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What can be said of the following substitution on A=77

» Drunken man substitution : n+— (n—1)(n+ 1)
» The infini-Bonacci substitution : n— 1(n+ 1)

But this is not the original motivation

We will come back to these substitutions later
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TU U—->U
(U, Ty) : induced system
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The framework

Dynamical system : (X, T)
> X: compact metric space
> T: homeomorphism
» UcX

(Moving) definition : (X, T) is self-induced if (X, T) if there
exists U C X (?77?7) such that (X, T) is isomorphic (??77) to
(U, Ty) (777).
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How to ensure Ty, and (U, Ty), are well defined?

» Poincaré recurrence theorem : Ty defined p-almost
everywhere (for some fixed T-invariant measure ;o with

u(U) > 0)
» (X, T) minimal and U open.
» or any way to have (U, Ty) well defined
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Some examples: minimal substitutions subshifts

Theorem. (Mossé 1992) Let (X, S) be a subshift generated by the
primitive substitution 7 : A* — A*. Then,

7: X=X
is one-to-one.

Corollary. Minimal substitution subshifts (X, S) are
self-induced: There exists a clopen set U such that (U, Sy) is
topologically conjugate to (X, S)

Proof: U = 7(X) is a clopen set.
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An other classical minimal substitutions subshifts

o0:0+ 01,1+ 10, 7(x) = x € {0,1}%,
Y = {S"x|n € Z}
T(X) # [0]

x=o(x)= 011 01 0 011 0 01 011 01 0 01 011 O
Do(x)= 0 1 20 21 0 1 21 0 2

» Observation: The subshift generated by Dy(x) is isomorphic
to ([0], Spoy)-
> (Y, S) is not isomorphic to ([0], Sjg) but is self-induced.
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Other induction properties of substitutions subshifts

» (Holton-Zamboni 1999) A minimal subshift is substitutive if,
and only if, it has (up to isomorphism) finitely many induced
systems on cylinder sets

» Observation : A minimal Cantor system is periodic if, and
only if, it has (up to isomorphism) finitely many induced
systems on clopen set

> Let (X,S) be a minimal substitution subshift. For all clopen
set U C X there is a clopen set V C U such that (X, S) is
topologically conjugate to (V, Sy).

» This property is equivalent to the self-induction property on
clopen sets.
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Some examples: Rotations on the torus

Theorem. (Ornstein-Rudolph-Weiss 1982) Let (T, R,) and

(T, Rg) be two non periodic rotations. There exists a

Lebesgue set U, with Leb(U) > 0, such that (U, R,,y) is (measure
theoretically) isomorphic to (T, Rg).

Corollary. Rotations on the torus are self-induced (measure
theoretically).

Corollary. Sturmian subshifts are self-induced (measure
theoretically).

But, Sturmian subshifts are self-induced on clopen sets if, and only
if, ... (can you expect?) the "slope” is quadratic.
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Some examples: odometers

(Zp,z — z + 1) is self-induced (on a clopen set): U = pZ,
Not all odometers are self-induced (on a clopen set).

Let (pn)n be a sequence of integers such that p, divides pp+1

Lipy) = {(Xn) S H 7] pnls : Xp = Xny1 mod pn} .

n=1

Exercise. The odometer (Z(,,),z — z + 1) is self-induced (on a

clopen set) if, and only if,

Pn)
lim max{k|g* divides p"} = +o0.

Example. If (p,) is the sequence of prime numbers then
(Z(p,),z = z + 1) is not self-induced (on a clopen set)
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Some examples: the full shift

Exercise. (Example of G. Vigny) The full shift is (topologically)
self-induced (on a closed set).

Proof: U = {(xn)nez|*2nx2n+1 € {00,11}} (closed set)



Observation: Abramov formula

(X, T,p), p(U) >0



Observation: Abramov formula

(X, T,u), u(U) >0

h(X, T, p)

h(U7 TU:MU) = N(U)



Observation: Abramov formula

(X, T,u), u(U) >0

h(X, T, p)

h(U7 TUyMU) = N(U)

Consequence: if (U, Ty, puy) and (X, T, u) are isomorphic then

h(X, T,un) € {0,+c0}
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Some answers: expansive case (subshifts)

Theorem (DPO-2018). Every self-induced (on a clopen set)
expansive minimal Cantor system is conjugate to a substitution
subshift.

Proof: Use codings with return words (derived sequences) and
substitutions on the words of length n.

¢:(X,S)— (U,Sy), U#X.

¢™H(U) C ¢"(V)

" Easy situation” : N¢"(U) = {x}

Because (U, Sy) is isomorphic to the subshift generated by the

derived sequence of x with respect to U

What about non-expansive and non-equicontinuous systems?
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Expansiveness and equicontinuity

T : X — X on a compact metric space (X, d) is

P> expansive if :
30 >0, Vx,y € X,x £ y,In € Z,d(T"x, T"y) > 4.
» equicontinuous if :

Ve >0, 30 >0, (d(x,y) <d=d(T"x, T"y) < € Vn).



Some answers: all ergodic systems are self-induced

Definition. Let (X, T) be a minimal Cantor system. We say that
a nonempty closed set C is a Poincaré section for (X, T) if the
induced map T¢ : C — C is a well-defined homeomorphism.



Some answers: all ergodic systems are self-induced
Definition. Let (X, T) be a minimal Cantor system. We say that
a nonempty closed set C is a Poincaré section for (X, T) if the
induced map T¢ : C — C is a well-defined homeomorphism.




Some answers: all ergodic systems are self-induced

Definition. Let (X, T) be a minimal Cantor system. We say that
a nonempty closed set C is a Poincaré section for (X, T) if the
induced map T¢ : C — C is a well-defined homeomorphism.

Theorem. (Dahl-Molberg 2009) Let (X, T) and (Y, R) be
minimal Cantor systems. Then, there exists a Poincaré section C
in (Y, R) such that (C, R¢) is topologically conjugate to (X, T).

Proof: easy with Bratteli diagrams
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The idea for Dahl-Molberg theorem

(X,T) (Y.S)
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Some corollaries

Corollary. Minimal Cantor systems are self-induced (on Poincaré
section). (Even those with finite positive entropy)

Corollary. "Ergodic systems are self-induced”
Proof: Vershik representation of ergodic systems
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Main result

Theorem. Let (X, T) be a minimal Cantor system. It is a
self-induced (on a clopen set) if, and only if, (X, T) is conjugate to
a recognizable, primitive, aperiodic, generalized substitution
subshift.

» o : K* = K* where K is a compact metric space (alphabet)
» For w e KT and 1 <j < |w|, mj(w) is the jth letter of w.

o is a generalized substitution if :
» a+ |o(a)| is continuous

» 700 is continuous on the set {a € K : |o(a)| > j}.
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Proof of the main result

Proof: Set A= X, define o : A— A" by

o(x) = o(x) T((x)) T*((x)) - - TPECN " (o(x)),
where ry(¢(x)) is the return time of p(x) to U = ¢(X) where ¢ is
the conjugacy. [J

Question : Does there exist something else than " classical
substitutions”?
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Primitive and recognizable substitutions

> K: alphabet : compact metric space
» o K* — K* generalized substitution

> o is primitive if given any non-empty open set V C K, there
is j such that for any letter a € K and any k > j, one of the
letters of o%(a) is in the set V.

» o is recognizable if for every z € X, there is a unique set of
integers ny : k € Z and a unique x € X such that
J(Xk) = z[nk, Ngy1 — ]_] for all k € Z.



Infini-Bonacci substitution

A={1,...} U{oo}

n—1(n+1),00 — loo
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Example of generalized substitutions : inverse limit

Take primitive substitutions o;: AT — A7,

morphisms ¢;: A7, ; — A7 such that ¢; o oj11 = 0;0 ¢;
A= Lir_n(A,-, ¢;)i : the set (a;); with a; = ¢;(ai+1)

o A" = A" o((a)i); = ((oi(ai));)i-

It is a generalized substitution.

A; ={0,1,...,i} and

vVvyvyVvVvyy

0;:0~01, i— 0, and a+> (a+1)0, for a# 0,1,
¢i—1:i—i—1 and a+ a, for a#i.

P> The system it generates is not expansive nor equicontinuous
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Example of generalized substitutions

Let (X, S) be a subshift with X C {0,1}%, and let z € X.

Generalized substitution : o : X* — X* (X is the alphabet)
o(x) = S(x)z ?f x0 =0,
S(x)zz ifxp=1,

or more concisely,
o(x) — S(x)zz.
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» K =]],cz Kn where
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K = [I,cz Kn Where
(Ko, So) is a Toeplitz with (Zy,+1) as a factor

the (K, S;i) are induced subshifts for i > 0 and exduced
subshifts for i < 0

©n 0 Spy1 = S2 0, for some ¢,

n(Xn+1) = (Xn+1,0), Xnt1 € Knt1

Define T : K — K, T((xn)n) = (Sn(xn))n-
©n0 Sny1 =S50 ¢n

X orbit closure of some well-chosen z € K
(X, T) is self-induced of the clopen set ¢(X).



THANK YOU FOR YOUR ATTENTION



