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A possible motivation for this talk

Question of Christian Mauduit (Ferenczi, 2006) :

What can be said of the following substitution on A = Z ?

I Drunken man substitution : n 7→ (n − 1)(n + 1)

I The infini-Bonacci substitution : n 7→ 1(n + 1)

But this is not the original motivation

We will come back to these substitutions later
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The question of this talk

What are the self-induced systems ?
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The framework

Dynamical system : (X ,T )

I X : compact metric space

I T : homeomorphism

I U ⊂ X
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(Moving) definition : (X ,T ) is self-induced if (X ,T ) if there
exists U ( X (???) such that (X ,T ) is isomorphic (???) to
(U,TU) (???).
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How to ensure TU , and (U ,TU), are well defined?

I Poincaré recurrence theorem : TU defined µ-almost
everywhere (for some fixed T -invariant measure µ with
µ(U) > 0)

I (X ,T ) minimal and U open.

I or any way to have (U,TU) well defined
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Some examples: minimal substitutions subshifts

Theorem. (Mossé 1992) Let (X ,S) be a subshift generated by the
primitive substitution τ : A∗ → A∗. Then,

τ : X → X

is one-to-one.

Corollary. Minimal substitution subshifts (X ,S) are
self-induced: There exists a clopen set U such that (U,SU) is
topologically conjugate to (X ,S)

Proof: U = τ(X ) is a clopen set.
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A too classical minimal substitutions subshifts

τ : 0 7→ 01, 1 7→ 0, τ(x) = x ∈ {0, 1}Z, S the shift,

X = {Snx |n ∈ Z}

τ(X ) = [0]

x = τ(x) = 01 0 01 01 0 01 0 01 · · ·
D0(x) = 0 1 0 0 1 0 1 0 · · ·

I Observation: The subshift generated by D0(x) is isomorphic
to ([0],S[0]).

I (X ,S) is isomorphic to ([0],S[0]) and is self-induced.
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An other classical minimal substitutions subshifts

σ : 0 7→ 01, 1 7→ 10, τ(x) = x ∈ {0, 1}Z,

Y = {Snx |n ∈ Z}

τ(X ) 6= [0]

x = σ(x) = 011 01 0 011 0 01 011 01 0 01 011 0 · · ·
D0(x) = 0 1 2 0 2 1 0 1 2 1 0 2 · · ·

I Observation: The subshift generated by D0(x) is isomorphic
to ([0],S[0]).

I (Y ,S) is not isomorphic to ([0],S[0]) but is self-induced.



An other classical minimal substitutions subshifts

σ : 0 7→ 01, 1 7→ 10, τ(x) = x ∈ {0, 1}Z,

Y = {Snx |n ∈ Z}

τ(X ) 6= [0]

x = σ(x) = 011 01 0 011 0 01 011 01 0 01 011 0 · · ·
D0(x) = 0 1 2 0 2 1 0 1 2 1 0 2 · · ·

I Observation: The subshift generated by D0(x) is isomorphic
to ([0],S[0]).

I (Y ,S) is not isomorphic to ([0],S[0]) but is self-induced.



An other classical minimal substitutions subshifts

σ : 0 7→ 01, 1 7→ 10, τ(x) = x ∈ {0, 1}Z,

Y = {Snx |n ∈ Z}

τ(X ) 6= [0]

x = σ(x) = 011 01 0 011 0 01 011 01 0 01 011 0 · · ·
D0(x) = 0 1 2 0 2 1 0 1 2 1 0 2 · · ·

I Observation: The subshift generated by D0(x) is isomorphic
to ([0],S[0]).

I (Y ,S) is not isomorphic to ([0],S[0]) but is self-induced.



An other classical minimal substitutions subshifts

σ : 0 7→ 01, 1 7→ 10, τ(x) = x ∈ {0, 1}Z,

Y = {Snx |n ∈ Z}

τ(X ) 6= [0]

x = σ(x) = 011 01 0 011 0 01 011 01 0 01 011 0 · · ·
D0(x) = 0 1 2 0 2 1 0 1 2 1 0 2 · · ·

I Observation: The subshift generated by D0(x) is isomorphic
to ([0],S[0]).

I (Y ,S) is not isomorphic to ([0],S[0]) but is self-induced.



An other classical minimal substitutions subshifts

σ : 0 7→ 01, 1 7→ 10, τ(x) = x ∈ {0, 1}Z,

Y = {Snx |n ∈ Z}

τ(X ) 6= [0]

x = σ(x) = 011 01 0 011 0 01 011 01 0 01 011 0 · · ·
D0(x) = 0 1 2 0 2 1 0 1 2 1 0 2 · · ·

I Observation: The subshift generated by D0(x) is isomorphic
to ([0],S[0]).

I (Y ,S) is not isomorphic to ([0],S[0]) but is self-induced.



Other induction properties of substitutions subshifts

I (Holton-Zamboni 1999) A minimal subshift is substitutive if,
and only if, it has (up to isomorphism) finitely many induced
systems on cylinder sets

I Observation : A minimal Cantor system is periodic if, and
only if, it has (up to isomorphism) finitely many induced
systems on clopen set

I Let (X ,S) be a minimal substitution subshift. For all clopen
set U ⊂ X there is a clopen set V ⊂ U such that (X ,S) is
topologically conjugate to (V ,SV ).

I This property is equivalent to the self-induction property on
clopen sets.
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Some examples: Rotations on the torus

Theorem. (Ornstein-Rudolph-Weiss 1982) Let (T,Rα) and
(T,Rβ) be two non periodic rotations. There exists a
Lebesgue set U, with Leb(U) > 0, such that (U,Rα,U) is (measure
theoretically) isomorphic to (T,Rβ).

Corollary. Rotations on the torus are self-induced (measure
theoretically).

Corollary. Sturmian subshifts are self-induced (measure
theoretically).
But, Sturmian subshifts are self-induced on clopen sets if, and only
if, ... (can you expect?) the ”slope” is quadratic.
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Some examples: odometers

(Zp, z 7→ z + 1) is self-induced (on a clopen set):

U = pZp

Not all odometers are self-induced (on a clopen set).

Let (pn)n be a sequence of integers such that pn divides pn+1

Z(pn) =

{
(xn) ∈

∞∏
n=1

Z/pnZ : xn ≡ xn+1 mod pn

}
.

Exercise. The odometer (Z(pn), z 7→ z + 1) is self-induced (on a
clopen set) if, and only if,

lim
n

max{k |qk divides pn} = +∞.

Example. If (pn) is the sequence of prime numbers then
(Z(pn), z 7→ z + 1) is not self-induced (on a clopen set)
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Some examples: the full shift

Exercise. (Example of G. Vigny) The full shift is (topologically)
self-induced (on a closed set).

Proof: U = {(xn)n∈Z|x2nx2n+1 ∈ {00, 11}} (closed set)
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Observation: Abramov formula

(X ,T , µ), µ(U) > 0

h(U,TU , µU) =
h(X ,T , µ)

µ(U)

Consequence: if (U,TU , µU) and (X ,T , µ) are isomorphic then

h(X ,T , µ) ∈ {0,+∞}
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Some answers: expansive case (subshifts)

Theorem (DPO-2018). Every self-induced (on a clopen set)
expansive minimal Cantor system is conjugate to a substitution
subshift.

Proof: Use codings with return words (derived sequences) and
substitutions on the words of length n.

φ : (X ,S)→ (U,SU), U 6= X .

φn+1(U) ⊂ φn(U)

”Easy situation” : ∩φn(U) = {x}

Because (U,SU) is isomorphic to the subshift generated by the
derived sequence of x with respect to U

What about non-expansive and non-equicontinuous systems?
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Expansiveness and equicontinuity

T : X → X on a compact metric space (X , d) is

I expansive if :

∃δ > 0, ∀x , y ∈ X , x 6= y , ∃n ∈ Z, d(T nx ,T ny) > δ.

I equicontinuous if :

∀ε > 0, ∃δ > 0, (d(x , y) ≤ δ =⇒ d(T nx ,T ny) < ε ∀n).
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Some answers: all ergodic systems are self-induced

Definition. Let (X ,T ) be a minimal Cantor system. We say that
a nonempty closed set C is a Poincaré section for (X ,T ) if the
induced map TC : C → C is a well-defined homeomorphism.

Theorem. (Dahl-Molberg 2009) Let (X ,T ) and (Y ,R) be
minimal Cantor systems. Then, there exists a Poincaré section C
in (Y ,R) such that (C ,RC ) is topologically conjugate to (X ,T ).

Proof: easy with Bratteli diagrams
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Some corollaries

Corollary. Minimal Cantor systems are self-induced (on Poincaré
section). (Even those with finite positive entropy)

Corollary. ”Ergodic systems are self-induced”
Proof: Vershik representation of ergodic systems
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Main result

Theorem. Let (X ,T ) be a minimal Cantor system. It is a
self-induced (on a clopen set) if, and only if, (X ,T ) is conjugate to
a recognizable, primitive, aperiodic, generalized substitution
subshift.

I σ : K ∗ → K ∗ where K is a compact metric space (alphabet)

I For w ∈ K+ and 1 ≤ j ≤ |w |, πj(w) is the jth letter of w .

σ is a generalized substitution if :

I a 7→ |σ(a)| is continuous

I πj ◦ σ is continuous on the set {a ∈ K : |σ(a)| ≥ j}.
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Proof of the main result

Proof: Set A = X , define σ : A→ A+ by

σ(x) = ϕ(x)T (ϕ(x))T 2(ϕ(x)) · · ·T rU(ϕ(x))−1(ϕ(x)),

where rU(ϕ(x)) is the return time of ϕ(x) to U = ϕ(X ) where ϕ is
the conjugacy. �

Question : Does there exist something else than ”classical
substitutions”?
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Primitive and recognizable substitutions

I K : alphabet : compact metric space

I σ : K ∗ → K ∗ generalized substitution

I σ is primitive if given any non-empty open set V ⊂ K , there
is j such that for any letter a ∈ K and any k ≥ j , one of the
letters of σk(a) is in the set V .

I σ is recognizable if for every z ∈ X , there is a unique set of
integers nk : k ∈ Z and a unique x ∈ X such that
σ(xk) = z [nk , nk+1 − 1] for all k ∈ Z.
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Infini-Bonacci substitution

A = {1, . . . } ∪ {∞}

n 7→ 1(n + 1),∞ 7→ 1∞



Example of generalized substitutions : inverse limit

I Take primitive substitutions σi : A∗i → A∗i ,

I morphisms φi : A∗i+1 → A∗i such that φi ◦ σi+1 = σi ◦ φi
I A = lim←−(Ai , φi )i : the set (ai )i with ai = φi (ai+1)

I σ : A∗ → A∗ : σ((ai )i )j = ((σi (ai ))j)i .

I It is a generalized substitution.

I Ai = {0, 1, . . . , i} and

σi : 0 7→ 01, i 7→ i0, and a 7→ (a + 1)0, for a 6= 0, i ,

φi−1 : i 7→ i − 1, and a 7→ a, for a 6= i .

I The system it generates is not expansive nor equicontinuous
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Example of generalized substitutions

Let (X ,S) be a subshift with X ⊂ {0, 1}Z, and let z ∈ X .

Generalized substitution : σ : X ∗ → X ∗ (X is the alphabet)

σ(x) =

{
S(x)z if x0 = 0,

S(x)zz if x0 = 1,

or more concisely,
σ(x) 7→ S(x)zzx0 .
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Proposition.

There exist self-induced (on clopen sets) minimal Cantor systems
which are uniquely ergodic or not, and, with zero or infinite
entropy.

I K =
∏

n∈Z Kn where

I (K0, S0) is a Toeplitz with (Z2,+1) as a factor

I the (Ki ,Si ) are induced subshifts for i ≥ 0 and exduced
subshifts for i < 0

I ϕn ◦ Sn+1 = S2
n ◦ ϕn for some ϕn

I ϕn(xn+1) = (xn+1, 0), xn+1 ∈ Kn+1

I Define T : K→ K, T((xn)n) = (Sn(xn))n.

I ϕn ◦ Sn+1 = S2
n ◦ ϕn

I X orbit closure of some well-chosen z ∈ K

I (X ,T ) is self-induced of the clopen set ϕ(X ).
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which are uniquely ergodic or not, and, with zero or infinite
entropy.

I K =
∏

n∈Z Kn where

I (K0, S0) is a Toeplitz with (Z2,+1) as a factor

I the (Ki , Si ) are induced subshifts for i ≥ 0 and exduced
subshifts for i < 0

I ϕn ◦ Sn+1 = S2
n ◦ ϕn for some ϕn

I ϕn(xn+1) = (xn+1, 0), xn+1 ∈ Kn+1

I Define T : K→ K, T((xn)n) = (Sn(xn))n.

I ϕn ◦ Sn+1 = S2
n ◦ ϕn

I X orbit closure of some well-chosen z ∈ K

I (X ,T ) is self-induced of the clopen set ϕ(X ).
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