Abelian Repetition Threshold Revisited

Arseny Shur (joint work with Elena Petrova)

Ural Federal University
Ekaterinburg, Russia

One World Combinatorics on Words Seminar, 27/09/2021

Repetitions: Integral Powers

- In a broad sense, repetition is a pair of equal factors in a word - like in onion, cocoa, banana

Repetitions: Integral Powers

- In a broad sense, repetition is a pair of equal factors in a word
- like in onion, cocoa, banana
- Simplest repetitions are integral powers of a word:
- square $u^{2}=u u$, cube $u^{3}=u u u, d$-power $u^{d}=\underbrace{u \cdots u}_{d \text { times }}$

Repetitions: Integral Powers

- In a broad sense, repetition is a pair of equal factors in a word
- like in onion, cocoa, banana
- Simplest repetitions are integral powers of a word:
- square $u^{2}=u u$, cube $u^{3}=u u u, d$-power $u^{d}=\underbrace{u \cdots u}_{d \text { times }}$
- A class of repetitions is k-avoidable if there are infinitely many words over a k-ary alphabet Σ, containing no repetitions from this class
$=$ there is an infinite word over Σ containing no repetitions from this class

Repetitions: Integral Powers

- In a broad sense, repetition is a pair of equal factors in a word
- like in onion, cocoa, banana
- Simplest repetitions are integral powers of a word:
- square $u^{2}=u u$, cube $u^{3}=u u u, d$-power $u^{d}=\underbrace{u \cdots u}_{d \text { times }}$
- A class of repetitions is k-avoidable if there are infinitely many words over a k-ary alphabet Σ, containing no repetitions from this class
$=$ there is an infinite word over Σ containing no repetitions from this class
- Thue, 1906:
* squares are 3 -avoidable
* cubes are 2-avoidable

Repetitions: Integral Powers

- In a broad sense, repetition is a pair of equal factors in a word
- like in onion, cocoa, banana
- Simplest repetitions are integral powers of a word:
- square $u^{2}=u u$, cube $u^{3}=u u u, d$-power $u^{d}=\underbrace{u \cdots u}_{d \text { times }}$
- A class of repetitions is k-avoidable if there are infinitely many words over a k-ary alphabet Σ, containing no repetitions from this class
$=$ there is an infinite word over Σ containing no repetitions from this class
- Thue, 1906:
* squares are 3 -avoidable
* cubes are 2 -avoidable
$=d$-powers are k-avoidable except for the case $d=k=2$

Repetitions: Integral A-Powers

- "Weak" repetitions: replace equality with some symmetric length-preserving relation

Repetitions: Integral A-Powers

- "Weak" repetitions: replace equality with some symmetric length-preserving relation
- approximate equality, compatibility, complementarity, conjugacy,...

Repetitions: Integral A-Powers

- "Weak" repetitions: replace equality with some symmetric length-preserving relation
- approximate equality, compatibility, complementarity, conjugacy,...
- Abelian equivalence (A-equivalence)

Repetitions: Integral A-Powers

- "Weak" repetitions: replace equality with some symmetric length-preserving relation
- approximate equality, compatibility, complementarity, conjugacy,...
- Abelian equivalence (A-equivalence)
- Two words are A-equivalent if they are anagrams of each other
$=$ equal as multisets of letters
- knee \sim keen, triangle \sim integral

Repetitions: Integral A-Powers

- "Weak" repetitions: replace equality with some symmetric length-preserving relation
- approximate equality, compatibility, complementarity, conjugacy,...
- Abelian equivalence (A-equivalence)
- Two words are A-equivalent if they are anagrams of each other
$=$ equal as multisets of letters
- knee \sim keen, triangle \sim integral
- Integral A-powers:
- A-square $u_{1} u_{2}, u_{1} \sim u_{2} ;$ A-cube $u_{1} u_{2} u_{3}, u_{1} \sim u_{2} \sim u_{3}$; d-A-power $u_{1} \cdots u_{d}, u_{1} \sim \cdots \sim u_{d}$

Repetitions: Integral A-Powers

- "Weak" repetitions: replace equality with some symmetric length-preserving relation
- approximate equality, compatibility, complementarity, conjugacy,...
- Abelian equivalence (A-equivalence)
- Two words are A-equivalent if they are anagrams of each other
$=$ equal as multisets of letters
- knee \sim keen, triangle \sim integral
- Integral A-powers:
- A-square $u_{1} u_{2}, u_{1} \sim u_{2}$; A-cube $u_{1} u_{2} u_{3}, u_{1} \sim u_{2} \sim u_{3}$; d-A-power $u_{1} \cdots u_{d}, u_{1} \sim \cdots \sim u_{d}$
- Dekking, 1979:
* A-cubes are 3-avoidable
* 4-A-powers are 2-avoidable

Repetitions: Integral A-Powers

- "Weak" repetitions: replace equality with some symmetric length-preserving relation
- approximate equality, compatibility, complementarity, conjugacy,...
- Abelian equivalence (A-equivalence)
- Two words are A-equivalent if they are anagrams of each other
$=$ equal as multisets of letters
- knee \sim keen, triangle \sim integral
- Integral A-powers:
- A-square $u_{1} u_{2}, u_{1} \sim u_{2}$; A-cube $u_{1} u_{2} u_{3}, u_{1} \sim u_{2} \sim u_{3}$; d-A-power $u_{1} \cdots u_{d}, u_{1} \sim \cdots \sim u_{d}$
- Dekking, 1979:
* A-cubes are 3-avoidable
* 4-A-powers are 2-avoidable
- Keränen, 1992:
* A-squares are 4-avoidable
- an ultimate answer to the question by Erdös (1960)

Repetitions: Fractional Powers and Repetition Threshold

- For a rational number $\alpha>1$, a word v is an α-power $\left(u^{\alpha}\right)$ if
- $|v|=\alpha|u|$
- v is a prefix of the infinite word $u^{\omega}=u u \cdots u \cdots$
- α is the exponent of the repetition if u is primitive
* Equivalent to the previous definition for integer α

Repetitions: Fractional Powers and Repetition Threshold

- For a rational number $\alpha>1$, a word v is an α-power $\left(u^{\alpha}\right)$ if
- $|v|=\alpha|u|$
- v is a prefix of the infinite word $u^{\omega}=u u \cdots u \cdots$
- α is the exponent of the repetition if u is primitive
\star Equivalent to the previous definition for integer α
- A word is α-free if it contains no β-powers with $\beta \geq \alpha$
- A word is α^{+}-free if it contains no β-powers with $\beta>\alpha$
- $\alpha\left(\alpha^{+}\right)$is k-avoidable if there are infinitely many $\alpha\left(\alpha^{+}\right)$-free words over a k-ary alphabet Σ

Repetitions: Fractional Powers and Repetition Threshold

- For a rational number $\alpha>1$, a word v is an α-power $\left(u^{\alpha}\right)$ if
- $|v|=\alpha|u|$
- v is a prefix of the infinite word $u^{\omega}=u u \cdots u \cdots$
- α is the exponent of the repetition if u is primitive
\star Equivalent to the previous definition for integer α
- A word is α-free if it contains no β-powers with $\beta \geq \alpha$
- A word is α^{+}-free if it contains no β-powers with $\beta>\alpha$
- $\alpha\left(\alpha^{+}\right)$is k-avoidable if there are infinitely many $\alpha\left(\alpha^{+}\right)$-free words over a k-ary alphabet Σ
- Repetition threshold: $R T(k)=\inf \{\alpha: \alpha$ is k-avoidable $\}$

Repetitions: Fractional Powers and Repetition Threshold

- For a rational number $\alpha>1$, a word v is an α-power $\left(u^{\alpha}\right)$ if
- $|v|=\alpha|u|$
- v is a prefix of the infinite word $u^{\omega}=u u \cdots u \cdots$
- α is the exponent of the repetition if u is primitive
\star Equivalent to the previous definition for integer α
- A word is α-free if it contains no β-powers with $\beta \geq \alpha$
- A word is α^{+}-free if it contains no β-powers with $\beta>\alpha$
- $\alpha\left(\alpha^{+}\right)$is k-avoidable if there are infinitely many $\alpha\left(\alpha^{+}\right)$-free words over a k-ary alphabet Σ
- Repetition threshold: $R T(k)=\inf \{\alpha: \alpha$ is k-avoidable $\}$
\star Threshold theorem (Dejean's Conjecture):

$$
R T(3)=\frac{7}{4}, R T(4)=\frac{7}{5}, R T(k)=\frac{k}{k-1} \text { for all other } k
$$

Repetitions: Fractional Powers and Repetition Threshold

- For a rational number $\alpha>1$, a word v is an α-power $\left(u^{\alpha}\right)$ if
- $|v|=\alpha|u|$
- v is a prefix of the infinite word $u^{\omega}=u u \cdots u \cdots$
- α is the exponent of the repetition if u is primitive
\star Equivalent to the previous definition for integer α
- A word is α-free if it contains no β-powers with $\beta \geq \alpha$
- A word is α^{+}-free if it contains no β-powers with $\beta>\alpha$
- $\alpha\left(\alpha^{+}\right)$is k-avoidable if there are infinitely many $\alpha\left(\alpha^{+}\right)$-free words over a k-ary alphabet Σ
- Repetition threshold: $R T(k)=\inf \{\alpha: \alpha$ is k-avoidable $\}$
\star Threshold theorem (Dejean's Conjecture): $R T(3)=\frac{7}{4}, R T(4)=\frac{7}{5}, R T(k)=\frac{k}{k-1}$ for all other k
- proved by Thue, Dejean, Pansiot, Moulin-Ollagnier, Currie, Mohammad-Noori, Carpi, Rampersad, Rao, 1906-2009

Repetitions: Fractional Powers and Repetition Threshold

- For a rational number $\alpha>1$, a word v is an α-power $\left(u^{\alpha}\right)$ if
- $|v|=\alpha|u|$
- v is a prefix of the infinite word $u^{\omega}=u u \cdots u \cdots$
- α is the exponent of the repetition if u is primitive
* Equivalent to the previous definition for integer α
- A word is α-free if it contains no β-powers with $\beta \geq \alpha$
- A word is α^{+}-free if it contains no β-powers with $\beta>\alpha$
- $\alpha\left(\alpha^{+}\right)$is k-avoidable if there are infinitely many $\alpha\left(\alpha^{+}\right)$-free words over a k-ary alphabet Σ
- Repetition threshold: $R T(k)=\inf \{\alpha: \alpha$ is k-avoidable $\}$
\star Threshold theorem (Dejean's Conjecture):
$R T(3)=\frac{7}{4}, R T(4)=\frac{7}{5}, R T(k)=\frac{k}{k-1}$ for all other k
- proved by Thue, Dejean, Pansiot, Moulin-Ollagnier, Currie,

Mohammad-Noori, Carpi, Rampersad, Rao, 1906-2009

* easy lower bounds
\star complicated constructions for $k \geq 4$ (based on Pansiot's encoding)

Repetitions: Fractional A-Powers

Ultimate goal: Threshold theorem for A-powers

Repetitions: Fractional A-Powers

Ultimate goal: Threshold theorem for A-powers

- First problem: define α-A-power for rational α

Repetitions: Fractional A-Powers

Ultimate goal: Threshold theorem for A-powers

- First problem: define α-A-power for rational α
- Basic requirements for the definition:
- compatibility with α-powers
* α-power is an α-A-power
- compatibility with d-A-powers
* for integer $\alpha=d, \alpha$-A-powers are exactly d-A-powers defined earlier
* α-A-power of length αn is a factor of $\lceil\alpha\rceil$-A-power of length $\lceil\alpha\rceil n$
+ symmetry under reversals

Repetitions: Fractional A-Powers

Ultimate goal: Threshold theorem for A-powers

- First problem: define α-A-power for rational α
- Basic requirements for the definition:
- compatibility with α-powers
* α-power is an α-A-power
- compatibility with d-A-powers
* for integer $\alpha=d$, α-A-powers are exactly d-A-powers defined earlier
* α-A-power of length αn is a factor of $\lceil\alpha\rceil$-A-power of length $\lceil\alpha\rceil n$
+ symmetry under reversals
- Definition for $\alpha \leq 2$:
* α-A-power is a word $u v u^{\prime}$ such that $u \sim u^{\prime}$ and $\frac{|u v u|}{|u v|}=\alpha$

Repetitions: Fractional A-Powers

Ultimate goal: Threshold theorem for A-powers

- First problem: define α-A-power for rational α
- Basic requirements for the definition:
- compatibility with α-powers
* α-power is an α-A-power
- compatibility with d-A-powers
\star for integer $\alpha=d, \alpha$-A-powers are exactly d-A-powers defined earlier
* α-A-power of length αn is a factor of $\lceil\alpha\rceil$-A-power of length $\lceil\alpha\rceil n$
+ symmetry under reversals
- Definition for $\alpha \leq 2$:
$\star \alpha$-A-power is a word $u v u^{\prime}$ such that $u \sim u^{\prime}$ and $\frac{|u v u|}{|u v|}=\alpha$
- What are candidates for the case $\alpha>2$?
(1) $u_{1} \cdots u_{d} u^{\prime}$: right tail u^{\prime} is "less" than some u_{i} in some "Abelian" sense
(2) $u^{\prime} u_{1} \cdots u_{d}$: same for the left tail
(3) $u^{\prime} u_{1} \cdots u_{d} u^{\prime \prime}$: same for two tails

1,2-no symmetry, 3-no compatibility with d-A-powers

Repetitions: Fractional A-Powers

Ultimate goal: Threshold theorem for A-powers

- First problem: define α-A-power for rational α
- Basic requirements for the definition:
- compatibility with α-powers
* α-power is an α-A-power
- compatibility with d-A-powers
\star for integer $\alpha=d, \alpha$-A-powers are exactly d-A-powers defined earlier
* α-A-power of length αn is a factor of $\lceil\alpha\rceil$-A-power of length $\lceil\alpha\rceil n$
+ symmetry under reversals
- Definition for $\alpha \leq 2$:
* α-A-power is a word $u v u^{\prime}$ such that $u \sim u^{\prime}$ and $\frac{|u v u|}{|u v|}=\alpha$
- Definition for $\alpha>2$:
$\star \alpha$-A-power is a word $u_{1} \cdots u_{d} u^{\prime}$ such that $d=\lfloor\alpha\rfloor, u_{1} \sim \cdots \sim u_{d}, u^{\prime}$ is A-equivalent to a prefix of u_{1} and $\frac{\left|u_{1} \cdots u_{d} u^{\prime}\right|}{\left|u_{1}\right|}=\alpha$
- dual α-A-power is the reversal of an α-A-power

Abelian Repetition Threshold

- A word is α-A-free if it contains no β-A-powers with $\beta \geq \alpha$
- A word is α^{+}-A-free if it contains no β-A-powers with $\beta>\alpha$

Abelian Repetition Threshold

- A word is α-A-free if it contains no β-A-powers with $\beta \geq \alpha$
- A word is α^{+}-A-free if it contains no β-A-powers with $\beta>\alpha$
- $\alpha\left(\alpha^{+}\right)$is k-A-avoidable if there are infinitely many $\alpha\left(\alpha^{+}\right)$-A-free words over a k-ary alphabet Σ

Abelian Repetition Threshold

- A word is α-A-free if it contains no β-A-powers with $\beta \geq \alpha$
- A word is α^{+}-A-free if it contains no β-A-powers with $\beta>\alpha$
- $\alpha\left(\alpha^{+}\right)$is k-A-avoidable if there are infinitely many $\alpha\left(\alpha^{+}\right)$-A-free words over a k-ary alphabet Σ
- Abelian repetition threshold: $\operatorname{ART}(k)=\inf \{\alpha: \alpha$ is k-A-avoidable $\}$

Abelian Repetition Threshold

- A word is α-A-free if it contains no β-A-powers with $\beta \geq \alpha$
- A word is α^{+}-A-free if it contains no β-A-powers with $\beta>\alpha$
- $\alpha\left(\alpha^{+}\right)$is k-A-avoidable if there are infinitely many $\alpha\left(\alpha^{+}\right)$-A-free words over a k-ary alphabet Σ
- Abelian repetition threshold: $\operatorname{ART}(k)=\inf \{\alpha: \alpha$ is k-A-avoidable $\}$
- Cassaigne \& Currie (1999):
- for any $\varepsilon>0, \alpha=(1+\varepsilon)$ is k-A-avoidable for $k=2^{\text {poly }\left(\varepsilon^{-1}\right)}$
- the bound is very loose but proves $\lim _{k \rightarrow \infty} \operatorname{ART}(k)=1$

Abelian Repetition Threshold

- A word is α-A-free if it contains no β-A-powers with $\beta \geq \alpha$
- A word is α^{+}-A-free if it contains no β-A-powers with $\beta>\alpha$
- $\alpha\left(\alpha^{+}\right)$is k-A-avoidable if there are infinitely many $\alpha\left(\alpha^{+}\right)$-A-free words over a k-ary alphabet Σ
- Abelian repetition threshold: $\operatorname{ART}(k)=\inf \{\alpha: \alpha$ is k-A-avoidable $\}$
- Cassaigne \& Currie (1999):
- for any $\varepsilon>0, \alpha=(1+\varepsilon)$ is k-A-avoidable for $k=2^{\text {poly }\left(\varepsilon^{-1}\right)}$
- the bound is very loose but proves $\lim _{k \rightarrow \infty} \operatorname{ART}(k)=1$
- Samsonov \& S. (2010):
- definition of $A R T$ (and some variations)
- analytic lower bounds: $\frac{k-2}{k-3}$ is not k-A-avoidable for $k \geq 5$
- lower bounds by search (easy):
$\frac{9}{5}$ is not 4-A-avoidable, $\frac{11}{3}$ is not $2-\mathrm{A}$-avoidable
- upper bounds for growth rates of avoiding languages
- conjecture \Longrightarrow

Abelian Repetition Threshold (2)

Conjecture (Samsonov \& S., 2010)
$\operatorname{ART}(2)=\frac{11}{3}, \operatorname{ART}(3)=2, \operatorname{ART}(4)=\frac{9}{5}, \operatorname{ART}(k)=\frac{k-2}{k-3}$ for $k \geq 5$

Abelian Repetition Threshold (2)

Conjecture (Samsonov \& S., 2010)
$\operatorname{ART}(2)=\frac{11}{3}, \operatorname{ART}(3)=2, \operatorname{ART}(4)=\frac{9}{5}, \operatorname{ART}(k)=\frac{k-2}{k-3}$ for $k \geq 5$
\star No case of this conjecture is proved
\star No proof that the threshold is between $\operatorname{ART}(k)$ and $A R T(k)^{+}$

- can it happen that $\operatorname{ART}(4)=2$?
\star morphisms built by Dekking and Keränen (and their modifications) avoid d-A-powers but do not avoid $(d-\varepsilon)$-A-powers for any $\varepsilon>0$

Abelian Repetition Threshold (2)

Conjecture (Samsonov \& S., 2010)
$\operatorname{ART}(2)=\frac{11}{3}, \operatorname{ART}(3)=2, \operatorname{ART}(4)=\frac{9}{5}, \operatorname{ART}(k)=\frac{k-2}{k-3}$ for $k \geq 5$
\star No case of this conjecture is proved
\star No proof that the threshold is between $\operatorname{ART}(k)$ and $A R T(k)^{+}$

- can it happen that $\operatorname{ART}(4)=2$?
\star morphisms built by Dekking and Keränen (and their modifications) avoid d-A-powers but do not avoid $(d-\varepsilon)$-A-powers for any $\varepsilon>0$
- Why so bad?

Equality vs A-equivalence

- Equality is inherited by prefixes and suffixes, A-equivalence is not
- To prove a word α-free, it suffices to show that there is no pair of equal factors among $\Theta\left(n^{2}\right)$ pairs
- To prove a word α-A-free, one has to show that there is no pair of A-equivalent factors among $\Theta\left(n^{3}\right)$ pairs

Equality vs A-equivalence

- Equality is inherited by prefixes and suffixes, A-equivalence is not
- To prove a word α-free, it suffices to show that there is no pair of equal factors among $\Theta\left(n^{2}\right)$ pairs
- To prove a word α-A-free, one has to show that there is no pair of A-equivalent factors among $\Theta\left(n^{3}\right)$ pairs
- For two random k-ary words of length n, the probability of equality is k^{-n}, while the probability of A-equivalence is $\theta\left(n^{1-k}\right)$
- if a word is not α-free, it almost surely contains a short α-power
- if a word is not α-A-free, it contains only long α-A-powers with a non-negligible probability

Equality vs A-equivalence

- Equality is inherited by prefixes and suffixes, A-equivalence is not
- To prove a word α-free, it suffices to show that there is no pair of equal factors among $\Theta\left(n^{2}\right)$ pairs
- To prove a word α-A-free, one has to show that there is no pair of A-equivalent factors among $\Theta\left(n^{3}\right)$ pairs
- For two random k-ary words of length n, the probability of equality is k^{-n}, while the probability of A-equivalence is $\theta\left(n^{1-k}\right)$
- if a word is not α-free, it almost surely contains a short α-power
- if a word is not α-A-free, it contains only long α-A-powers with a non-negligible probability
! To detect α-A-freeness one may need to study very long words

Prefix Trees

- A language is factorial if it is closed under taking factors of its words
- languages $F(k, \alpha)$ of k-ary α-free words and $A F(k, \alpha)$ of k-ary α-A-free words are factorial

Prefix Trees

- A language is factorial if it is closed under taking factors of its words
- languages $F(k, \alpha)$ of k-ary α-free words and $A F(k, \alpha)$ of k-ary α-A-free words are factorial
- A factorial language L can be represented by its prefix tree \mathcal{T}_{L} :
- \mathcal{T}_{L} is a rooted labeled tree
- nodes are words from L
- edges have the form $u \xrightarrow{a} u a$, where a is a letter

Prefix Trees

- A language is factorial if it is closed under taking factors of its words
- languages $F(k, \alpha)$ of k-ary α-free words and $A F(k, \alpha)$ of k-ary α-A-free words are factorial
- A factorial language L can be represented by its prefix tree \mathcal{T}_{L} :
- \mathcal{T}_{L} is a rooted labeled tree
- nodes are words from L
- edges have the form $u \xrightarrow{a} u a$, where a is a letter
\star path from the root to the node u spells u
$\star u$ is an ancestor of v in $\mathcal{T}_{L} \Longleftrightarrow u$ is a prefix of v

Random Walks and Depth-First Search

- Language L is infinite \Longleftrightarrow it contains words of arbitrarily big length N
- Idea: construct long words as random walks in prefix trees

Random Walks and Depth-First Search

- Language L is infinite \Longleftrightarrow it contains words of arbitrarily big length N
- Idea: construct long words as random walks in prefix trees
- Random walk (a Markov chain) is constructed by depth-first search
- start from the root
- visiting a node u, try a new letter a chosen uniformly at random:
- exclude a from new (u)
- if $u a$ is in L, visit ua next, setting new $(u a)=\{0, \ldots, k-1\}$
- if not, repeat the choice from the current set new (u)
- if new (u) is empty, return to the parent of u
- keep the track of
- the number C of visited nodes
- the maximum depth M reached in the tree $(=\max |u|)$
- stop if
- $M=N$ (random walk of length N built)
- $C=$ limit (the maximum number of tries reached)

Random Walks and Depth-First Search

- Language L is infinite \Longleftrightarrow it contains words of arbitrarily big length N
- Idea: construct long words as random walks in prefix trees
- Random walk (a Markov chain) is constructed by depth-first search
- start from the root
- visiting a node u, try a new letter a chosen uniformly at random:
- exclude a from new (u)
- if $u a$ is in L, visit ua next, setting new $(u a)=\{0, \ldots, k-1\}$
- if not, repeat the choice from the current set new (u)
- if new (u) is empty, return to the parent of u
- keep the track of
- the number C of visited nodes
- the maximum depth M reached in the tree $(=\max |u|)$
- stop if
- $M=N$ (random walk of length N built)
- $C=$ limit (the maximum number of tries reached)
- Do some science:
- Repeat search multiple times, analyse statistics, formulate conjectures

Detection of α-A-Powers

- Key algorithmic problem within the search:
- given $u \in L$, decide whether $u a \in L$

Detection of α-A-Powers

- Key algorithmic problem within the search:
- given $u \in L$, decide whether $u a \in L$
- Typical solution: a data structure $D(u)$ which
- stores necessary information about $u \in L$
- allows fast updates from $D(u)$ to $D(u a)$ and from $D(u a)$ to $D(u)$
- is endowed with an algorithm answering the query "ua $\in L$?"

Detection of α-A-Powers

- Key algorithmic problem within the search:
- given $u \in L$, decide whether $u a \in L$
- Typical solution: a data structure $D(u)$ which
- stores necessary information about $u \in L$
- allows fast updates from $D(u)$ to $D(u a)$ and from $D(u a)$ to $D(u)$
- is endowed with an algorithm answering the query "ua $\in L$?"

We designed several solutions for the languages $A F(k, \alpha)$:

Algorithm	Powers	Update time	Query time	Space
Naive	any	$O(1)$	$O\left(n^{3}\right)$	$O(n)$
Greedy	$\alpha<2$	$O(k)$	$O\left(k n^{3 / 2}\right)$ on average	$O(k n)$
Dictionary	$\alpha<2$	$O(n)$	$O(n)$	$O\left(n^{2}\right)$
Greedy	$\alpha>2$	$O(k)$	$O\left(k n^{3 / 2}\right)$ on average	$O(k n)$
Dual	$\alpha>2$	$O(k)$	$O\left(k n^{1 / 2}\right)$ on average	$O(k n)$

Detection of α-A-Powers

- Key algorithmic problem within the search:
- given $u \in L$, decide whether $u a \in L$
- Typical solution: a data structure $D(u)$ which
- stores necessary information about $u \in L$
- allows fast updates from $D(u)$ to $D(u a)$ and from $D(u a)$ to $D(u)$
- is endowed with an algorithm answering the query "ua $\in L$?"

We designed several solutions for the languages $A F(k, \alpha)$:

Algorithm	Powers	Update time	Query time	Space
Naive	any	$O(1)$	$O\left(n^{3}\right)$ to $O\left(n^{2}\right)$	$O(n)$
Greedy	$\alpha<2$	$O(k)$	$O\left(k n^{3 / 2}\right)$ on average	$O(k n)$
Dictionary	$\alpha<2$	$O(n)$	$O(n)$	$O\left(n^{2}\right)$
Greedy	$\alpha>2$	$O(k)$	$O\left(k n^{3 / 2}\right)$ on average	$O(k n)$
Dual	$\alpha>2$	$O(k)$	$O\left(k n^{1 / 2}\right)$ on average	$O(k n)$

Two graphs: Current Depth vs Number of Visited Nodes

$A F\left(5, \frac{3}{2}^{+}\right)$: Infinite-like random walk

Big Alphabets: Main Result

Experimental results for $A F\left(k, \frac{k-2}{k-3}^{+}\right), k=6,7,8,9,10$:

liphabet size	avoided power	$N=10^{6}, 100$ runs			$N=2 \cdot 10^{6}, 100$ runs		
		$M_{\max }$	$M_{a v}$	$M_{\text {med }}$	$M_{\max }$	$M_{a v}$	$M_{\text {med }}$
6	$(4 / 3)^{+}$	112	98.9	98	114	101.1	101
7	$(5 / 4)^{+}$	116	100.3	100	124	103.9	102
8	$(6 / 5)^{+}$	103	94.8	95	102	96.2	96
9	$(7 / 6)^{+}$	108	95.6	96	107	98.8	99
10	$(8 / 7)^{+}$	121	107.7	108	128	111.6	111

Big Alphabets: Main Result

Experimental results for $A F\left(k, \frac{k-2}{k-3}^{+}\right), k=6,7,8,9,10$:

Alphabet size	Avoided power	$N=10^{6}, 100$ runs			$N=2 \cdot 10^{6}, 100$ runs		
		$M_{\max }$	$M_{a v}$	M_{med}	$M_{\max }$	$M_{a v}$	$M_{\text {med }}$
6	$(4 / 3)^{+}$	112	98.9	98	114	101.1	101
7	$(5 / 4)^{+}$	116	100.3	100	124	103.9	102
8	$(6 / 5)^{+}$	103	94.8	95	102	96.2	96
9	$(7 / 6)^{+}$	108	95.6	96	107	98.8	99
10	$(8 / 7)^{+}$	121	107.7	108	128	111.6	111

Theorem
For $k=6,7,8,9,10, A R T(k)>\frac{k-2}{k-3}$

Big Alphabets: Main Result

Experimental results for $A F\left(k, \frac{k-2}{k-3}^{+}\right), k=6,7,8,9,10$:

Alphabet size	Avoided power	$N=10^{6}, 100$ runs			$N=2 \cdot 10^{6}, 100$ runs			Maximum
		$M_{a v}$	M_{med}	$M_{\max }$	$M_{a v}$	M_{med}	length	
6	$(4 / 3)^{+}$	112	98.9	98	114	101.1	101	116
7	$(5 / 4)^{+}$	116	100.3	100	124	103.9	102	125
8	$(6 / 5)^{+}$	103	94.8	95	102	96.2	96	105
9	$(7 / 6)^{+}$	108	95.6	96	107	98.8	99	117
10	$(8 / 7)^{+}$	121	107.7	108	128	111.6	111	148^{*}

Theorem
For $k=6,7,8,9,10, A R T(k)>\frac{k-2}{k-3}$

Proof of the Main Result

The proof is by exhaustive search enhanced by the lemma below

- m-permutation is a length- m word with m distinct letters

Lemma

Let L_{1}, L_{2}, and L_{3} be the subsets of $L=A F\left(k, \frac{k-2}{k-3}\right)$ defined as follows:

- L_{1} is the set of all $w \in L$ such that w has the prefix $01 \cdots(k-3)$ and contains no ($k-1$)-permutations
- L_{2} is the set of all $w \in L$ such that w has the prefix $01 \cdots(k-2)$ and contains no k-permutations
- L_{3} is the set of all $w \in L$ having the prefix $01 \cdots(k-1)$

Then L is finite $\Longleftrightarrow L_{1}, L_{2}, L_{3}$ are all finite.

Proof of the Main Result

The proof is by exhaustive search enhanced by the lemma below

- m-permutation is a length- m word with m distinct letters

Lemma

Let L_{1}, L_{2}, and L_{3} be the subsets of $L=A F\left(k, \frac{k-2}{k-3}\right)$ defined as follows:

- L_{1} is the set of all $w \in L$ such that w has the prefix $01 \cdots(k-3)$ and contains no ($k-1$)-permutations
- L_{2} is the set of all $w \in L$ such that w has the prefix $01 \cdots(k-2)$ and contains no k-permutations
- L_{3} is the set of all $w \in L$ having the prefix $01 \cdots(k-1)$

Then L is finite $\Longleftrightarrow L_{1}, L_{2}, L_{3}$ are all finite.

- The total number of searched nodes ranges from <0.5 billions for $k=8$ to >500 billions for $k=10$

Proof of the Main Result

The proof is by exhaustive search enhanced by the lemma below

- m-permutation is a length- m word with m distinct letters

Lemma

Let L_{1}, L_{2}, and L_{3} be the subsets of $L=A F\left(k, \frac{k-2}{k-3}\right)$ defined as follows:

- L_{1} is the set of all $w \in L$ such that w has the prefix $01 \cdots(k-3)$ and contains no ($k-1$)-permutations
- L_{2} is the set of all $w \in L$ such that w has the prefix $01 \cdots(k-2)$ and contains no k-permutations
- L_{3} is the set of all $w \in L$ having the prefix $01 \cdots(k-1)$

Then L is finite $\Longleftrightarrow L_{1}, L_{2}, L_{3}$ are all finite.

- The total number of searched nodes ranges from <0.5 billions for $k=8$ to >500 billions for $k=10$
- For $k=6,7,8,9$, we found the maximum length of a word in L
- For $k=10$, we know only the maximum length in $L_{1} \cup L_{2} \cup L_{3}$

Other Important Experimental Findings

- The languages that should be finite
- $A F\left(k, \frac{k-3}{k-4}\right)$ for $k \geq 7\left(M_{\max }=510\right.$ for $\left.k=7\right)$
- $A F\left(4,9^{+}\right)\left(M_{\max }=3152\right)$
- $A F\left(3,2^{+}\right)\left(M_{\max }=5449\right)$
- $A F\left(2, \frac{11}{3}^{+}\right)\left(M_{\max }=775\right)$
- The languages that should be infinite
- $A F\left(k, \frac{k-3}{k-4}\right)$ for $k \geq 7$
- $A F\left(6, \frac{3}{2}\right)$
- $A F\left(5, \frac{3}{2}^{+}\right)$
- $A F\left(3, \frac{5}{2}^{+}\right)$
- Uncertain
- $A F\left(4, \frac{11}{6}^{+}\right)$

New Conjecture

Conjecture

- $A R T(2)>\frac{11}{3}$
- $2<A R T(3) \leq \frac{5}{2}$
- $\operatorname{ART}(4)>\frac{9}{5}$
- $A R T(5)=\frac{3}{2}$
- $\frac{4}{3}<A R T(6)<\frac{3}{2}$
- $\operatorname{ART}(k)=\frac{k-3}{k-4}$ for $k \geq 7$

New Conjecture

Conjecture

- $A R T(2)>\frac{11}{3}$
- $2<A R T(3) \leq \frac{5}{2}$
- $\operatorname{ART}(4)>\frac{9}{5}$
- $A R T(5)=\frac{3}{2}$
- $\frac{4}{3}<A R T(6)<\frac{3}{2}$
- $\operatorname{ART}(k)=\frac{k-3}{k-4}$ for $k \geq 7$

Details: see the preprint at arXiv:2109.09306

New Conjecture

Conjecture

- $A R T(2)>\frac{11}{3}$
- $2<A R T(3) \leq \frac{5}{2}$
- $\operatorname{ART}(4)>\frac{9}{5}$
- $A R T(5)=\frac{3}{2}$
- $\frac{4}{3}<A R T(6)<\frac{3}{2}$
- $\operatorname{ART}(k)=\frac{k-3}{k-4}$ for $k \geq 7$

Details: see the preprint at arXiv:2109.09306
Future work: a lot of...

