

We now introduce three sets one can associate with a right-infinite
word.

Definition
Let w be a right-infinite word over Σ. We define the following sets:

1. the total spectrum of w is the set

Tot(w) = {[v] : [w] � [v]};

2. the recurrent spectrum of w is the set

Rec(w) = {[v] : v recurrent, [w] � [v]};

3. the uniformly recurrent spectrum of w is the set

URec(w) = {[v] : v unif.recurrent, [w] � [v]};

4. the periodic spectrum of w is the set

Per(w) = {[v] : v periodic, [w] � [v]};

Then we have the containments

Tot(w) ⊇ Rec(w) ⊇ URec(w) ⊇ Per(w). (1)

Furthermore, Tot(w), Rec(w), URec(w), and Per(w) are all posets
under the ordering ≺, and all elements of URec(w) and Per(w) are
maximal.

Let w = xyω. Then Per(w) = URec(w) = Rec(w) = [yω],
Tot(w) = {[yω], [w]}.

Let w′ be the Thue-Morse word xyyxyxxy · · · . Then the recurrent,
uniformly recurrent, and total spectra are all just the singleton
{[w′]}; the periodic spectrum is empty!

Examples

While Per(w) can be empty, URec(w) (and hence Rec(w)) is
never empty.

Why? A theorem of Furstenberg says that if w is a right-infinite
word, then there is always a uniformly right-infinite word w ′ such
that Fac(w ′) ⊆ Fac(w). Then [w ′] ∈ URec(w).

We recall that a topology on a set X is a subset C of the power set
of X , call the closed subsets of X , with the properties: ∅,X ∈ C; C
is closed under finite unions and under arbitrary intersections.

Let w be a right-infinite word over a finite alphabet Σ. For each
subset S of Fac(w) that is closed under the process of taking
factors, we define a set

C(S) = {[u] ∈ Rec(w): Fac(u) ⊆ S}.

Then in addition to being posets, Rec(w), URec(w), and Per(w)
also have a structure as a topological space in which the closed
sets are the sets of the form C(S).

Zariski Topology

Then an interesting question becomes: What are these topological
spaces/posets for a given right-infinite word w? In particular, these
are interesting invariants for automatic words w, in which case one
gets finiteness results. In fact, one has more general results of this
flavour for words of linear factor complexity.

We recall that if w is a right-infinite word, then we have a factor
complexity function, pw : N→ N, whose value at n is the number
of distinct factors of length n of w.

(A useful fact is that when we look at a set X of the form Per(w),
Rec(w), URec(w) as topological spaces then the map p : X → NN

given by p([v]) = pv : N→ N is continuous when we give NN the
Alexandrov product topology!)

Theorem
Let w be a right-infinite word and suppose that pw(n) = O(n)
(e.g., w is k-automatic). Then Per(w), URec(w), and Rec(w) are
finite sets.

In fact, if pw(n) ≤ Cn for n sufficiently large with C > 1, then we
have

#Per(w) ≤ lim supκ := pw(n)− pw(n − 1) + 1 <∞,

#URec(w) ≤ κ+ C + 1,

and for w recurrent,

#Rec(w) ≤ κ+ (1 + C)C+1.

In particular, if w is a k-automatic sequence, the numbers

#Per(w),

#URec(w),

and
#Rec(w)

are quantities that we can associate with w that measure its
complexity in some sense. It would be interesting to find an
algorithm to determine the poset

Rec(w).

Let w = 01101000100000001 · · · ; i.e., w [n] = 1 if n is a power of 2
and w [n] = 0 otherwise. Then Tot(w) is infinite and

Rec(w) = URec(w) = Per(w) = {[0ω]}.

Example

For the purposes of this talk, we’re just going to look at the
inequality

#Per(w) ≤ κ,

for words w with pw(n) = O(n). In this setting it has a more
concrete reformulation.

It says that the number of primitive factors v of w such that vn is
a factor of w for every n ≥ 1 is a finite set, and if we work up to
cyclic equivalence then there are at most κ primitive such primitive
factors v (up to cyclic equivalence).

To obtain this first bound, we’ll introduce a new complexity
function Lw : N→ N, which we call the Lie complexity function.

We again let w be a right-infinite word over Σ. We say that two
words v , v ′ over Σ∗ are cyclically equivalent, which we write
v ∼C v ′ if v and v ′ are cyclic permutations of one another.

E.g.,
abcdab ∼C cdabab 6∼C bacdab.

Lie Complexity

We define the Lie complexity of w to be the function

Lw (n) := #{v ∈ Fac(w) : |v | = n, v ′ ∈ Fac(w) ∀v ′ ∼C v}.

That is, Lw (n) counts the number of cyclic equivalence classes of
length n with the property that every word in the equivalence class
is a factor of w .

Note this is different from the cyclic complexity defined by
Cassaigne, Fici, Sciortino, Zamboni. In particular, Lw (n) ≤ cw (n),
where cw (n) is the cyclic complexity of w , as defined by CFSZ.

If w = 01101001 · · · is the Thue-Morse word, then
Lw(n) ∈ {0, 1, 2, 3} for all n and:

I Lw(n) = 3 if and only if n = 2;

I Lw(n) = 2 if and only if n = 1, 4 or a number of the form
3 · 2k with k ≥ 0;

I Lw(n) = 1 if n = 0 or n = 2k for some k ≥ 3;

I otherwise, Lw(n) = 0.

Relevant remark: Lw(n) is a 2-automatic!

Example

Notice that if w is a right-infinite word and if v is a factor such
that v2 is also a factor of w then every cyclic permutation of v is a
factor of w and so Lw(|v |) ≥ 1, and so the Lie complexity function
at n is bounding the number of square factors of w of the form vv
with |v | = n up to cyclic equivalence (on v).

Why is Lie complexity relevant?

Our main result about the Lie complexity function is the following.

Theorem
(B-Shallit) Let w be a right-infinite word. Then

Lw(n) ≤ pw(n)− pw(n − 1) + 1.

Cassaigne showed that if pw(n) = O(n), then
pw(n)− pw(n − 1) = O(1), so in this case Lw(n) is uniformly
bounded.

Theorem
(B-Shallit) Let w be a right-infinite word with pw(n) = O(n).
Then up to cyclic equivalence there are at most

κ := lim sup(pw(n)− pw(n − 1) + 1)

primitive words v with the property that vn is a factor of w for
every n ≥ 1.

We note that Klouda and Starosta proved a similar result for pure
morphic words.

Theorem
(B-Shallit) If w is k-automatic then Lw(n) is a k-automatic
sequence.

Corollaries

I will focus on these two corollaries today, since the proof of the
inequality

Lw(n) ≤ pw(n)− pw(n − 1) + 1

is a bit technical.

Technical note: the proof of this inequality is what motivates the
term Lie complexity. The proof goes by associating a graded Lie
algebra

L =
∞⊕
n=0

Ln

and an element u ∈ L1 such that

Lw(n) ≤ dim(coker(adu|Ln−1)).

Let’s now explain why the inequality

Lw(n) ≤ pw(n)− pw(n − 1) + 1

gives that there are at most

κ := lim sup(pw(n)− pw(n − 1) + 1)

primitive words v (up to cyclic equivalence) with the property that
vn is a factor of w for every n ≥ 1.

Recall this is the same as showing Per(w) ≤ κ.

First Corollary

Suppose that there exist distinct equivalence classes

[uω1], . . . , [uωs]

in Per(w) with s > κ. Pick D such that uDi is not a factor of uωj
whenever i 6= j . Let

b := D|u1| · |u2| · · · |us |.

Then by construction, for each n ≥ 1, the words

u
nb/|u1|
1 , . . . , u

nb/|us |
s are cyclically inequivalent words of length nb

with the property that every cyclic permutation occurs as a factor
of w. Hence Lw(bn) ≥ s > κ for every n ≥ 1, which is a
contradiction.

Proof via contradiction....

Now we’ll look at the proof that if w is k-automatic then Lw(n) is
also k-automatic.

Remark. Since automatic words have linearly bounded factor
complexity, we know Lw(n) takes only finitely many values, which
plays a key role in the proof.

Second Corollary: Automaticity

To do this, we use a result of Charlier, Rampersad, and Shallit:

Theorem
Let s be a k-automatic sequence.

(a) There is an algorithm that, given a well-formed first-order
logical formula ϕ in FO(N,+, 0, 1, n→ s[n]) having no free
variables, decides if ϕ is true or false.

(b) Furthermore, if ϕ has free variables, then the algorithm
constructs an automaton recognizing the representation of the
values of those variables for which ϕ evaluates to true.

In case one doesn’t know what this means, we look at an example.
Suppose that s is the Thue-Morse sequence (which is 2-automatic).
It’s well-known that s does not contain factors of the form v3.
Notice this can be phrased as a first-order statement as follows:

∃n, i ≥ 0, such that s[n, . . . , n + i] = s[n + i + 1, . . . , n + 2i]

and s[n, . . . , n + i] = s[n + 2i + 1, . . . , n + 3i].

Now technically, we’re not allowed to use multiplication, but things
such as 2i + 1 and 3i can be written as i + i + 1 and i + i + i .

Then the theorem says we can decide whether this is true or false
(well, we know it’s false, but we can decide algorithmically).

The theorem says even more: it says that for a given automatic
sequence, the set of (n, i) such that

s[n, . . . , n + i] = s[n + i + 1, . . . , n + 2i]

and s[n, . . . , n + i] = s[n + 2i + 1, . . . , n + 3i]

are both true is automatic and one can explicitly build an
automaton that accepts these pairs.

Now if w is an automatic word, the formula Lw(n) ≥ i is
expressible within this first-order framework as follows:

I We can find all factors of w with the property that all cyclic
permutations are again factors of w by the first

I We can also decide when two length n factors are cyclicly
equivalent.

I Finally, for a nonnegative integer i , we can determine the set
of n for which there are at least i cyclicly inequivalent factors
of w such that every cyclic permutation of the words is also a
factor of w.

This allows us to show that the set of n for which Lw(n) ≥ i is
k-automatic for every i ≥ 0 when w is k-automatic. Since Lw(n) is
uniformly bounded, we get the result.

Example

Let us look at an example in a different base, and where there are
factors of unbounded exponent. Let c = 101000101 · · · be the
Cantor sequence, which is the fixed point of the morphism
1→ 101 and 0→ 000. Then

Lc(n) =


3, if n = 4;

2, if n = 0, 1, 3 or 2 · 3k for k ≥ 0;

1, otherwise.

Example

Let f be the Fibonacci word, the fixed point of the morphism
sending 0 to 01 and 1 to 0. Define the Fibonacci numbers by
F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2 for n ≥ 2. Then

Lf(n) =


1, if n = 0 or n = Fk for k ≥ 4 or

n = Fk + Fk−3 for k ≥ 4 ;

2, if n = 1, 2;

0, otherwise.

Example

Let TR be the Tribonacci word, the fixed point of the morphism
sending 0 to 01, 1 to 02, and 2 to 0. Define the Tribonacci
numbers by T0 = 0, T1 = 1, T2 = 1, and
Tn = Tn−1 + Tn−2 + Tn−3 for n ≥ 3. Then

LTR(n) =



1, if n = 0 or n = Tk for k ≥ 5 or

n = Tk + Tk−1 for k ≥ 3 or

n = Tk + Tk−4 for k ≥ 5 ;

2, if n = 4;

3, if n = 1, 2;

0, otherwise.

Finally, we give an example where Lw(n) = 0 for n ≥ 2:

Example

Let Σ = {x1, . . . , x6, y1, . . . , y6} and let Φ : Σ∗ → Σ∗ be the
morphism given by

x1 7→ x1x2y1y2 x2 7→ x1x3y1y3 x3 7→ x1x4y1y4
x4 7→ x1x5y1y5 x5 7→ x1x6y1y6 x6 7→ x2x3y2y3
y1 7→ x2x4y2y5 y2 7→ x2x5y3y4 y3 7→ x2x6y2y6
y4 7→ x3x4y3y5 y5 7→ x3x5y3y6 y6 7→ x3x6y4y5.

and let w = Φω(x1). Then w is 2-automatic and work of B-Madill
shows that Lw (n) = 0 for n ≥ 2.

The preceding example gives a word in which every factor of length
at least two has some cyclic conjugate that is not a factor.
Badkobeh and Ochem give an example of such a word over a
5-letter alphabet. In general, the property that Lw(n) = 0 for n ≥ i
has been studied over various alphabets.

We’ve shown that Lw(n) is uniformly bounded whenever Lw(n) has
linearly bounded factor complexity. But it still leaves the question
of what happens when the factor complexity grows slightly faster
than linearly (e.g., ≤ n log n): is Lw(n) still uniformly bounded?

One loose end!

In fact we can show this fails.

Theorem
(B-Shallit) Let f : N→ N be a function that tends to infinity as
n→∞ and let Σ be a finite alphabet. Then there is a
right-infinite recurrent word w over Σ such that pw(n) ≤ nf (n) for
n sufficiently large and such that w has infinitely many distinct
primitive factors y with the property that yn is a factor of w for
every n. In particular lim sup Lw(n) =∞.

One thing that is intriguing is that for automatic words w, the set
Rec(w) is a finite partially ordered set.

Question: Can one characterize the finite posets which occur as
some Rec(w) with w a k-automatic word?

One last question!

Thanks!

