Abelian Repetition Threshold Revisited

Arseny Shur (joint work with Elena Petrova)

Ural Federal University

Ekaterinburg, Russia

One World Combinatorics on Words Seminar, 27/09/2021

A. Shur (UrFU)

Abelian Repetition Threshold Revisited

One World CoW Seminar 1 / 16

In a broad sense, repetition is a pair of equal factors in a word
 like in onion, cocoa, banana

4 D b 4 A

• In a broad sense, repetition is a pair of equal factors in a word

- like in onion, cocoa, banana
- Simplest repetitions are integral powers of a word:

• square
$$u^2 = uu$$
, cube $u^3 = uuu$, *d*-power $u^d = \underbrace{u \cdots u}_{d}$

d times

In a broad sense, repetition is a pair of equal factors in a word
 like in onion, cocoa, banana

• Simplest repetitions are integral powers of a word:

• square
$$u^2 = uu$$
, cube $u^3 = uuu$, *d*-power $u^d = \underbrace{u \cdots u}_{d \text{ times}}$

- A class of repetitions is k-avoidable if there are infinitely many words over a k-ary alphabet Σ, containing no repetitions from this class
 - = there is an infinite word over Σ containing no repetitions from this class

• In a broad sense, repetition is a pair of equal factors in a word

- like in onion, cocoa, banana
- Simplest repetitions are integral powers of a word:

• square
$$u^2 = uu$$
, cube $u^3 = uuu$, *d*-power $u^d = \underbrace{u \cdots u}_{d \text{ times}}$

- A class of repetitions is k-avoidable if there are infinitely many words over a k-ary alphabet Σ, containing no repetitions from this class
 = there is an infinite word over Σ containing no repetitions from this class
- Thue, 1906:
 - \star squares are 3-avoidable
 - ★ cubes are 2-avoidable

• In a broad sense, repetition is a pair of equal factors in a word

- like in onion, cocoa, banana
- Simplest repetitions are integral powers of a word:

• square
$$u^2 = uu$$
, cube $u^3 = uuu$, *d*-power $u^d = \underbrace{u \cdots u}_{d \text{ times}}$

• Thue, 1906:

- \star squares are 3-avoidable
- \star cubes are 2-avoidable
- = d-powers are k-avoidable except for the case d = k = 2

• "Weak" repetitions: replace equality with some symmetric length-preserving relation

3

< ロト < 同ト < 三ト < 三ト

Sac

- "Weak" repetitions: replace equality with some symmetric length-preserving relation
 - approximate equality, compatibility, complementarity, conjugacy,...

∃ ► < ∃ ►</p>

- "Weak" repetitions: replace equality with some symmetric length-preserving relation
 - approximate equality, compatibility, complementarity, conjugacy,...
 - Abelian equivalence (A-equivalence)

イロト イヨト イヨト

- "Weak" repetitions: replace equality with some symmetric length-preserving relation
 - approximate equality, compatibility, complementarity, conjugacy,...
 - Abelian equivalence (A-equivalence)
- Two words are A-equivalent if they are anagrams of each other
 - = equal as multisets of letters
 - knee \sim keen, triangle \sim integral

∃ ► < ∃ ►</p>

- "Weak" repetitions: replace equality with some symmetric length-preserving relation
 - approximate equality, compatibility, complementarity, conjugacy,...
 - Abelian equivalence (A-equivalence)
- Two words are A-equivalent if they are anagrams of each other
 - = equal as multisets of letters
 - knee \sim keen, triangle \sim integral
- Integral A-powers:
 - A-square $u_1 u_2$, $u_1 \sim u_2$; A-cube $u_1 u_2 u_3$, $u_1 \sim u_2 \sim u_3$; d-A-power $u_1 \cdots u_d$, $u_1 \sim \cdots \sim u_d$

・ロト ・ 同ト ・ ヨト ・ ヨト - ヨ

- "Weak" repetitions: replace equality with some symmetric length-preserving relation
 - approximate equality, compatibility, complementarity, conjugacy,...
 - Abelian equivalence (A-equivalence)
- Two words are A-equivalent if they are anagrams of each other
 - = equal as multisets of letters
 - knee \sim keen, triangle \sim integral
- Integral A-powers:
 - A-square u_1u_2 , $u_1 \sim u_2$; A-cube $u_1u_2u_3$, $u_1 \sim u_2 \sim u_3$;
 - *d*-A-power $u_1 \cdots u_d$, $u_1 \sim \cdots \sim u_d$
- Dekking, 1979:
 - ★ A-cubes are 3-avoidable
 - * 4-A-powers are 2-avoidable

・ロト ・ 同ト ・ ヨト ・ ヨト - ヨ

- "Weak" repetitions: replace equality with some symmetric length-preserving relation
 - approximate equality, compatibility, complementarity, conjugacy,...
 - Abelian equivalence (A-equivalence)
- Two words are A-equivalent if they are anagrams of each other
 - = equal as multisets of letters
 - knee \sim keen, triangle \sim integral
- Integral A-powers:
 - A-square u_1u_2 , $u_1 \sim u_2$; A-cube $u_1u_2u_3$, $u_1 \sim u_2 \sim u_3$;
 - *d*-A-power $u_1 \cdots u_d$, $u_1 \sim \cdots \sim u_d$
- Dekking, 1979:
 - ★ A-cubes are 3-avoidable
 - * 4-A-powers are 2-avoidable
- Keränen, 1992:
 - * A-squares are 4-avoidable
 - an ultimate answer to the question by Erdös (1960)

▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 = • • ○ � (♡

- For a rational number $\alpha > 1$, a word v is an α -power (u^{α}) if
 - $|\mathbf{v}| = \alpha |\mathbf{u}|$
 - v is a prefix of the infinite word $u^\omega = uu \cdots u \cdots$
 - α is the exponent of the repetition if u is primitive
- $\star\,$ Equivalent to the previous definition for integer α

- For a rational number $\alpha > 1$, a word v is an α -power (u^{α}) if
 - $|\mathbf{v}| = \alpha |\mathbf{u}|$
 - v is a prefix of the infinite word $u^\omega = uu \cdots u \cdots$
 - α is the exponent of the repetition if u is primitive
- $\star\,$ Equivalent to the previous definition for integer α
- A word is $\alpha\text{-free}$ if it contains no $\beta\text{-powers}$ with $\beta\geq\alpha$
- A word is α^+ -free if it contains no β -powers with $\beta > \alpha$
 - $\alpha(\alpha^+)$ is *k*-avoidable if there are infinitely many $\alpha(\alpha^+)$ -free words over a *k*-ary alphabet Σ

・ロット 御 とう ひょう とう うい

- For a rational number $\alpha > 1$, a word v is an α -power (u^{α}) if
 - $|\mathbf{v}| = \alpha |\mathbf{u}|$
 - v is a prefix of the infinite word $u^\omega = uu \cdots u \cdots$
 - α is the exponent of the repetition if u is primitive
- $\star\,$ Equivalent to the previous definition for integer α
- A word is $\alpha\text{-free}$ if it contains no $\beta\text{-powers}$ with $\beta\geq\alpha$
- A word is α^+ -free if it contains no β -powers with $\beta > \alpha$
 - $\alpha(\alpha^+)$ is *k*-avoidable if there are infinitely many $\alpha(\alpha^+)$ -free words over a *k*-ary alphabet Σ
- Repetition threshold: $RT(k) = \inf\{\alpha : \alpha \text{ is } k \text{-avoidable}\}$

・ロット 御 とう ひょう とう う

- For a rational number $\alpha > 1$, a word v is an α -power (u^{α}) if
 - $|\mathbf{v}| = \alpha |\mathbf{u}|$
 - v is a prefix of the infinite word $u^\omega = uu \cdots u \cdots$
 - α is the exponent of the repetition if u is primitive
- $\star\,$ Equivalent to the previous definition for integer α
- A word is $\alpha\text{-free}$ if it contains no $\beta\text{-powers}$ with $\beta\geq\alpha$
- A word is α^+ -free if it contains no β -powers with $\beta > \alpha$
 - $\alpha(\alpha^+)$ is *k*-avoidable if there are infinitely many $\alpha(\alpha^+)$ -free words over a *k*-ary alphabet Σ
- Repetition threshold: $RT(k) = \inf\{\alpha : \alpha \text{ is } k \text{-avoidable}\}$

★ Threshold theorem (Dejean's Conjecture): $RT(3) = \frac{7}{4}, RT(4) = \frac{7}{5}, RT(k) = \frac{k}{k-1}$ for all other k

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト

- For a rational number $\alpha > 1$, a word v is an α -power (u^{α}) if
 - $|\mathbf{v}| = \alpha |\mathbf{u}|$
 - v is a prefix of the infinite word $u^{\omega} = uu \cdots u \cdots$
 - α is the exponent of the repetition if u is primitive
- $\star\,$ Equivalent to the previous definition for integer α
- A word is $\alpha\text{-free}$ if it contains no $\beta\text{-powers}$ with $\beta\geq\alpha$
- A word is α^+ -free if it contains no β -powers with $\beta > \alpha$
 - $\alpha(\alpha^+)$ is *k*-avoidable if there are infinitely many $\alpha(\alpha^+)$ -free words over a *k*-ary alphabet Σ
- Repetition threshold: $RT(k) = \inf\{\alpha : \alpha \text{ is } k \text{-avoidable}\}$
- ★ Threshold theorem (Dejean's Conjecture):
 - $RT(3) = \frac{7}{4}, RT(4) = \frac{7}{5}, RT(k) = \frac{k}{k-1}$ for all other k
 - proved by Thue, Dejean, Pansiot, Moulin-Ollagnier, Currie, Mohammad-Noori, Carpi, Rampersad, Rao, 1906–2009

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト

- For a rational number $\alpha > 1$, a word v is an α -power (u^{α}) if
 - $|\mathbf{v}| = \alpha |\mathbf{u}|$
 - v is a prefix of the infinite word $u^{\omega} = uu \cdots u \cdots$
 - α is the exponent of the repetition if u is primitive
- $\star\,$ Equivalent to the previous definition for integer α
- A word is $\alpha\text{-free}$ if it contains no $\beta\text{-powers}$ with $\beta\geq\alpha$
- A word is α^+ -free if it contains no β -powers with $\beta > \alpha$
 - $\alpha(\alpha^+)$ is *k*-avoidable if there are infinitely many $\alpha(\alpha^+)$ -free words over a *k*-ary alphabet Σ
- Repetition threshold: $RT(k) = \inf\{\alpha : \alpha \text{ is } k \text{-avoidable}\}$
- ★ Threshold theorem (Dejean's Conjecture):
 - $RT(3) = \frac{7}{4}, RT(4) = \frac{7}{5}, RT(k) = \frac{k}{k-1}$ for all other k
 - proved by Thue, Dejean, Pansiot, Moulin-Ollagnier, Currie, Mohammad-Noori, Carpi, Rampersad, Rao, 1906–2009
 - \star easy lower bounds
 - \star complicated constructions for $k \geq 4$ (based on Pansiot's encoding)

Sar

Ultimate goal: Threshold theorem for A-powers

3

イロト イロト イヨト イヨト

Sac

Ultimate goal: Threshold theorem for A-powers

• First problem: define α -A-power for rational α

E 6 4 E 6

Ultimate goal: Threshold theorem for A-powers

- First problem: define α -A-power for rational α
- Basic requirements for the definition:
 - ${\, \bullet \, }$ compatibility with $\alpha {\rm -powers}$
 - $\star~\alpha\text{-power}$ is an $\alpha\text{-}A\text{-power}$
 - compatibility with *d*-A-powers
 - $\star\,$ for integer $\alpha={\it d},\,\alpha\mbox{-}{\rm A}\mbox{-}{\rm powers}$ are exactly ${\it d}\mbox{-}{\rm A}\mbox{-}{\rm powers}$ defined earlier
 - * α -A-power of length αn is a factor of $\lceil \alpha \rceil$ -A-power of length $\lceil \alpha \rceil n$
 - + symmetry under reversals

イロト イヨト イヨト

Ultimate goal: Threshold theorem for A-powers

- First problem: define α -A-power for rational α
- Basic requirements for the definition:
 - ${\scriptstyle \bullet }$ compatibility with $\alpha {\rm -powers}$
 - $\star~\alpha\text{-power}$ is an $\alpha\text{-A-power}$
 - compatibility with *d*-A-powers
 - $\star\,$ for integer $\alpha={\it d},\,\alpha\text{-A-powers}$ are exactly ${\it d}\text{-A-powers}$ defined earlier
 - * α -A-power of length αn is a factor of $\lceil \alpha \rceil$ -A-power of length $\lceil \alpha \rceil n$
 - + symmetry under reversals
- Definition for $\alpha \leq 2$:

★ α -A-power is a word uvu' such that $u \sim u'$ and $\frac{|uvu|}{|uv|} = \alpha$

イロト イロト イモト イモト

Ultimate goal: Threshold theorem for A-powers

- First problem: define α -A-power for rational α
- Basic requirements for the definition:
 - ${\, \bullet \, }$ compatibility with $\alpha {\rm -powers}$
 - $\star~\alpha\text{-power}$ is an $\alpha\text{-}A\text{-power}$
 - compatibility with *d*-A-powers
 - $\star\,$ for integer $\alpha={\it d},\,\alpha\text{-A-powers}$ are exactly ${\it d}\text{-A-powers}$ defined earlier
 - * α -A-power of length αn is a factor of $\lceil \alpha \rceil$ -A-power of length $\lceil \alpha \rceil n$
 - + symmetry under reversals
- Definition for $\alpha \leq 2$:

 $\star \alpha$ -A-power is a word uvu' such that $u \sim u'$ and $\frac{|uvu|}{|uv|} = \alpha$

- What are candidates for the case $\alpha > 2$?
 - (1) $u_1 \cdots u_d u'$: right tail u' is "less" than some u_i in some "Abelian" sense
 - 2 $u'u_1\cdots u_d$: same for the left tail
 - 3 $u'u_1 \cdots u_d u''$: same for two tails

1,2—no symmetry, 3—no compatibility with *d*-A-powers

Ultimate goal: Threshold theorem for A-powers

- First problem: define α -A-power for rational α
- Basic requirements for the definition:
 - ${\scriptstyle \bullet }$ compatibility with $\alpha {\rm -powers}$
 - $\star~\alpha\text{-power}$ is an $\alpha\text{-A-power}$
 - compatibility with *d*-A-powers
 - $\star\,$ for integer α = d, $\alpha\text{-A-powers}$ are exactly d-A-powers defined earlier
 - * α -A-power of length αn is a factor of $\lceil \alpha \rceil$ -A-power of length $\lceil \alpha \rceil n$
 - + symmetry under reversals
- Definition for $\alpha \leq 2$:

 $\star \alpha$ -A-power is a word uvu' such that $u \sim u'$ and $\frac{|uvu|}{|uv|} = \alpha$

- Definition for $\alpha > 2$:
 - ★ α -A-power is a word $u_1 \cdots u_d u'$ such that $d = \lfloor \alpha \rfloor$, $u_1 \sim \cdots \sim u_d$, u' is A-equivalent to a prefix of u_1 and $\frac{|u_1 \cdots u_d u'|}{|u_1|} = \alpha$
 - dual α -A-power is the reversal of an α -A-power

- コンス 日本 キョンス 日本

- A word is $\alpha\text{-A-free}$ if it contains no $\beta\text{-A-powers}$ with $\beta\geq\alpha$
- A word is α^+ -A-free if it contains no β -A-powers with $\beta > \alpha$

3

< ロト < 同ト < ヨト < ヨト

- A word is α -A-free if it contains no β -A-powers with $\beta \geq \alpha$
- A word is α^+ -A-free if it contains no β -A-powers with $\beta > \alpha$
- α(α⁺) is k-A-avoidable if there are infinitely many α(α⁺)-A-free words over a k-ary alphabet Σ

・ロト ・回ト ・ヨト ・ヨト

- A word is α -A-free if it contains no β -A-powers with $\beta \geq \alpha$
- A word is α^+ -A-free if it contains no β -A-powers with $\beta > \alpha$
- α(α⁺) is k-A-avoidable if there are infinitely many α(α⁺)-A-free words over a k-ary alphabet Σ
- Abelian repetition threshold: $ART(k) = \inf\{\alpha : \alpha \text{ is } k\text{-}A\text{-}avoidable}\}$

A E F A E F

- A word is $\alpha\text{-}\mathsf{A}\text{-}\mathsf{free}$ if it contains no $\beta\text{-}\mathsf{A}\text{-}\mathsf{powers}$ with $\beta\geq\alpha$
- A word is α^+ -A-free if it contains no β -A-powers with $\beta > \alpha$
- α(α⁺) is k-A-avoidable if there are infinitely many α(α⁺)-A-free words over a k-ary alphabet Σ
- Abelian repetition threshold: $ART(k) = \inf\{\alpha : \alpha \text{ is } k\text{-}A\text{-}avoidable}\}$
- Cassaigne & Currie (1999):
 - for any $\varepsilon > 0$, $\alpha = (1 + \varepsilon)$ is k-A-avoidable for $k = 2^{\text{poly}(\varepsilon^{-1})}$
 - the bound is very loose but proves $\lim_{k\to\infty} ART(k) = 1$

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

- A word is $\alpha\text{-}\mathsf{A}\text{-}\mathsf{free}$ if it contains no $\beta\text{-}\mathsf{A}\text{-}\mathsf{powers}$ with $\beta\geq\alpha$
- A word is α^+ -A-free if it contains no β -A-powers with $\beta > \alpha$
- α(α⁺) is k-A-avoidable if there are infinitely many α(α⁺)-A-free words over a k-ary alphabet Σ
- Abelian repetition threshold: $ART(k) = \inf\{\alpha : \alpha \text{ is } k\text{-}A\text{-}avoidable}\}$
- Cassaigne & Currie (1999):
 - for any $\varepsilon > 0$, $\alpha = (1 + \varepsilon)$ is k-A-avoidable for $k = 2^{poly(\varepsilon^{-1})}$
 - the bound is very loose but proves $\lim_{k\to\infty} ART(k) = 1$
- Samsonov & S. (2010):
 - definition of ART (and some variations)
 - analytic lower bounds: $\frac{k-2}{k-3}$ is not k-A-avoidable for $k \ge 5$
 - lower bounds by search (easy):

 $\frac{9}{5}$ is not 4-A-avoidable, $\frac{11}{3}$ is not 2-A-avoidable

- upper bounds for growth rates of avoiding languages
- conjecture \Longrightarrow

イロト イポト イヨト イヨト 二日

Conjecture (Samsonov & S., 2010) $ART(2) = \frac{11}{3}, ART(3) = 2, ART(4) = \frac{9}{5}, ART(k) = \frac{k-2}{k-3} \text{ for } k \ge 5$

200

Conjecture (Samsonov & S., 2010)

 $ART(2) = \frac{11}{3}, \ ART(3) = 2, \ ART(4) = \frac{9}{5}, \ ART(k) = \frac{k-2}{k-3} \text{ for } k \ge 5$

- No case of this conjecture is proved
- ★ No proof that the threshold is between ART(k) and ART(k)⁺
 o can it happen that ART(4) = 2?
- ★ morphisms built by Dekking and Keränen (and their modifications) avoid *d*-A-powers but do not avoid $(d - \varepsilon)$ -A-powers for any $\varepsilon > 0$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト … ヨ

Conjecture (Samsonov & S., 2010)

 $ART(2) = \frac{11}{3}, \ ART(3) = 2, \ ART(4) = \frac{9}{5}, \ ART(k) = \frac{k-2}{k-3} \text{ for } k \ge 5$

- No case of this conjecture is proved
- ★ No proof that the threshold is between ART(k) and ART(k)⁺
 o can it happen that ART(4) = 2?
- * morphisms built by Dekking and Keränen (and their modifications) avoid d-A-powers but do not avoid $(d \varepsilon)$ -A-powers for any $\varepsilon > 0$
- Why so bad?

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト … ヨ

• Equality is inherited by prefixes and suffixes, A-equivalence is not

- To prove a word α -free, it suffices to show that there is no pair of equal factors among $\Theta(n^2)$ pairs
- To prove a word α -A-free, one has to show that there is no pair of A-equivalent factors among $\Theta(n^3)$ pairs

Equality vs A-equivalence

• Equality is inherited by prefixes and suffixes, A-equivalence is not

- To prove a word α -free, it suffices to show that there is no pair of equal factors among $\Theta(n^2)$ pairs
- To prove a word α -A-free, one has to show that there is no pair of A-equivalent factors among $\Theta(n^3)$ pairs
- For two random k-ary words of length n, the probability of equality is k^{-n} , while the probability of A-equivalence is $\theta(n^{1-k})$
 - ${\, \circ \,}$ if a word is not $\alpha{\rm -free},$ it almost surely contains a short $\alpha{\rm -power}$
 - if a word is not $\alpha\text{-}A\text{-}{\rm free},$ it contains only long $\alpha\text{-}A\text{-}{\rm powers}$ with a non-negligible probability

(ロト (周ト (王)) (王)

Equality vs A-equivalence

• Equality is inherited by prefixes and suffixes, A-equivalence is not

- To prove a word α -free, it suffices to show that there is no pair of equal factors among $\Theta(n^2)$ pairs
- To prove a word α -A-free, one has to show that there is no pair of A-equivalent factors among $\Theta(n^3)$ pairs
- For two random k-ary words of length n, the probability of equality is k^{-n} , while the probability of A-equivalence is $\theta(n^{1-k})$
 - ${\, \bullet \,}$ if a word is not $\alpha\mbox{-free,}$ it almost surely contains a short $\alpha\mbox{-power}$
 - $\bullet\,$ if a word is not $\alpha\text{-A-free,}$ it contains only long $\alpha\text{-A-powers}$ with a non-negligible probability
- ! To detect α -A-freeness one may need to study very long words

(ロト (同) (三) (三)

Prefix Trees

- A language is factorial if it is closed under taking factors of its words
 - languages $F(k, \alpha)$ of k-ary α -free words and $AF(k, \alpha)$ of k-ary α -A-free words are factorial

3

< ロト < 同ト < ヨト < ヨト

Prefix Trees

- A language is factorial if it is closed under taking factors of its words
 - languages $F(k, \alpha)$ of k-ary α -free words and $AF(k, \alpha)$ of k-ary α -A-free words are factorial
- A factorial language L can be represented by its prefix tree T_L :
 - \mathcal{T}_L is a rooted labeled tree
 - nodes are words from L
 - edges have the form $u \xrightarrow{a} ua$, where a is a letter

Prefix Trees

- A language is factorial if it is closed under taking factors of its words
 - languages $F(k, \alpha)$ of k-ary α -free words and $AF(k, \alpha)$ of k-ary α -A-free words are factorial
- A factorial language L can be represented by its prefix tree T_L :
 - \mathcal{T}_L is a rooted labeled tree
 - nodes are words from L
 - edges have the form $u \xrightarrow{a} ua$, where a is a letter
 - \star path from the root to the node *u* spells *u*
 - * *u* is an ancestor of *v* in $\mathcal{T}_{l} \iff u$ is a prefix of *v*

Random Walks and Depth-First Search

- Language L is infinite \iff it contains words of arbitrarily big length N
- Idea: construct long words as random walks in prefix trees

Random Walks and Depth-First Search

- Language L is infinite \iff it contains words of arbitrarily big length N
- Idea: construct long words as random walks in prefix trees
- Random walk (a Markov chain) is constructed by depth-first search
 - start from the root
 - visiting a node u, try a new letter a chosen uniformly at random:
 - exclude a from new(u)
 - if ua is in L, visit ua next, setting $new(ua) = \{0, \ldots, k-1\}$
 - if not, repeat the choice from the current set new(u)
 - if new(u) is empty, return to the parent of u
 - keep the track of
 - the number C of visited nodes
 - the maximum depth M reached in the tree (= max |u|)
 - stop if
 - M = N (random walk of length N built)
 - C = limit (the maximum number of tries reached)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Random Walks and Depth-First Search

- Language L is infinite \iff it contains words of arbitrarily big length N
- Idea: construct long words as random walks in prefix trees
- Random walk (a Markov chain) is constructed by depth-first search
 - start from the root
 - visiting a node u, try a new letter a chosen uniformly at random:
 - exclude a from new(u)
 - if ua is in L, visit ua next, setting $new(ua) = \{0, \ldots, k-1\}$
 - if not, repeat the choice from the current set new(u)
 - if new(u) is empty, return to the parent of u
 - keep the track of
 - the number C of visited nodes
 - the maximum depth M reached in the tree (= max |u|)
 - stop if
 - M = N (random walk of length N built)
 - C = limit (the maximum number of tries reached)
- Do some science:
 - Repeat search multiple times, analyse statistics, formulate conjectures

• Key algorithmic problem within the search:

• given $u \in L$, decide whether $ua \in L$

3

A E + A E +

< 口 > < 同 >

590

- Key algorithmic problem within the search:
 - given $u \in L$, decide whether $ua \in L$
- Typical solution: a data structure D(u) which
 - stores necessary information about $u \in L$
 - allows fast updates from D(u) to D(ua) and from D(ua) to D(u)
 - is endowed with an algorithm answering the query " $ua \in L$?"

b 4 = b

• Key algorithmic problem within the search:

• given $u \in L$, decide whether $ua \in L$

• Typical solution: a data structure D(u) which

- stores necessary information about $u \in L$
- allows fast updates from D(u) to D(ua) and from D(ua) to D(u)
- is endowed with an algorithm answering the query " $ua \in L$?"

We designed several solutions for the languages $AF(k, \alpha)$:

Algorithm	Powers	Update time	Query time	Space
Naive	any	O(1)	$O(n^3)$	<i>O</i> (<i>n</i>)
Greedy	$\alpha < 2$	O(k)	$O(kn^{3/2})$ on average	O(kn)
Dictionary	$\alpha < 2$	O(n)	O(n)	$O(n^2)$
Greedy	$\alpha > 2$	O(k)	$O(kn^{3/2})$ on average	O(kn)
Dual	$\alpha > 2$	O(k)	$O(kn^{1/2})$ on average	O(kn)
			< - > < > < > < - =	≻ < ≣ ≻ - 3

• Key algorithmic problem within the search:

- given $u \in L$, decide whether $ua \in L$
- Typical solution: a data structure D(u) which
 - stores necessary information about $u \in L$
 - allows fast updates from D(u) to D(ua) and from D(ua) to D(u)
 - is endowed with an algorithm answering the query " $ua \in L$?"

We designed several solutions for the languages $AF(k, \alpha)$:

Algorithm	Powers	Update time	Query time	Space
Naive	any	O(1)	$O(n^3)$ to $O(n^2)$	<i>O</i> (<i>n</i>)
Greedy	$\alpha < 2$	O(k)	$O(kn^{3/2})$ on average	O(kn)
Dictionary	$\alpha < 2$	O(n)	<i>O</i> (<i>n</i>)	$O(n^2)$
Greedy	$\alpha > 2$	O(k)	$O(kn^{3/2})$ on average	O(kn)
Dual	$\alpha > 2$	O(k)	$O(kn^{1/2})$ on average	O(kn)
				=

Two graphs: Current Depth vs Number of Visited Nodes

Big Alphabets: Main Result

Experimental results for	$AF(k, \frac{k-2}{k-3}^+),$	k = 6, 7, 8, 9, 10:
--------------------------	-----------------------------	---------------------

Alphabet	Avoided	N = 1	0 ⁶ , 10	0 runs	$N=2{\cdot}10^6$, 100 runs		
size	power	M _{max}	M _{av}	M _{med}	M _{max}	M _{av}	M _{med}
6	(4/3)+	112	98.9	98	114	101.1	101
7	$(5/4)^+$	116	100.3	100	124	103.9	102
8	$(6/5)^+$	103	94.8	95	102	96.2	96
9	$(7/6)^+$	108	95.6	96	107	98.8	99
10	(8/7)+	121	107.7	108	128	111.6	111

イロト イロト イヨト イヨト

E

Big Alphabets: Main Result

Experimental results for $AF(k, \frac{k-2}{k-3}^+)$, k = 6, 7, 8, 9, 10:

Alphabet	Avoided power	N = 1	0 ⁶ , 10	0 runs	$N = 2.10^{6}$, 100 runs		
size		M _{max}	M _{av}	M _{med}	M _{max}	M _{av}	M _{med}
6	(4/3)+	112	98.9	98	114	101.1	101
7	$(5/4)^+$	116	100.3	100	124	103.9	102
8	$(6/5)^+$	103	94.8	95	102	96.2	96
9	$(7/6)^+$	108	95.6	96	107	98.8	99
10	(8/7)+	121	107.7	108	128	111.6	111

Theorem

For
$$k = 6, 7, 8, 9, 10$$
, $ART(k) > \frac{k-2}{k-3}$

1

200

・ロト ・ 日 ト ・ ヨ ト

Big Alphabets: Main Result

Experimental results for $AF(k, \frac{k-2}{k-3}^+)$, k = 6, 7, 8, 9, 10:

Alphabet	Avoided	$\mathit{N}=10^{6}$, 100 runs			$N=2{\cdot}10^6$, 100 runs			Maximum
size	power	M _{max}	M _{av}	M _{med}	M _{max}	M _{av}	M _{med}	length
6	$(4/3)^+$	112	98.9	98	114	101.1	101	116
7	$(5/4)^+$	116	100.3	100	124	103.9	102	125
8	$(6/5)^+$	103	94.8	95	102	96.2	96	105
9	$(7/6)^+$	108	95.6	96	107	98.8	99	117
10	(8/7)+	121	107.7	108	128	111.6	111	148*

Theorem

For
$$k = 6, 7, 8, 9, 10$$
, $ART(k) > \frac{k-2}{k-3}$

1

200

・ロト ・ 日 ト ・ ヨ ト

Proof of the Main Result

The proof is by exhaustive search enhanced by the lemma below

• *m*-permutation is a length-*m* word with *m* distinct letters

Lemma

Let L_1, L_2 , and L_3 be the subsets of $L = AF(k, \frac{k-2}{k-3}^+)$ defined as follows:

- L_1 is the set of all $w \in L$ such that w has the prefix $01 \cdots (k-3)$ and contains no (k-1)-permutations
- L_2 is the set of all $w \in L$ such that w has the prefix $01 \cdots (k-2)$ and contains no k-permutations
- L_3 is the set of all $w \in L$ having the prefix $01 \cdots (k-1)$

Then L is finite $\iff L_1, L_2, L_3$ are all finite.

(日本) (日本) (日本) 日

Proof of the Main Result

The proof is by exhaustive search enhanced by the lemma below

• *m*-permutation is a length-*m* word with *m* distinct letters

Lemma

Let L_1, L_2 , and L_3 be the subsets of $L = AF(k, \frac{k-2}{k-3}^+)$ defined as follows:

- L_1 is the set of all $w \in L$ such that w has the prefix $01 \cdots (k-3)$ and contains no (k-1)-permutations
- L_2 is the set of all $w \in L$ such that w has the prefix $01 \cdots (k-2)$ and contains no k-permutations

• L_3 is the set of all $w \in L$ having the prefix $01 \cdots (k-1)$

Then L is finite $\iff L_1, L_2, L_3$ are all finite.

• The total number of searched nodes ranges from < 0.5 billions for k = 8 to > 500 billions for k = 10

・ロ ト 4回 ト 4 三 ト 4 三 ト ・ の 0 0

Proof of the Main Result

The proof is by exhaustive search enhanced by the lemma below

• *m*-permutation is a length-*m* word with *m* distinct letters

Lemma

Let L_1, L_2 , and L_3 be the subsets of $L = AF(k, \frac{k-2}{k-3}^+)$ defined as follows:

- L_1 is the set of all $w \in L$ such that w has the prefix $01 \cdots (k-3)$ and contains no (k-1)-permutations
- L_2 is the set of all $w \in L$ such that w has the prefix $01 \cdots (k-2)$ and contains no k-permutations

• L_3 is the set of all $w \in L$ having the prefix $01 \cdots (k-1)$

Then L is finite $\iff L_1, L_2, L_3$ are all finite.

- The total number of searched nodes ranges from < 0.5 billions for k = 8 to > 500 billions for k = 10
- For k = 6, 7, 8, 9, we found the maximum length of a word in L
- For k = 10, we know only the maximum length in $L_1 \cup L_2 \cup L_3$

A. Shur (UrFU)

nan

14/16

Other Important Experimental Findings

• The languages that should be finite

•
$$AF(k, \frac{k-3}{k-4})$$
 for $k \ge 7$ ($M_{max} = 510$ for $k = 7$)
• $AF(4, \frac{9^+}{5})$ ($M_{max} = 3152$)
• $AF(3, 2^+)$ ($M_{max} = 5449$)
• $AF(2, \frac{11^+}{3})$ ($M_{max} = 775$)

• The languages that should be infinite

•
$$AF(k, \frac{k-3}{k-4}^+)$$
 for $k \ge 7$
• $AF(6, \frac{3}{2})$
• $AF(5, \frac{3}{2}^+)$
• $AF(3, \frac{3}{2}^+)$

Uncertain

•
$$AF(4, \frac{11}{6}^+)$$

New Conjecture

Conjecture

• $ART(2) > \frac{11}{3}$ • $2 < ART(3) \le \frac{5}{2}$ • $ART(4) > \frac{9}{5}$ • $ART(5) = \frac{3}{2}$ • $\frac{4}{3} < ART(6) < \frac{3}{2}$ • $ART(k) = \frac{k-3}{k-4}$ for $k \ge 7$

3

A E > A E >

< A >

New Conjecture

Conjecture

• $ART(2) > \frac{11}{3}$ • $2 < ART(3) \le \frac{5}{2}$ • $ART(4) > \frac{9}{5}$ • $ART(5) = \frac{3}{2}$ • $\frac{4}{3} < ART(6) < \frac{3}{2}$ • $ART(k) = \frac{k-3}{k-4}$ for $k \ge 7$

Details: see the preprint at arXiv:2109.09306

3

A E > A E >

New Conjecture

Conjecture

• $ART(2) > \frac{11}{3}$ • $2 < ART(3) \le \frac{5}{2}$ • $ART(4) > \frac{9}{5}$ • $ART(5) = \frac{3}{2}$ • $\frac{4}{3} < ART(6) < \frac{3}{2}$ • $ART(k) = \frac{k-3}{k-4}$ for $k \ge 7$

Details: see the preprint at arXiv:2109.09306

Future work: a lot of...

A. Shur (UrFU)

4 ∃ ≥ < 3 ≥ </p>