Self-induced systems

Fabien Durand
Université de Picardie Jules Verne, France

One world Combinatorics on Words Seminar, october 25th 2021

Joint work with Nic Ormes, Samuel Petite

A possible motivation for this talk

Question of Christian Mauduit (Ferenczi, 2006) :
What can be said of the following substitution on $A=\mathbb{Z}$?

- Drunken man substitution : $n \mapsto(n-1)(n+1)$

A possible motivation for this talk

Question of Christian Mauduit (Ferenczi, 2006) :
What can be said of the following substitution on $A=\mathbb{Z}$?

- Drunken man substitution : $n \mapsto(n-1)(n+1)$
- The infini-Bonacci substitution : $n \mapsto 1(n+1)$

A possible motivation for this talk

Question of Christian Mauduit (Ferenczi, 2006) :
What can be said of the following substitution on $A=\mathbb{Z}$?

- Drunken man substitution : $n \mapsto(n-1)(n+1)$
- The infini-Bonacci substitution : $n \mapsto 1(n+1)$

A possible motivation for this talk

Question of Christian Mauduit (Ferenczi, 2006) :
What can be said of the following substitution on $A=\mathbb{Z}$?

- Drunken man substitution : $n \mapsto(n-1)(n+1)$
- The infini-Bonacci substitution : $n \mapsto 1(n+1)$

But this is not the original motivation

A possible motivation for this talk

Question of Christian Mauduit (Ferenczi, 2006) :
What can be said of the following substitution on $A=\mathbb{Z}$?

- Drunken man substitution : $n \mapsto(n-1)(n+1)$
- The infini-Bonacci substitution : $n \mapsto 1(n+1)$

But this is not the original motivation
We will come back to these substitutions later

The question of this talk

What are the self-induced systems ?

Induced map

$$
T: X \rightarrow X, U \subset X
$$

Induced map

$T: X \rightarrow X, U \subset X$

$T_{U}: U \rightarrow U$

Induced map

$T: X \rightarrow X, U \subset X$

$T_{U}: U \rightarrow U$
$\left(U, T_{U}\right)$: induced system

The framework

Dynamical system : (X, T)

The framework

Dynamical system : (X, T)

- X : compact metric space

The framework

Dynamical system : (X, T)

- X : compact metric space
- T : homeomorphism

The framework

Dynamical system : (X, T)

- X : compact metric space
- T : homeomorphism
- $U \subset X$

The framework

Dynamical system : (X, T)

- X : compact metric space
- T : homeomorphism
- $U \subset X$

(Moving) definition : (X, T) is self-induced if (X, T) if there exists $U \subsetneq X$ (???) such that (X, T) is isomorphic (???) to $\left(U, T_{U}\right)$ (???).

How to ensure T_{U}, and $\left(U, T_{U}\right)$, are well defined?

- Poincaré recurrence theorem : T_{U} defined μ-almost everywhere (for some fixed T-invariant measure μ with $\mu(U)>0)$

How to ensure T_{U}, and $\left(U, T_{U}\right)$, are well defined?

- Poincaré recurrence theorem : T_{U} defined μ-almost everywhere (for some fixed T-invariant measure μ with $\mu(U)>0)$
- (X, T) minimal and U open.

How to ensure T_{U}, and $\left(U, T_{U}\right)$, are well defined?

- Poincaré recurrence theorem : T_{U} defined μ-almost everywhere (for some fixed T-invariant measure μ with $\mu(U)>0)$
- (X, T) minimal and U open.
- or any way to have $\left(U, T_{U}\right)$ well defined

Some examples: minimal substitutions subshifts

Theorem. (Mossé 1992) Let (X, S) be a subshift generated by the primitive substitution $\tau: A^{*} \rightarrow A^{*}$. Then,

$$
\tau: X \rightarrow X
$$

is one-to-one.

Some examples: minimal substitutions subshifts

Theorem. (Mossé 1992) Let (X, S) be a subshift generated by the primitive substitution $\tau: A^{*} \rightarrow A^{*}$. Then,

$$
\tau: X \rightarrow X
$$

is one-to-one.
Corollary. Minimal substitution subshifts (X, S) are self-induced:

Some examples: minimal substitutions subshifts

Theorem. (Mossé 1992) Let (X, S) be a subshift generated by the primitive substitution $\tau: A^{*} \rightarrow A^{*}$. Then,

$$
\tau: X \rightarrow X
$$

is one-to-one.
Corollary. Minimal substitution subshifts (X, S) are self-induced: There exists a clopen set U such that $\left(U, S_{U}\right)$ is topologically conjugate to (X, S)

Some examples: minimal substitutions subshifts

Theorem. (Mossé 1992) Let (X, S) be a subshift generated by the primitive substitution $\tau: A^{*} \rightarrow A^{*}$. Then,

$$
\tau: X \rightarrow X
$$

is one-to-one.
Corollary. Minimal substitution subshifts (X, S) are self-induced: There exists a clopen set U such that $\left(U, S_{U}\right)$ is topologically conjugate to (X, S)

Some examples: minimal substitutions subshifts

Theorem. (Mossé 1992) Let (X, S) be a subshift generated by the primitive substitution $\tau: A^{*} \rightarrow A^{*}$. Then,

$$
\tau: X \rightarrow X
$$

is one-to-one.
Corollary. Minimal substitution subshifts (X, S) are self-induced: There exists a clopen set U such that $\left(U, S_{U}\right)$ is topologically conjugate to (X, S)
Proof: $U=\tau(X)$ is a clopen set.

A too classical minimal substitutions subshifts

$\tau: 0 \mapsto 01,1 \mapsto 0, \tau(x)=x \in\{0,1\}^{\mathbb{Z}}, S$ the shift,

$$
X=\overline{\left\{S^{n} x \mid n \in \mathbb{Z}\right\}}
$$

A too classical minimal substitutions subshifts

$\tau: 0 \mapsto 01,1 \mapsto 0, \tau(x)=x \in\{0,1\}^{\mathbb{Z}}, S$ the shift,

$$
X=\overline{\left\{S^{n} x \mid n \in \mathbb{Z}\right\}}
$$

$\tau(X)=[0]$

$$
\begin{array}{rl}
x=\tau(x) & =01 \\
0 & 0 \\
01 & 01 \\
0 & 0 \\
0 & 01 \\
\mathcal{D}_{0}(x) & =0
\end{array} 1
$$

A too classical minimal substitutions subshifts

$\tau: 0 \mapsto 01,1 \mapsto 0, \tau(x)=x \in\{0,1\}^{\mathbb{Z}}, S$ the shift,

$$
X=\overline{\left\{S^{n} x \mid n \in \mathbb{Z}\right\}}
$$

$\tau(X)=[0]$

$$
\begin{array}{rllllllllll}
x=\tau(x) & =01 & 0 & 01 & 01 & 0 & 01 & 0 & 01 & \cdots \\
\mathcal{D}_{0}(x) & =0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & \cdots
\end{array}
$$

- Observation: The subshift generated by $\mathcal{D}_{0}(x)$ is isomorphic to ([0], $S_{[0]}$).

A too classical minimal substitutions subshifts

$\tau: 0 \mapsto 01,1 \mapsto 0, \tau(x)=x \in\{0,1\}^{\mathbb{Z}}, S$ the shift,

$$
X=\overline{\left\{S^{n} x \mid n \in \mathbb{Z}\right\}}
$$

$\tau(X)=[0]$

$$
\begin{array}{rllllllllll}
x=\tau(x) & =01 & 0 & 01 & 01 & 0 & 01 & 0 & 01 & \cdots \\
\mathcal{D}_{0}(x) & =0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & \cdots
\end{array}
$$

- Observation: The subshift generated by $\mathcal{D}_{0}(x)$ is isomorphic to ([0], $S_{[0]}$).
- (X, S) is isomorphic to ([0], $\left.S_{[0]}\right)$ and is self-induced.

An other classical minimal substitutions subshifts

$$
\begin{aligned}
\sigma: 0 \mapsto 01,1 \mapsto 10, \tau(x) & =x \in\{0,1\}^{\mathbb{Z}}, \\
Y & =\overline{\left\{S^{n} x \mid n \in \mathbb{Z}\right\}}
\end{aligned}
$$

An other classical minimal substitutions subshifts

$$
\begin{aligned}
\sigma: 0 \mapsto 01,1 \mapsto 10, \tau(x) & =x \in\{0,1\}^{\mathbb{Z}}, \\
Y & =\overline{\left\{S^{n} x \mid n \in \mathbb{Z}\right\}}
\end{aligned}
$$

$\tau(X) \neq[0]$

An other classical minimal substitutions subshifts

$$
\begin{aligned}
\sigma: 0 \mapsto 01,1 \mapsto 10, \tau(x) & =x \in\{0,1\}^{\mathbb{Z}}, \\
Y & =\overline{\left\{S^{n} x \mid n \in \mathbb{Z}\right\}}
\end{aligned}
$$

$$
\tau(X) \neq[0]
$$

$$
\begin{array}{rl}
x=\sigma(x) & =0 \begin{array}{lllllllllllll}
011 & 01 & 0 & 011 & 0 & 01 & 011 & 01 & 0 & 01 & 011 & 0 & \cdots \\
\mathcal{D}_{0}(x) & = & 1 & 2 & 0 & 2 & 1 & 0 & 1 & 2 & 1 & 0 & 2
\end{array} \\
0 & 1
\end{array}
$$

An other classical minimal substitutions subshifts

$$
\begin{aligned}
& \sigma: 0 \mapsto 01,1 \mapsto 10, \tau(x)=x \in\{0,1\}^{\mathbb{Z}}, \\
& Y=\overline{\left\{S^{n} x \mid n \in \mathbb{Z}\right\}} \\
& \tau(X) \neq[0] \\
& x=\sigma(x)=\begin{array}{llllllllllllll}
011 & 01 & 0 & 011 & 0 & 01 & 011 & 01 & 0 & 01 & 011 & 0 & \cdots \\
\mathcal{D}_{0}(x)= & 0 & 1 & 2 & 0 & 2 & 1 & 0 & 1 & 2 & 1 & 0 & 2 & \cdots
\end{array}
\end{aligned}
$$

- Observation: The subshift generated by $\mathcal{D}_{0}(x)$ is isomorphic to ([0], $S_{[0]}$).

An other classical minimal substitutions subshifts

$$
\begin{aligned}
& \sigma: 0 \mapsto 01,1 \mapsto 10, \tau(x)=x \in\{0,1\}^{\mathbb{Z}}, \\
& Y=\overline{\left\{S^{n} x \mid n \in \mathbb{Z}\right\}} \\
& \tau(X) \neq[0] \\
& x=\sigma(x)=
\end{aligned}
$$

- Observation: The subshift generated by $\mathcal{D}_{0}(x)$ is isomorphic to ([0], $S_{[0]}$).
- (Y, S) is not isomorphic to ([0], $\left.S_{[0]}\right)$ but is self-induced.

Other induction properties of substitutions subshifts

- (Holton-Zamboni 1999) A minimal subshift is substitutive if, and only if, it has (up to isomorphism) finitely many induced systems on cylinder sets

Other induction properties of substitutions subshifts

- (Holton-Zamboni 1999) A minimal subshift is substitutive if, and only if, it has (up to isomorphism) finitely many induced systems on cylinder sets
- Observation : A minimal Cantor system is periodic if, and only if, it has (up to isomorphism) finitely many induced systems on clopen set

Other induction properties of substitutions subshifts

- (Holton-Zamboni 1999) A minimal subshift is substitutive if, and only if, it has (up to isomorphism) finitely many induced systems on cylinder sets
- Observation : A minimal Cantor system is periodic if, and only if, it has (up to isomorphism) finitely many induced systems on clopen set
- Let (X, S) be a minimal substitution subshift. For all clopen set $U \subset X$ there is a clopen set $V \subset U$ such that (X, S) is topologically conjugate to $\left(V, S_{V}\right)$.

Other induction properties of substitutions subshifts

- (Holton-Zamboni 1999) A minimal subshift is substitutive if, and only if, it has (up to isomorphism) finitely many induced systems on cylinder sets
- Observation : A minimal Cantor system is periodic if, and only if, it has (up to isomorphism) finitely many induced systems on clopen set
- Let (X, S) be a minimal substitution subshift. For all clopen set $U \subset X$ there is a clopen set $V \subset U$ such that (X, S) is topologically conjugate to $\left(V, S_{V}\right)$.
- This property is equivalent to the self-induction property on clopen sets.

Some examples: Rotations on the torus

Theorem. (Ornstein-Rudolph-Weiss 1982) Let (\mathbb{T}, R_{α}) and (\mathbb{T}, R_{β}) be two non periodic rotations. There exists a Lebesgue set U, with $\operatorname{Leb}(U)>0$, such that $\left(U, R_{\alpha, U}\right)$ is (measure theoretically) isomorphic to (\mathbb{T}, R_{β}).

Some examples: Rotations on the torus

Theorem. (Ornstein-Rudolph-Weiss 1982) Let (\mathbb{T}, R_{α}) and $\left(\mathbb{T}, R_{\beta}\right)$ be two non periodic rotations. There exists a Lebesgue set U, with $\operatorname{Leb}(U)>0$, such that $\left(U, R_{\alpha, U}\right)$ is (measure theoretically) isomorphic to (\mathbb{T}, R_{β}).

Corollary. Rotations on the torus are self-induced (measure theoretically).

Some examples: Rotations on the torus

Theorem. (Ornstein-Rudolph-Weiss 1982) Let (\mathbb{T}, R_{α}) and $\left(\mathbb{T}, R_{\beta}\right)$ be two non periodic rotations. There exists a Lebesgue set U, with $\operatorname{Leb}(U)>0$, such that $\left(U, R_{\alpha, U}\right)$ is (measure theoretically) isomorphic to (\mathbb{T}, R_{β}).

Corollary. Rotations on the torus are self-induced (measure theoretically).

Corollary. Sturmian subshifts are self-induced (measure theoretically).

Some examples: Rotations on the torus

Theorem. (Ornstein-Rudolph-Weiss 1982) Let (\mathbb{T}, R_{α}) and $\left(\mathbb{T}, R_{\beta}\right)$ be two non periodic rotations. There exists a Lebesgue set U, with $\operatorname{Leb}(U)>0$, such that $\left(U, R_{\alpha, U}\right)$ is (measure theoretically) isomorphic to (\mathbb{T}, R_{β}).

Corollary. Rotations on the torus are self-induced (measure theoretically).

Corollary. Sturmian subshifts are self-induced (measure theoretically).
But,

Some examples: Rotations on the torus

Theorem. (Ornstein-Rudolph-Weiss 1982) Let (\mathbb{T}, R_{α}) and $\left(\mathbb{T}, R_{\beta}\right)$ be two non periodic rotations. There exists a Lebesgue set U, with $\operatorname{Leb}(U)>0$, such that $\left(U, R_{\alpha, U}\right)$ is (measure theoretically) isomorphic to (\mathbb{T}, R_{β}).

Corollary. Rotations on the torus are self-induced (measure theoretically).

Corollary. Sturmian subshifts are self-induced (measure theoretically).
But, Sturmian subshifts are self-induced on clopen sets if, and only if, ... (can you expect?)

Some examples: Rotations on the torus

Theorem. (Ornstein-Rudolph-Weiss 1982) Let (\mathbb{T}, R_{α}) and $\left(\mathbb{T}, R_{\beta}\right)$ be two non periodic rotations. There exists a Lebesgue set U, with $\operatorname{Leb}(U)>0$, such that $\left(U, R_{\alpha, U}\right)$ is (measure theoretically) isomorphic to (\mathbb{T}, R_{β}).

Corollary. Rotations on the torus are self-induced (measure theoretically).

Corollary. Sturmian subshifts are self-induced (measure theoretically).
But, Sturmian subshifts are self-induced on clopen sets if, and only if, ... (can you expect?) the "slope" is quadratic.

Some examples: odometers
$\left(\mathbb{Z}_{p}, z \mapsto z+1\right)$ is self-induced (on a clopen set):

Some examples: odometers
$\left(\mathbb{Z}_{p}, z \mapsto z+1\right)$ is self-induced (on a clopen set): $\quad U=p \mathbb{Z}_{p}$

Some examples: odometers

$\left(\mathbb{Z}_{p}, z \mapsto z+1\right)$ is self-induced (on a clopen set): $U=p \mathbb{Z}_{p}$ Not all odometers are self-induced (on a clopen set).

Some examples: odometers

$\left(\mathbb{Z}_{p}, z \mapsto z+1\right)$ is self-induced (on a clopen set): $U=p \mathbb{Z}_{p}$ Not all odometers are self-induced (on a clopen set).

Let $\left(p_{n}\right)_{n}$ be a sequence of integers such that p_{n} divides p_{n+1}

$$
\mathbb{Z}_{\left(p_{n}\right)}=\left\{\left(x_{n}\right) \in \prod_{n=1}^{\infty} \mathbb{Z} / p_{n} \mathbb{Z}: x_{n} \equiv x_{n+1} \quad \bmod p_{n}\right\}
$$

Some examples: odometers

$\left(\mathbb{Z}_{p}, z \mapsto z+1\right)$ is self-induced (on a clopen set): $\quad U=p \mathbb{Z}_{p}$
Not all odometers are self-induced (on a clopen set).
Let $\left(p_{n}\right)_{n}$ be a sequence of integers such that p_{n} divides p_{n+1}

$$
\mathbb{Z}_{\left(p_{n}\right)}=\left\{\left(x_{n}\right) \in \prod_{n=1}^{\infty} \mathbb{Z} / p_{n} \mathbb{Z}: x_{n} \equiv x_{n+1} \quad \bmod p_{n}\right\}
$$

Exercise. The odometer $\left(\mathbb{Z}_{\left(p_{n}\right)}, z \mapsto z+1\right)$ is self-induced (on a clopen set) if, and only if,

$$
\lim _{n} \max \left\{k \mid q^{k} \text { divides } p^{n}\right\}=+\infty
$$

Some examples: odometers

($\mathbb{Z}_{p}, z \mapsto z+1$) is self-induced (on a clopen set): $U=p \mathbb{Z}_{p}$
Not all odometers are self-induced (on a clopen set).
Let $\left(p_{n}\right)_{n}$ be a sequence of integers such that p_{n} divides p_{n+1}

$$
\mathbb{Z}_{\left(p_{n}\right)}=\left\{\left(x_{n}\right) \in \prod_{n=1}^{\infty} \mathbb{Z} / p_{n} \mathbb{Z}: x_{n} \equiv x_{n+1} \quad \bmod p_{n}\right\}
$$

Exercise. The odometer $\left(\mathbb{Z}_{\left(p_{n}\right)}, z \mapsto z+1\right)$ is self-induced (on a clopen set) if, and only if,

$$
\lim _{n} \max \left\{k \mid q^{k} \text { divides } p^{n}\right\}=+\infty
$$

Example. If $\left(p_{n}\right)$ is the sequence of prime numbers then $\left(\mathbb{Z}_{\left(p_{n}\right)}, z \mapsto z+1\right)$ is not self-induced (on a clopen set)

Some examples: the full shift

Exercise. (Example of G. Vigny) The full shift is (topologically) self-induced (on a closed set).

Some examples: the full shift

Exercise. (Example of G. Vigny) The full shift is (topologically) self-induced (on a closed set).

Proof: $U=\left\{\left(x_{n}\right)_{n \in \mathbb{Z}} \mid x_{2 n} x_{2 n+1} \in\{00,11\}\right\}$ (closed set)

Observation: Abramov formula

$$
(X, T, \mu), \mu(U)>0
$$

Observation: Abramov formula

$$
\left.\begin{array}{l}
(X, T, \mu), \mu(U)>
\end{array}\right)
$$

Observation: Abramov formula

$(X, T, \mu), \mu(U)>0$

$$
h\left(U, T_{U}, \mu_{U}\right)=\frac{h(X, T, \mu)}{\mu(U)}
$$

Consequence: if $\left(U, T_{U}, \mu_{U}\right)$ and (X, T, μ) are isomorphic then

$$
h(X, T, \mu) \in\{0,+\infty\}
$$

Some answers: expansive case (subshifts)

Theorem (DPO-2018). Every self-induced (on a clopen set) expansive minimal Cantor system is conjugate to a substitution subshift.

Some answers: expansive case (subshifts)

Theorem (DPO-2018). Every self-induced (on a clopen set) expansive minimal Cantor system is conjugate to a substitution subshift.

Proof: Use codings with return words (derived sequences) and substitutions on the words of length n.

Some answers: expansive case (subshifts)

Theorem (DPO-2018). Every self-induced (on a clopen set) expansive minimal Cantor system is conjugate to a substitution subshift.

Proof: Use codings with return words (derived sequences) and substitutions on the words of length n.
$\phi:(X, S) \rightarrow\left(U, S_{U}\right), U \neq X$.

Some answers: expansive case (subshifts)

Theorem (DPO-2018). Every self-induced (on a clopen set) expansive minimal Cantor system is conjugate to a substitution subshift.

Proof: Use codings with return words (derived sequences) and substitutions on the words of length n.
$\phi:(X, S) \rightarrow\left(U, S_{U}\right), U \neq X$.
$\phi^{n+1}(U) \subset \phi^{n}(U)$

Some answers: expansive case (subshifts)

Theorem (DPO-2018). Every self-induced (on a clopen set) expansive minimal Cantor system is conjugate to a substitution subshift.

Proof: Use codings with return words (derived sequences) and substitutions on the words of length n.
$\phi:(X, S) \rightarrow\left(U, S_{U}\right), U \neq X$.
$\phi^{n+1}(U) \subset \phi^{n}(U)$
"Easy situation" $: \cap \phi^{n}(U)=\{x\}$

Some answers: expansive case (subshifts)

Theorem (DPO-2018). Every self-induced (on a clopen set) expansive minimal Cantor system is conjugate to a substitution subshift.

Proof: Use codings with return words (derived sequences) and substitutions on the words of length n.
$\phi:(X, S) \rightarrow\left(U, S_{U}\right), U \neq X$.
$\phi^{n+1}(U) \subset \phi^{n}(U)$
"Easy situation" $: \cap \phi^{n}(U)=\{x\}$

Some answers: expansive case (subshifts)

Theorem (DPO-2018). Every self-induced (on a clopen set) expansive minimal Cantor system is conjugate to a substitution subshift.

Proof: Use codings with return words (derived sequences) and substitutions on the words of length n.
$\phi:(X, S) \rightarrow\left(U, S_{U}\right), U \neq X$.
$\phi^{n+1}(U) \subset \phi^{n}(U)$
"Easy situation" : $\cap \phi^{n}(U)=\{x\}$
Because $\left(U, S_{U}\right)$ is isomorphic to the subshift generated by the derived sequence of x with respect to U

Some answers: expansive case (subshifts)

Theorem (DPO-2018). Every self-induced (on a clopen set) expansive minimal Cantor system is conjugate to a substitution subshift.

Proof: Use codings with return words (derived sequences) and substitutions on the words of length n.
$\phi:(X, S) \rightarrow\left(U, S_{U}\right), U \neq X$.
$\phi^{n+1}(U) \subset \phi^{n}(U)$
"Easy situation" $: \cap \phi^{n}(U)=\{x\}$
Because $\left(U, S_{U}\right)$ is isomorphic to the subshift generated by the derived sequence of x with respect to U

What about non-expansive and non-equicontinuous systems?

Expansiveness and equicontinuity

$T: X \rightarrow X$ on a compact metric space (X, d) is

- expansive if :

$$
\exists \delta>0, \forall x, y \in X, x \neq y, \exists n \in \mathbb{Z}, d\left(T^{n} x, T^{n} y\right)>\delta
$$

Expansiveness and equicontinuity

$T: X \rightarrow X$ on a compact metric space (X, d) is

- expansive if :

$$
\exists \delta>0, \forall x, y \in X, x \neq y, \exists n \in \mathbb{Z}, d\left(T^{n} x, T^{n} y\right)>\delta
$$

- equicontinuous if :

$$
\forall \epsilon>0, \exists \delta>0,\left(d(x, y) \leq \delta \Longrightarrow d\left(T^{n} x, T^{n} y\right)<\epsilon \forall n\right)
$$

Some answers: all ergodic systems are self-induced

Definition. Let (X, T) be a minimal Cantor system. We say that a nonempty closed set C is a Poincaré section for (X, T) if the induced map $T_{C}: C \rightarrow C$ is a well-defined homeomorphism.

Some answers: all ergodic systems are self-induced

Definition. Let (X, T) be a minimal Cantor system. We say that a nonempty closed set C is a Poincaré section for (X, T) if the induced map $T_{C}: C \rightarrow C$ is a well-defined homeomorphism.

Some answers: all ergodic systems are self-induced

Definition. Let (X, T) be a minimal Cantor system. We say that a nonempty closed set C is a Poincaré section for (X, T) if the induced map $T_{C}: C \rightarrow C$ is a well-defined homeomorphism.

Theorem. (Dahl-Molberg 2009) Let (X, T) and (Y, R) be minimal Cantor systems. Then, there exists a Poincaré section C in (Y, R) such that $\left(C, R_{C}\right)$ is topologically conjugate to (X, T).

Proof: easy with Bratteli diagrams

Bratteli diagrams

This book is the firs seff-comained exposition of the fascinating link between dynamical sysems and dimension gropsp The authors explore the
rich motrificy between tonolhachal properiks of dyamicel systems and rich metriny between topolegetcal propertes of dyamical systems rad the aleberate structires asocinted with then. whit in emphasis op sy, bolve sysens, particulaty subsitution systams. If is recomimended for
anybody with an incest in topolegical and symbolit dynamics, auonate anybody with at metest in topologe

Interded to serve as an mutrectuction far graduate studems and owher the book inclades a horvougl account of the background notions as well he derailed exposition -with full proos - of the major resuls of the subjeet A wealth of examples and exercives, with solutions serwe to build intuition while the many coen problems collceced at the end provide jumping-off points for future research
Cambridge Studies in Advanced Mathenatics mintuil somad
Jean Betan Drizrusy of Zarion

Ieke Moerdik Uirecha Uomuersip
Cheryl Pracger University of Wixarn Australia
Pelet Sanak Prinecour Lifivenio
 Burt Toam Universiy of Combertia Laxthreles

Dimension Groups and Dynamical Systems

FABIEN DURAND DOMINIQUE PERRIN

The idea for Dahl-Molberg theorem

Some corollaries

Corollary. Minimal Cantor systems are self-induced (on Poincaré section). (Even those with finite positive entropy)

Some corollaries

Corollary. Minimal Cantor systems are self-induced (on Poincaré section). (Even those with finite positive entropy)

Corollary. "Ergodic systems are self-induced"

Some corollaries

Corollary. Minimal Cantor systems are self-induced (on Poincaré section). (Even those with finite positive entropy)

Corollary. "Ergodic systems are self-induced" Proof: Vershik representation of ergodic systems

Main result

Theorem. Let (X, T) be a minimal Cantor system. It is a self-induced (on a clopen set) if, and only if, (X, T) is conjugate to a recognizable, primitive, aperiodic, generalized substitution subshift.

Main result

Theorem. Let (X, T) be a minimal Cantor system. It is a self-induced (on a clopen set) if, and only if, (X, T) is conjugate to a recognizable, primitive, aperiodic, generalized substitution subshift.

- $\sigma: K^{*} \rightarrow K^{*}$ where K is a compact metric space (alphabet)

Main result

Theorem. Let (X, T) be a minimal Cantor system. It is a self-induced (on a clopen set) if, and only if, (X, T) is conjugate to a recognizable, primitive, aperiodic, generalized substitution subshift.

- $\sigma: K^{*} \rightarrow K^{*}$ where K is a compact metric space (alphabet)
- For $w \in K^{+}$and $1 \leq j \leq|w|, \pi_{j}(w)$ is the j th letter of w.

Main result

Theorem. Let (X, T) be a minimal Cantor system. It is a self-induced (on a clopen set) if, and only if, (X, T) is conjugate to a recognizable, primitive, aperiodic, generalized substitution subshift.

- $\sigma: K^{*} \rightarrow K^{*}$ where K is a compact metric space (alphabet)
- For $w \in K^{+}$and $1 \leq j \leq|w|, \pi_{j}(w)$ is the j th letter of w. σ is a generalized substitution if :

Main result

Theorem. Let (X, T) be a minimal Cantor system. It is a self-induced (on a clopen set) if, and only if, (X, T) is conjugate to a recognizable, primitive, aperiodic, generalized substitution subshift.

- $\sigma: K^{*} \rightarrow K^{*}$ where K is a compact metric space (alphabet)
- For $w \in K^{+}$and $1 \leq j \leq|w|, \pi_{j}(w)$ is the j th letter of w. σ is a generalized substitution if :
- $a \mapsto|\sigma(a)|$ is continuous

Main result

Theorem. Let (X, T) be a minimal Cantor system. It is a self-induced (on a clopen set) if, and only if, (X, T) is conjugate to a recognizable, primitive, aperiodic, generalized substitution subshift.

- $\sigma: K^{*} \rightarrow K^{*}$ where K is a compact metric space (alphabet)
- For $w \in K^{+}$and $1 \leq j \leq|w|, \pi_{j}(w)$ is the j th letter of w. σ is a generalized substitution if :
- $a \mapsto|\sigma(a)|$ is continuous
- $\pi_{j} \circ \sigma$ is continuous on the set $\{a \in K:|\sigma(a)| \geq j\}$.

Proof of the main result

Proof: Set $A=X$, define $\sigma: A \rightarrow A^{+}$by

$$
\sigma(x)=\varphi(x) T(\varphi(x)) T^{2}(\varphi(x)) \cdots T^{r u(\varphi(x))-1}(\varphi(x))
$$

where $r_{U}(\varphi(x))$ is the return time of $\varphi(x)$ to $U=\varphi(X)$ where φ is the conjugacy. \square

Proof of the main result

Proof: Set $A=X$, define $\sigma: A \rightarrow A^{+}$by

$$
\sigma(x)=\varphi(x) T(\varphi(x)) T^{2}(\varphi(x)) \cdots T^{r u(\varphi(x))-1}(\varphi(x))
$$

where $r_{U}(\varphi(x))$ is the return time of $\varphi(x)$ to $U=\varphi(X)$ where φ is the conjugacy. \square

Question : Does there exist something else than "classical substitutions"?

Primitive and recognizable substitutions

- K: alphabet: compact metric space

Primitive and recognizable substitutions

- K: alphabet: compact metric space
- $\sigma: K^{*} \rightarrow K^{*}$ generalized substitution

Primitive and recognizable substitutions

- K: alphabet: compact metric space
- $\sigma: K^{*} \rightarrow K^{*}$ generalized substitution
- σ is primitive if given any non-empty open set $V \subset K$, there is j such that for any letter $a \in K$ and any $k \geq j$, one of the letters of $\sigma^{k}(a)$ is in the set V.

Primitive and recognizable substitutions

- K: alphabet: compact metric space
- $\sigma: K^{*} \rightarrow K^{*}$ generalized substitution
- σ is primitive if given any non-empty open set $V \subset K$, there is j such that for any letter $a \in K$ and any $k \geq j$, one of the letters of $\sigma^{k}(a)$ is in the set V.
- σ is recognizable if for every $z \in X$, there is a unique set of integers $n_{k}: k \in \mathbb{Z}$ and a unique $x \in X$ such that $\sigma\left(x_{k}\right)=z\left[n_{k}, n_{k+1}-1\right]$ for all $k \in \mathbb{Z}$.

Infini-Bonacci substitution

$$
\begin{array}{ll}
A=\{1, \ldots\} \cup\{\infty\} & \\
& n \mapsto 1(n+1), \infty \mapsto 1 \infty
\end{array}
$$

Example of generalized substitutions: inverse limit

- Take primitive substitutions $\sigma_{i}: \mathcal{A}_{i}^{*} \rightarrow \mathcal{A}_{i}^{*}$,

Example of generalized substitutions: inverse limit

- Take primitive substitutions $\sigma_{i}: \mathcal{A}_{i}^{*} \rightarrow \mathcal{A}_{i}^{*}$,
\checkmark morphisms $\phi_{i}: \mathcal{A}_{i+1}^{*} \rightarrow \mathcal{A}_{i}^{*}$ such that $\phi_{i} \circ \sigma_{i+1}=\sigma_{i} \circ \phi_{i}$

Example of generalized substitutions: inverse limit

- Take primitive substitutions $\sigma_{i}: \mathcal{A}_{i}^{*} \rightarrow \mathcal{A}_{i}^{*}$,
- morphisms $\phi_{i}: \mathcal{A}_{i+1}^{*} \rightarrow \mathcal{A}_{i}^{*}$ such that $\phi_{i} \circ \sigma_{i+1}=\sigma_{i} \circ \phi_{i}$
- $\mathcal{A}=\lim _{\longleftrightarrow}\left(\mathcal{A}_{i}, \phi_{i}\right)_{i}:$ the set $\left(a_{i}\right)_{i}$ with $a_{i}=\phi_{i}\left(a_{i+1}\right)$

Example of generalized substitutions: inverse limit

- Take primitive substitutions $\sigma_{i}: \mathcal{A}_{i}^{*} \rightarrow \mathcal{A}_{i}^{*}$,
\checkmark morphisms $\phi_{i}: \mathcal{A}_{i+1}^{*} \rightarrow \mathcal{A}_{i}^{*}$ such that $\phi_{i} \circ \sigma_{i+1}=\sigma_{i} \circ \phi_{i}$
- $\mathcal{A}=\underset{\longleftrightarrow}{\lim }\left(\mathcal{A}_{i}, \phi_{i}\right)_{i}:$ the set $\left(a_{i}\right)_{i}$ with $a_{i}=\phi_{i}\left(a_{i+1}\right)$
- $\sigma: \mathcal{A}^{*} \rightarrow \mathcal{A}^{*}: \sigma\left(\left(a_{i}\right)_{i}\right)_{j}=\left(\left(\sigma_{i}\left(a_{i}\right)\right)_{j}\right)_{i}$.

Example of generalized substitutions: inverse limit

- Take primitive substitutions $\sigma_{i}: \mathcal{A}_{i}^{*} \rightarrow \mathcal{A}_{i}^{*}$,
\checkmark morphisms $\phi_{i}: \mathcal{A}_{i+1}^{*} \rightarrow \mathcal{A}_{i}^{*}$ such that $\phi_{i} \circ \sigma_{i+1}=\sigma_{i} \circ \phi_{i}$
- $\mathcal{A}=\underset{\varliminf}{\lim }\left(\mathcal{A}_{i}, \phi_{i}\right)_{i}:$ the set $\left(a_{i}\right)_{i}$ with $a_{i}=\phi_{i}\left(a_{i+1}\right)$
- $\sigma: \mathcal{A}^{*} \rightarrow \mathcal{A}^{*}: \sigma\left(\left(a_{i}\right)_{i}\right)_{j}=\left(\left(\sigma_{i}\left(a_{i}\right)\right)_{j}\right)_{i}$.
- It is a generalized substitution.

Example of generalized substitutions: inverse limit

- Take primitive substitutions $\sigma_{i}: \mathcal{A}_{i}^{*} \rightarrow \mathcal{A}_{i}^{*}$,
- morphisms $\phi_{i}: \mathcal{A}_{i+1}^{*} \rightarrow \mathcal{A}_{i}^{*}$ such that $\phi_{i} \circ \sigma_{i+1}=\sigma_{i} \circ \phi_{i}$
- $\mathcal{A}=\underset{\varliminf}{\lim }\left(\mathcal{A}_{i}, \phi_{i}\right)_{i}:$ the set $\left(a_{i}\right)_{i}$ with $a_{i}=\phi_{i}\left(a_{i+1}\right)$
- $\sigma: \mathcal{A}^{*} \rightarrow \mathcal{A}^{*}: \sigma\left(\left(a_{i}\right)_{i}\right)_{j}=\left(\left(\sigma_{i}\left(a_{i}\right)\right)_{j}\right)_{i}$.
- It is a generalized substitution.
- $\mathcal{A}_{i}=\{0,1, \ldots, i\}$ and

$$
\begin{aligned}
& \sigma_{i}: 0 \mapsto 01, i \mapsto i 0, \text { and } a \mapsto(a+1) 0, \text { for } a \neq 0, i, \\
& \phi_{i-1}: i \mapsto i-1, \text { and } a \mapsto a, \text { for } a \neq i .
\end{aligned}
$$

Example of generalized substitutions: inverse limit

- Take primitive substitutions $\sigma_{i}: \mathcal{A}_{i}^{*} \rightarrow \mathcal{A}_{i}^{*}$,
- morphisms $\phi_{i}: \mathcal{A}_{i+1}^{*} \rightarrow \mathcal{A}_{i}^{*}$ such that $\phi_{i} \circ \sigma_{i+1}=\sigma_{i} \circ \phi_{i}$
- $\mathcal{A}=\underset{\varliminf}{\lim }\left(\mathcal{A}_{i}, \phi_{i}\right)_{i}:$ the set $\left(a_{i}\right)_{i}$ with $a_{i}=\phi_{i}\left(a_{i+1}\right)$
- $\sigma: \mathcal{A}^{*} \rightarrow \mathcal{A}^{*}: \sigma\left(\left(a_{i}\right)_{i}\right)_{j}=\left(\left(\sigma_{i}\left(a_{i}\right)\right)_{j}\right)_{i}$.
- It is a generalized substitution.
- $\mathcal{A}_{i}=\{0,1, \ldots, i\}$ and

$$
\begin{aligned}
& \sigma_{i}: 0 \mapsto 01, i \mapsto i 0, \text { and } a \mapsto(a+1) 0, \text { for } a \neq 0, i, \\
& \phi_{i-1}: i \mapsto i-1, \text { and } a \mapsto a, \text { for } a \neq i .
\end{aligned}
$$

- The system it generates is not expansive nor equicontinuous

Example of generalized substitutions

Let (X, S) be a subshift with $X \subset\{0,1\}^{\mathbb{Z}}$, and let $z \in X$.

Example of generalized substitutions

Let (X, S) be a subshift with $X \subset\{0,1\}^{\mathbb{Z}}$, and let $z \in X$.
Generalized substitution : $\sigma: X^{*} \rightarrow X^{*}(X$ is the alphabet $)$

Example of generalized substitutions

Let (X, S) be a subshift with $X \subset\{0,1\}^{\mathbb{Z}}$, and let $z \in X$.
Generalized substitution: $\sigma: X^{*} \rightarrow X^{*}(X$ is the alphabet $)$

$$
\sigma(x)= \begin{cases}S(x) z & \text { if } x_{0}=0 \\ S(x) z z & \text { if } x_{0}=1\end{cases}
$$

or more concisely,

$$
\sigma(x) \mapsto S(x) z z^{x_{0}} .
$$

Proposition.

There exist self-induced (on clopen sets) minimal Cantor systems which are uniquely ergodic or not, and, with zero or infinite entropy.

Proposition.

There exist self-induced (on clopen sets) minimal Cantor systems which are uniquely ergodic or not, and, with zero or infinite entropy.

- $\mathrm{K}=\prod_{n \in \mathbb{Z}} K_{n}$ where

Proposition.

There exist self-induced (on clopen sets) minimal Cantor systems which are uniquely ergodic or not, and, with zero or infinite entropy.

- $\mathrm{K}=\prod_{n \in \mathbb{Z}} K_{n}$ where
- $\left(K_{0}, S_{0}\right)$ is a Toeplitz with $\left(\mathbb{Z}_{2},+1\right)$ as a factor

Proposition.

There exist self-induced (on clopen sets) minimal Cantor systems which are uniquely ergodic or not, and, with zero or infinite entropy.

- $\mathrm{K}=\prod_{n \in \mathbb{Z}} K_{n}$ where
- $\left(K_{0}, S_{0}\right)$ is a Toeplitz with $\left(\mathbb{Z}_{2},+1\right)$ as a factor
- the $\left(K_{i}, S_{i}\right)$ are induced subshifts for $i \geq 0$ and exduced subshifts for $i<0$

Proposition.

There exist self-induced (on clopen sets) minimal Cantor systems which are uniquely ergodic or not, and, with zero or infinite entropy.

- $\mathrm{K}=\prod_{n \in \mathbb{Z}} K_{n}$ where
- $\left(K_{0}, S_{0}\right)$ is a Toeplitz with $\left(\mathbb{Z}_{2},+1\right)$ as a factor
- the $\left(K_{i}, S_{i}\right)$ are induced subshifts for $i \geq 0$ and exduced subshifts for $i<0$
- $\varphi_{n} \circ S_{n+1}=S_{n}^{2} \circ \varphi_{n}$ for some φ_{n}

Proposition.

There exist self-induced (on clopen sets) minimal Cantor systems which are uniquely ergodic or not, and, with zero or infinite entropy.

- $\mathrm{K}=\prod_{n \in \mathbb{Z}} K_{n}$ where
- $\left(K_{0}, S_{0}\right)$ is a Toeplitz with $\left(\mathbb{Z}_{2},+1\right)$ as a factor
- the $\left(K_{i}, S_{i}\right)$ are induced subshifts for $i \geq 0$ and exduced subshifts for $i<0$
- $\varphi_{n} \circ S_{n+1}=S_{n}^{2} \circ \varphi_{n}$ for some φ_{n}
- $\varphi_{n}\left(x_{n+1}\right)=\left(x_{n+1}, 0\right), x_{n+1} \in K_{n+1}$

Proposition.

There exist self-induced (on clopen sets) minimal Cantor systems which are uniquely ergodic or not, and, with zero or infinite entropy.

- $\mathrm{K}=\prod_{n \in \mathbb{Z}} K_{n}$ where
- $\left(K_{0}, S_{0}\right)$ is a Toeplitz with $\left(\mathbb{Z}_{2},+1\right)$ as a factor
- the $\left(K_{i}, S_{i}\right)$ are induced subshifts for $i \geq 0$ and exduced subshifts for $i<0$
- $\varphi_{n} \circ S_{n+1}=S_{n}^{2} \circ \varphi_{n}$ for some φ_{n}
- $\varphi_{n}\left(x_{n+1}\right)=\left(x_{n+1}, 0\right), x_{n+1} \in K_{n+1}$
- Define T: K $\rightarrow \mathbf{K}, \mathrm{T}\left(\left(x_{n}\right)_{n}\right)=\left(S_{n}\left(x_{n}\right)\right)_{n}$.

Proposition.

There exist self-induced (on clopen sets) minimal Cantor systems which are uniquely ergodic or not, and, with zero or infinite entropy.

- $\mathrm{K}=\prod_{n \in \mathbb{Z}} K_{n}$ where
- $\left(K_{0}, S_{0}\right)$ is a Toeplitz with $\left(\mathbb{Z}_{2},+1\right)$ as a factor
- the $\left(K_{i}, S_{i}\right)$ are induced subshifts for $i \geq 0$ and exduced subshifts for $i<0$
- $\varphi_{n} \circ S_{n+1}=S_{n}^{2} \circ \varphi_{n}$ for some φ_{n}
- $\varphi_{n}\left(x_{n+1}\right)=\left(x_{n+1}, 0\right), x_{n+1} \in K_{n+1}$
- Define T:K $\rightarrow \mathbf{K}, \mathrm{T}\left(\left(x_{n}\right)_{n}\right)=\left(S_{n}\left(x_{n}\right)\right)_{n}$.
- $\varphi_{n} \circ S_{n+1}=S_{n}^{2} \circ \varphi_{n}$

Proposition.

There exist self-induced (on clopen sets) minimal Cantor systems which are uniquely ergodic or not, and, with zero or infinite entropy.

- $\mathrm{K}=\prod_{n \in \mathbb{Z}} K_{n}$ where
- $\left(K_{0}, S_{0}\right)$ is a Toeplitz with $\left(\mathbb{Z}_{2},+1\right)$ as a factor
- the $\left(K_{i}, S_{i}\right)$ are induced subshifts for $i \geq 0$ and exduced subshifts for $i<0$
- $\varphi_{n} \circ S_{n+1}=S_{n}^{2} \circ \varphi_{n}$ for some φ_{n}
- $\varphi_{n}\left(x_{n+1}\right)=\left(x_{n+1}, 0\right), x_{n+1} \in K_{n+1}$
- Define T:K $\mathbf{K}, \mathrm{T}\left(\left(x_{n}\right)_{n}\right)=\left(S_{n}\left(x_{n}\right)\right)_{n}$.
- $\varphi_{n} \circ S_{n+1}=S_{n}^{2} \circ \varphi_{n}$
- X orbit closure of some well-chosen $z \in \mathbf{K}$

Proposition.

There exist self-induced (on clopen sets) minimal Cantor systems which are uniquely ergodic or not, and, with zero or infinite entropy.

- $\mathrm{K}=\prod_{n \in \mathbb{Z}} K_{n}$ where
- $\left(K_{0}, S_{0}\right)$ is a Toeplitz with $\left(\mathbb{Z}_{2},+1\right)$ as a factor
- the $\left(K_{i}, S_{i}\right)$ are induced subshifts for $i \geq 0$ and exduced subshifts for $i<0$
- $\varphi_{n} \circ S_{n+1}=S_{n}^{2} \circ \varphi_{n}$ for some φ_{n}
- $\varphi_{n}\left(x_{n+1}\right)=\left(x_{n+1}, 0\right), x_{n+1} \in K_{n+1}$
- Define T:K $\mathbf{K}, \mathrm{T}\left(\left(x_{n}\right)_{n}\right)=\left(S_{n}\left(x_{n}\right)\right)_{n}$.
- $\varphi_{n} \circ S_{n+1}=S_{n}^{2} \circ \varphi_{n}$
- X orbit closure of some well-chosen $z \in \mathbf{K}$
- (X, T) is self-induced of the clopen set $\varphi(X)$.

THANK YOU FOR YOUR ATTENTION

