Words that almost commute

Daniel Gabric
University of Waterloo

November 22, 2021

Words that commute

- When does $x y=y x$ for non-empty words x, y ?

Words that commute

- When does $x y=y x$ for non-empty words x, y ?

Theorem (Lyndon-Schützenberger)
Let x and y be non-empty words. Then $x y=y x$ if and only if there exists a non-empty word z, and integers $i, j \geq 1$ such that $x=z^{i}$ and $y=z^{j}$.

Words that commute

- When does $x y=y x$ for non-empty words x, y ?

Theorem (Lyndon-Schützenberger)

Let x and y be non-empty words. Then $x y=y x$ if and only if there exists a non-empty word z, and integers $i, j \geq 1$ such that $x=z^{i}$ and $y=z^{j}$.

- A word w is a power if $w=u^{i}$ for some non-empty word u and some integer $i \geq 2$. Otherwise, w is said to be primitive.

Words that commute

- When does $x y=y x$ for non-empty words x, y ?

Theorem (Lyndon-Schützenberger)

Let x and y be non-empty words. Then $x y=y x$ if and only if there exists a non-empty word z, and integers $i, j \geq 1$ such that $x=z^{i}$ and $y=z^{j}$.

- A word w is a power if $w=u^{i}$ for some non-empty word u and some integer $i \geq 2$. Otherwise, w is said to be primitive.
- Two words x and y commute if and only if $x y$ and $y x$ are powers of the same word.

Words that commute

- When does $x y=y x$ for non-empty words x, y ?

Theorem (Lyndon-Schützenberger)

Let x and y be non-empty words. Then $x y=y x$ if and only if there exists a non-empty word z, and integers $i, j \geq 1$ such that $x=z^{i}$ and $y=z^{j}$.

- A word w is a power if $w=u^{i}$ for some non-empty word u and some integer $i \geq 2$. Otherwise, w is said to be primitive.
- Two words x and y commute if and only if $x y$ and $y x$ are powers of the same word.
- Using this characterization, and a formula for the number of length- n powers, one can count the number of pairs of words (x, y) with $|x y|=n$ that commute.

Fine-Wilf

- Fine and Wilf showed that one can achieve the forward implication of Lyndon-Schützenberger with a weaker hypothesis.

Fine-Wilf

- Fine and Wilf showed that one can achieve the forward implication of Lyndon-Schützenberger with a weaker hypothesis.

Theorem (Fine-Wilf)
Let x and y be non-empty words of lengths m and n. If $x y$ and $y x$ agree on the first $m+n-\operatorname{gcd}(m, n)$ terms then $x y=y x$.

Fine-Wilf

- Fine and Wilf showed that one can achieve the forward implication of Lyndon-Schützenberger with a weaker hypothesis.

Theorem (Fine-Wilf)

Let x and y be non-empty words of lengths m and n. If $x y$ and $y x$ agree on the first $m+n-\operatorname{gcd}(m, n)$ terms then $x y=y x$.

- They showed the optimality of this result by constructing words x and y of lengths m and n such that x and y agree on the first $m+n-\operatorname{gcd}(m, n)-1$ terms but disagree at position $m+n-\operatorname{gcd}(m, n)$.

Fine-Wilf

- Fine and Wilf showed that one can achieve the forward implication of Lyndon-Schützenberger with a weaker hypothesis.

Theorem (Fine-Wilf)

Let x and y be non-empty words of lengths m and n. If $x y$ and $y x$ agree on the first $m+n-\operatorname{gcd}(m, n)$ terms then $x y=y x$.

- They showed the optimality of this result by constructing words x and y of lengths m and n such that x and y agree on the first $m+n-\operatorname{gcd}(m, n)-1$ terms but disagree at position $m+n-\operatorname{gcd}(m, n)$.
- Such pairs of words optimally "almost" commute.

Theorem

Let x and y be non-empty words of lengths m and n. If $x y$ and $y x$ agree on the first $m+n-\operatorname{gcd}(m, n)-1$ positions but disagree at position $m+n-\operatorname{gcd}(m, n)$ then $x y$ and $y x$ differ in exactly 2 positions.

Smallest Hamming distance

- The Hamming distance ham (u, v) between two equal-length words u, v is defined to be the number of positions where u and v differ.

Smallest Hamming distance

- The Hamming distance ham (u, v) between two equal-length words u, v is defined to be the number of positions where u and v differ.
- Shallit proved that the smallest value ham $(x y, y x)$ can take on, other than 0 , is 2 .

Smallest Hamming distance

- The Hamming distance ham (u, v) between two equal-length words u, v is defined to be the number of positions where u and v differ.
- Shallit proved that the smallest value ham $(x y, y x)$ can take on, other than 0 , is 2 .

Theorem (Shallit [1])
Let x and y be words. Then ham $(x y, y x) \neq 1$.

Smallest Hamming distance

- The Hamming distance ham (u, v) between two equal-length words u, v is defined to be the number of positions where u and v differ.
- Shallit proved that the smallest value ham $(x y, y x)$ can take on, other than 0 , is 2 .

```
Theorem (Shallit [1])
Let x and y be words. Then ham ( }xy,yx)\not=1\mathrm{ .
```


Proof.

The proof is by contradiction. Suppose ham $(x y, y x)=1$. Then $x y=u a v$ and $y x=u b v$ where a, b are distinct symbols. But this means that $x y$ and $y x$ have different counts of a 's and b 's. A contradiction.
[1] Jeffrey Shallit. Hamming distance for conjugates. Discrete Mathematics, 309(12):4197-4199, 2009.

Words that almost commute

- If ham $(x y, y x)=2$ we say that x and y almost commute.

Words that almost commute

- If ham $(x y, y x)=2$ we say that x and y almost commute.
- The words $x y$ and $y x$ are said to be conjugates.

Words that almost commute

- If ham $(x y, y x)=2$ we say that x and y almost commute.
- The words $x y$ and $y x$ are said to be conjugates.
- So we could, equivalently, either talk about pairs of words (x, y) that almost commute, or we could talk about words u that have a conjugate v such that ham $(u, v)=2$.

Words that almost commute

- If ham $(x y, y x)=2$ we say that x and y almost commute.
- The words $x y$ and $y x$ are said to be conjugates.
- So we could, equivalently, either talk about pairs of words (x, y) that almost commute, or we could talk about words u that have a conjugate v such that ham $(u, v)=2$.
- Can we characterize almost-commuting pairs of words in a similar way that Lyndon and Schützenberger characterized commuting pairs of words?

Words that almost commute

- If ham $(x y, y x)=2$ we say that x and y almost commute.
- The words $x y$ and $y x$ are said to be conjugates.
- So we could, equivalently, either talk about pairs of words (x, y) that almost commute, or we could talk about words u that have a conjugate v such that ham $(u, v)=2$.
- Can we characterize almost-commuting pairs of words in a similar way that Lyndon and Schützenberger characterized commuting pairs of words?
- Can we count the number of almost-commuting pairs of words?

Words that almost commute

- If ham $(x y, y x)=2$ we say that x and y almost commute.
- The words $x y$ and $y x$ are said to be conjugates.
- So we could, equivalently, either talk about pairs of words (x, y) that almost commute, or we could talk about words u that have a conjugate v such that ham $(u, v)=2$.
- Can we characterize almost-commuting pairs of words in a similar way that Lyndon and Schützenberger characterized commuting pairs of words?
- Can we count the number of almost-commuting pairs of words?
- In this talk, we answer these questions using the conjugate formulation.

Results

- A characterization of length- n words u that have a conjugate v such that $\operatorname{ham}(u, v)=2$.

Results

- A characterization of length- n words u that have a conjugate v such that $\operatorname{ham}(u, v)=2$.
- A characterization of length- n words u that have exactly one conjugate v such that ham $(u, v)=2$.

Results

- A characterization of length- n words u that have a conjugate v such that $\operatorname{ham}(u, v)=2$.
- A characterization of length- n words u that have exactly one conjugate v such that ham $(u, v)=2$.
- A characterization of length- n Lyndon words u that have a conjugate v such that $\operatorname{ham}(u, v)=2$.

Results

- A characterization of length- n words u that have a conjugate v such that $\operatorname{ham}(u, v)=2$.
- A characterization of length- n words u that have exactly one conjugate v such that ham $(u, v)=2$.
- A characterization of length- n Lyndon words u that have a conjugate v such that ham $(u, v)=2$.
- Formulas for all of these quantities.

Results

- A characterization of length- n words u that have a conjugate v such that $\operatorname{ham}(u, v)=2$.
- A characterization of length- n words u that have exactly one conjugate v such that ham $(u, v)=2$.
- A characterization of length- n Lyndon words u that have a conjugate v such that ham $(u, v)=2$.
- Formulas for all of these quantities.
- Asymptotic behaviour.

Notation

- All of the following definitions are assumed to be over a k-letter alphabet $\Sigma_{k}=\{0,1, \ldots, k-1\}$.

Notation

- All of the following definitions are assumed to be over a k-letter alphabet $\Sigma_{k}=\{0,1, \ldots, k-1\}$.
- Let σ be the left-shift map, so that $\sigma^{|x|}(x y)=y x$ for any words x, y.

Notation

- All of the following definitions are assumed to be over a k-letter alphabet $\Sigma_{k}=\{0,1, \ldots, k-1\}$.
- Let σ be the left-shift map, so that $\sigma^{|x|}(x y)=y x$ for any words x, y.
- Let $H(n)$ denote the set of all length n words u that have a conjugate v such that $\operatorname{ham}(u, v)=2$.

Notation

- All of the following definitions are assumed to be over a k-letter alphabet $\Sigma_{k}=\{0,1, \ldots, k-1\}$.
- Let σ be the left-shift map, so that $\sigma^{|x|}(x y)=y x$ for any words x, y.
- Let $H(n)$ denote the set of all length n words u that have a conjugate v such that $\operatorname{ham}(u, v)=2$.
- Let $h(n)=|H(n)|$.

Notation

- All of the following definitions are assumed to be over a k-letter alphabet $\Sigma_{k}=\{0,1, \ldots, k-1\}$.
- Let σ be the left-shift map, so that $\sigma^{|x|}(x y)=y x$ for any words x, y.
- Let $H(n)$ denote the set of all length n words u that have a conjugate v such that $\operatorname{ham}(u, v)=2$.
- Let $h(n)=|H(n)|$.
- Let $H(n, i)$ denote the set of all length- n words u such that $\operatorname{ham}\left(u, \sigma^{i}(u)\right)=2$.

Notation

- All of the following definitions are assumed to be over a k-letter alphabet $\Sigma_{k}=\{0,1, \ldots, k-1\}$.
- Let σ be the left-shift map, so that $\sigma^{|x|}(x y)=y x$ for any words x, y.
- Let $H(n)$ denote the set of all length n words u that have a conjugate v such that $\operatorname{ham}(u, v)=2$.
- Let $h(n)=|H(n)|$.
- Let $H(n, i)$ denote the set of all length- n words u such that $\operatorname{ham}\left(u, \sigma^{i}(u)\right)=2$.
- Let $h(n, i)=|H(n, i)|$.

Useful property

Lemma

Let u be a length-n word. Let i be an integer with $0<i<n$. If $u \in H(n, i)$ then $u \in H(n, n-i)$.

Proof.

Useful property

Lemma

Let u be a length-n word. Let i be an integer with $0<i<n$. If $u \in H(n, i)$ then $u \in H(n, n-i)$.

Proof.

Suppose $i \leq n / 2$. Then we can write $u=x t z$ for some words t, z where $|x|=|z|=i$ and $|t|=n-2 i$. We have that ham $(x t z, t z x)=\operatorname{ham}(x t, t z)+\operatorname{ham}(z, x)=2$. Consider the word $z x t$. Clearly $v=z x t$ is a conjugate of $u=x t z$ such that $\operatorname{ham}(x t z, z x t)=\operatorname{ham}(x, z)+\operatorname{ham}(t z, x t)=2$ where $u=(x t) z$ and $v=z(x t)$ with $|x t|=n-i$. Therefore $u \in H(n, n-i)$.

Useful property

Lemma

Let u be a length-n word. Let i be an integer with $0<i<n$. If $u \in H(n, i)$ then $u \in H(n, n-i)$.

Proof.

Suppose $i \leq n / 2$. Then we can write $u=x t z$ for some words t, z where $|x|=|z|=i$ and $|t|=n-2 i$. We have that ham $(x t z, t z x)=\operatorname{ham}(x t, t z)+\operatorname{ham}(z, x)=2$. Consider the word $z x t$. Clearly $v=z x t$ is a conjugate of $u=x t z$ such that $\operatorname{ham}(x t z, z x t)=\operatorname{ham}(x, z)+\operatorname{ham}(t z, x t)=2$ where $u=(x t) z$ and $v=z(x t)$ with $|x t|=n-i$. Therefore $u \in H(n, n-i)$.

Suppose $i>n / 2$. Then we can write $u=z t y$ for some words t, z where $|z|=|y|=n-i$ and $|t|=2 i-n$. We have that $\operatorname{ham}(z t y, y z t)=\operatorname{ham}(z, y)+\operatorname{ham}(t y, z t)=2$. Consider the word tyz. Clearly $v=t y z$ is a conjugate of $u=z t y$ such that ham $(z t y, t y z)=\operatorname{ham}(z t, t y)+\operatorname{ham}(y, z)=2$ where $u=z(t y)$ and $v=(t y) z$ with $|z|=n-i$. Therefore $u \in H(n, n-i)$.

Characterizing $H(n, i)$

Lemma

Let n, i be positive integers such that $n>i$. Let $g=\operatorname{gcd}(n, i)$. Let w be a length-n word. Let $w=x_{0} x_{1} \cdots x_{n / g-1}$ where $\left|x_{j}\right|=g$ for all j, $0 \leq j \leq n / g-1$. Then $w \in H(n, i)$ iff there exist two distinct integers j_{1}, $j_{2}, 0 \leq j_{1}<j_{2} \leq n / g-1$ such that ham $\left(x_{j_{1}}, x_{j_{2}}\right)=1$ and $x_{j}=x_{(j+i / g) \bmod n / g}$ for all $j \neq j_{1}, j_{2}, 0 \leq j \leq n / g-1$.

- Suppose $w \in H(n, i)$.

Characterizing $H(n, i)$

Lemma

Let n, i be positive integers such that $n>i$. Let $g=\operatorname{gcd}(n, i)$. Let w be a length-n word. Let $w=x_{0} x_{1} \cdots x_{n / g-1}$ where $\left|x_{j}\right|=g$ for all j, $0 \leq j \leq n / g-1$. Then $w \in H(n, i)$ iff there exist two distinct integers j_{1}, $j_{2}, 0 \leq j_{1}<j_{2} \leq n / g-1$ such that ham $\left(x_{j_{1}}, x_{j_{2}}\right)=1$ and $x_{j}=x_{(j+i / g) \bmod n / g}$ for all $j \neq j_{1}, j_{2}, 0 \leq j \leq n / g-1$.

- Suppose $w \in H(n, i)$.
- Write $w=x_{0} x_{1} \cdots x_{n / g-1}$ where $\left|x_{j}\right|=g$ for all meaningful j.

Characterizing $H(n, i)$

Lemma

Let n, i be positive integers such that $n>i$. Let $g=\operatorname{gcd}(n, i)$. Let w be a length- n word. Let $w=x_{0} x_{1} \cdots x_{n / g-1}$ where $\left|x_{j}\right|=g$ for all j, $0 \leq j \leq n / g-1$. Then $w \in H(n, i)$ iff there exist two distinct integers j_{1}, $j_{2}, 0 \leq j_{1}<j_{2} \leq n / g-1$ such that ham $\left(x_{j_{1}}, x_{j_{2}}\right)=1$ and $x_{j}=x_{(j+i / g) \bmod n / g}$ for all $j \neq j_{1}, j_{2}, 0 \leq j \leq n / g-1$.

- Suppose $w \in H(n, i)$.
- Write $w=x_{0} x_{1} \cdots x_{n / g-1}$ where $\left|x_{j}\right|=g$ for all meaningful j.

$$
\begin{aligned}
\operatorname{ham}\left(w, \sigma^{i}(w)\right) & =\operatorname{ham}\left(x_{0} x_{1} \cdots x_{n / g-1}, x_{i / g} \cdots x_{n / g-1} x_{0} \cdots x_{i / g-1}\right) \\
& =\sum_{j=0}^{n / g-1} \operatorname{ham}\left(x_{j}, x_{(j+i / g) \bmod n / g}\right)=2
\end{aligned}
$$

Characterizing $H(n, i)$

$$
\operatorname{ham}\left(w, \sigma^{i}(w)\right)=\sum_{j=0}^{n / g-1} \operatorname{ham}\left(x_{j}, x_{(j+i / g) \bmod n / g}\right)=2
$$

Characterizing $H(n, i)$

$$
\operatorname{ham}\left(w, \sigma^{i}(w)\right)=\sum_{j=0}^{n / g-1} \operatorname{ham}\left(x_{j}, x_{(j+i / g) \bmod n / g}\right)=2
$$

- One of the following must be true:

Characterizing $H(n, i)$

$$
\operatorname{ham}\left(w, \sigma^{i}(w)\right)=\sum_{j=0}^{n / g-1} \operatorname{ham}\left(x_{j}, x_{(j+i / g) \bmod n / g}\right)=2
$$

- One of the following must be true:
(1) There exists a single j such that ham $\left(x_{j}, x_{(j+i / g) \bmod n / g}\right)=2$.

Characterizing $H(n, i)$

$$
\operatorname{ham}\left(w, \sigma^{i}(w)\right)=\sum_{j=0}^{n / g-1} \operatorname{ham}\left(x_{j}, x_{(j+i / g)} \bmod n / g\right)=2
$$

- One of the following must be true:
(1) There exists a single j such that ham $\left(x_{j}, x_{(j+i / g) \bmod n / g}\right)=2$.
(2) There exist two distinct integers j_{1}, j_{2} such that $\operatorname{ham}\left(x_{j_{1}}, x_{\left(j_{1}+i / g\right) \bmod n / g}\right)=\operatorname{ham}\left(x_{j_{2}}, x_{\left(j_{2}+i / g\right) \bmod n / g}\right)=1$.

Characterizing $H(n, i)$

$$
\operatorname{ham}\left(w, \sigma^{i}(w)\right)=\sum_{j=0}^{n / g-1} \operatorname{ham}\left(x_{j}, x_{(j+i / g) \bmod n / g}\right)=2
$$

- One of the following must be true:
(1) There exists a single j such that ham $\left(x_{j}, x_{(j+i / g) \bmod n / g}\right)=2$.
(2) There exist two distinct integers j_{1}, j_{2} such that $\operatorname{ham}\left(x_{j_{1}}, x_{\left(j_{1}+i / g\right) \bmod n / g}\right)=\operatorname{ham}\left(x_{j_{2}}, x_{\left(j_{2}+i / g\right) \bmod n / g}\right)=1$.
- Suppose there exists a single j such that ham $\left(x_{j}, x_{(j+i / g) \bmod n / g}\right)=2$.

Characterizing $H(n, i)$

$$
\operatorname{ham}\left(w, \sigma^{i}(w)\right)=\sum_{j=0}^{n / g-1} \operatorname{ham}\left(x_{j}, x_{(j+i / g) \bmod n / g}\right)=2
$$

- One of the following must be true:
(1) There exists a single j such that ham $\left(x_{j}, x_{(j+i / g) \bmod n / g}\right)=2$.
(2) There exist two distinct integers j_{1}, j_{2} such that $\operatorname{ham}\left(x_{j_{1}}, x_{\left(j_{1}+i / g\right) \bmod n / g}\right)=\operatorname{ham}\left(x_{j_{2}}, x_{\left(j_{2}+i / g\right) \bmod n / g}\right)=1$.
- Suppose there exists a single j such that ham $\left(x_{j}, x_{(j+i / g)} \bmod n / g\right)=2$.
- Then ham $\left(x_{j^{\prime}}, x_{\left(j^{\prime}+i / g\right)} \bmod n / g\right)=0$ for all meaningful $j^{\prime} \neq j$.

Characterizing $H(n, i)$

$$
\operatorname{ham}\left(w, \sigma^{i}(w)\right)=\sum_{j=0}^{n / g-1} \operatorname{ham}\left(x_{j}, x_{(j+i / g) \bmod n / g}\right)=2
$$

- One of the following must be true:
(1) There exists a single j such that ham $\left(x_{j}, x_{(j+i / g) \bmod n / g}\right)=2$.
(2) There exist two distinct integers j_{1}, j_{2} such that $\operatorname{ham}\left(x_{j_{1}}, x_{\left(j_{1}+i / g\right) \bmod n / g}\right)=\operatorname{ham}\left(x_{j_{2}}, x_{\left(j_{2}+i / g\right) \bmod n / g}\right)=1$.
- Suppose there exists a single j such that ham $\left(x_{j}, x_{(j+i / g) \bmod n / g}\right)=2$.
- Then ham $\left(x_{j^{\prime}}, x_{\left(j^{\prime}+i / g\right)} \bmod n / g\right)=0$ for all meaningful $j^{\prime} \neq j$.
- The additive order of i / g modulo n / g is $\frac{n / g}{\operatorname{gcd}(n / g, i / g)}=n / g$.

Characterizing $H(n, i)$

$$
\operatorname{ham}\left(w, \sigma^{i}(w)\right)=\sum_{j=0}^{n / g-1} \operatorname{ham}\left(x_{j}, x_{(j+i / g)} \bmod n / g\right)=2
$$

- One of the following must be true:
(1) There exists a single j such that ham $\left(x_{j}, x_{(j+i / g) \bmod n / g}\right)=2$.
(2) There exist two distinct integers j_{1}, j_{2} such that $\operatorname{ham}\left(x_{j_{1}}, x_{\left(j_{1}+i / g\right) \bmod n / g}\right)=\operatorname{ham}\left(x_{j_{2}}, x_{\left(j_{2}+i / g\right) \bmod n / g}\right)=1$.
- Suppose there exists a single j such that ham $\left(x_{j}, x_{(j+i / g) \bmod n / g}\right)=2$.
- Then ham $\left(x_{j^{\prime}}, x_{\left(j^{\prime}+i / g\right)} \bmod n / g\right)=0$ for all meaningful $j^{\prime} \neq j$.
- The additive order of i / g modulo n / g is $\frac{n / g}{\operatorname{gcd}(n / g, i / g)}=n / g$.
- Thus
$x_{(j+i / g) \bmod n / g}=x_{(j+2 i / g) \bmod n / g}=\cdots=x_{(j+(n / g-1) i / g) \bmod n / g}=x_{j}$ and $\operatorname{ham}\left(x_{j}, x_{(j+i / g)} \bmod n / g\right)=2$, a contradiction.

Characterizing $H(n, i)$

- Suppose there exist two distinct integers j_{1}, j_{2} such that $\operatorname{ham}\left(x_{j_{1}}, x_{\left(j_{1}+i / g\right) \bmod n / g}\right)=\operatorname{ham}\left(x_{j_{2}}, x_{\left(j_{2}+i / g\right) \bmod n / g}\right)=1$.

Characterizing $H(n, i)$

- Suppose there exist two distinct integers j_{1}, j_{2} such that $\operatorname{ham}\left(x_{j_{1}}, x_{\left(j_{1}+i / g\right) \bmod n / g}\right)=\operatorname{ham}\left(x_{j_{2}}, x_{\left(j_{2}+i / g\right) \bmod n / g}\right)=1$.
- Then $\operatorname{ham}\left(x_{j}, x_{(j+i / g)} \bmod n / g\right)=0$ for all meaningful $j \neq j_{1}, j_{2}$.

Characterizing $H(n, i)$

- Suppose there exist two distinct integers j_{1}, j_{2} such that $\operatorname{ham}\left(x_{j_{1}}, x_{\left(j_{1}+i / g\right) \bmod n / g}\right)=\operatorname{ham}\left(x_{j_{2}}, x_{\left(j_{2}+i / g\right) \bmod n / g}\right)=1$.
- Then $\operatorname{ham}\left(x_{j}, x_{(j+i / g)} \bmod n / g\right)=0$ for all meaningful $j \neq j_{1}, j_{2}$.
- So

$$
x_{\left(j_{1}+i / g\right) \bmod n / g}=x_{\left(j_{1}+2 i / g\right) \bmod n / g}=\cdots=x_{j_{2}}
$$

and

$$
x_{\left(j_{2}+i / g\right) \bmod n / g}=x_{\left(j_{2}+2 i / g\right) \bmod n / g}=\cdots=x_{j_{1}}
$$

Characterizing $H(n, i)$

- Suppose there exist two distinct integers j_{1}, j_{2} such that $\operatorname{ham}\left(x_{j_{1}}, x_{\left(j_{1}+i / g\right) \bmod n / g}\right)=\operatorname{ham}\left(x_{j_{2}}, x_{\left(j_{2}+i / g\right) \bmod n / g}\right)=1$.
- Then $\operatorname{ham}\left(x_{j}, x_{(j+i / g)} \bmod n / g\right)=0$ for all meaningful $j \neq j_{1}, j_{2}$.
- So

$$
x_{\left(j_{1}+i / g\right) \bmod n / g}=x_{\left(j_{1}+2 i / g\right) \bmod n / g}=\cdots=x_{j_{2}}
$$

and

$$
x_{\left(j_{2}+i / g\right) \bmod n / g}=x_{\left(j_{2}+2 i / g\right) \bmod n / g}=\cdots=x_{j_{1}}
$$

- Thus ham $\left(x_{j_{1}}, x_{j_{2}}\right)=1$.

Characterizing $H(n, i)$

- Suppose there exist two distinct integers j_{1}, j_{2} such that $\operatorname{ham}\left(x_{j_{1}}, x_{\left(j_{1}+i / g\right) \bmod n / g}\right)=\operatorname{ham}\left(x_{j_{2}}, x_{\left(j_{2}+i / g\right) \bmod n / g}\right)=1$.
- Then $\operatorname{ham}\left(x_{j}, x_{(j+i / g)} \bmod n / g\right)=0$ for all meaningful $j \neq j_{1}, j_{2}$.
- So

$$
x_{\left(j_{1}+i / g\right) \bmod n / g}=x_{\left(j_{1}+2 i / g\right) \bmod n / g}=\cdots=x_{j_{2}}
$$

and

$$
x_{\left(j_{2}+i / g\right) \bmod n / g}=x_{\left(j_{2}+2 i / g\right) \bmod n / g}=\cdots=x_{j_{1}}
$$

- Thus ham $\left(x_{j_{1}}, x_{j_{2}}\right)=1$.
- Other direction is easy.

Counting $H(n, i)$

Lemma

Let n, i be positive integers such that $n>i$. Let $g=\operatorname{gcd}(n, i)$. Let w be a length-n word. Let $w=x_{0} x_{1} \cdots x_{n / g-1}$ where $\left|x_{j}\right|=g$ for all j, $0 \leq j \leq n / g-1$. Then $w \in H(n, i)$ iff there exist two distinct integers j_{1}, $j_{2}, 0 \leq j_{1}<j_{2} \leq n / g-1$ such that ham $\left(x_{j_{1}}, x_{j_{2}}\right)=1$ and $x_{j}=x_{(j+i / g) \bmod n / g}$ for all $j \neq j_{1}, j_{2}, 0 \leq j \leq n / g-1$.

Counting $H(n, i)$

Lemma

Let n, i be positive integers such that $n>i$. Let $g=\operatorname{gcd}(n, i)$. Let w be a length-n word. Let $w=x_{0} x_{1} \cdots x_{n / g-1}$ where $\left|x_{j}\right|=g$ for all j, $0 \leq j \leq n / g-1$. Then $w \in H(n, i)$ iff there exist two distinct integers j_{1}, $j_{2}, 0 \leq j_{1}<j_{2} \leq n / g-1$ such that ham $\left(x_{j_{1}}, x_{j_{2}}\right)=1$ and $x_{j}=x_{(j+i / g) \bmod n / g}$ for all $j \neq j_{1}, j_{2}, 0 \leq j \leq n / g-1$.

- There are $\sum_{j_{2}=1}^{n / g-1} \sum_{j_{1}=0}^{j_{2}-1} 1=\frac{1}{2} \frac{n}{g}\left(\frac{n}{g}-1\right)$ choices for j_{1} and j_{2}.

Counting $H(n, i)$

Lemma

Let n, i be positive integers such that $n>i$. Let $g=\operatorname{gcd}(n, i)$. Let w be a length-n word. Let $w=x_{0} x_{1} \cdots x_{n / g-1}$ where $\left|x_{j}\right|=g$ for all j, $0 \leq j \leq n / g-1$. Then $w \in H(n, i)$ iff there exist two distinct integers j_{1}, $j_{2}, 0 \leq j_{1}<j_{2} \leq n / g-1$ such that ham $\left(x_{j_{1}}, x_{j_{2}}\right)=1$ and $x_{j}=x_{(j+i / g) \bmod n / g}$ for all $j \neq j_{1}, j_{2}, 0 \leq j \leq n / g-1$.

- There are $\sum_{j_{2}=1}^{n / g-1} \sum_{j_{1}=0}^{j_{2}-1} 1=\frac{1}{2} \frac{n}{g}\left(\frac{n}{g}-1\right)$ choices for j_{1} and j_{2}.
- There are k^{g} choices for $x_{j_{1}}$.

Counting $H(n, i)$

Lemma

Let n, i be positive integers such that $n>i$. Let $g=\operatorname{gcd}(n, i)$. Let w be a length-n word. Let $w=x_{0} x_{1} \cdots x_{n / g-1}$ where $\left|x_{j}\right|=g$ for all j, $0 \leq j \leq n / g-1$. Then $w \in H(n, i)$ iff there exist two distinct integers j_{1}, $j_{2}, 0 \leq j_{1}<j_{2} \leq n / g-1$ such that ham $\left(x_{j_{1}}, x_{j_{2}}\right)=1$ and $x_{j}=x_{(j+i / g) \bmod n / g}$ for all $j \neq j_{1}, j_{2}, 0 \leq j \leq n / g-1$.

- There are $\sum_{j_{2}=1}^{n / g-1} \sum_{j_{1}=0}^{j_{2}-1} 1=\frac{1}{2} \frac{n}{g}\left(\frac{n}{g}-1\right)$ choices for j_{1} and j_{2}.
- There are k^{g} choices for $x_{j_{1}}$.
- There are $n(k-1)$ choices for $x_{j_{2}}$ given $x_{j_{1}}$.

Theorem

Let n, i be positive integers such that $n>i$. Then

$$
h(n, i)=\frac{1}{2} k^{\operatorname{gcd}(n, i)}(k-1) n\left(\frac{n}{\operatorname{gcd}(n, i)}-1\right) .
$$

Counting $H(n)$

- Since $H(n, i)=H(n, n-i)$, we only need to concern ourselves with $H(n, i)$ for $i \leq n / 2$.

Counting $H(n)$

- Since $H(n, i)=H(n, n-i)$, we only need to concern ourselves with $H(n, i)$ for $i \leq n / 2$.
- Clearly $h(n) \leq \sum_{i=1}^{\lfloor n / 2\rfloor} h(n, i)$.

Counting $H(n)$

- Since $H(n, i)=H(n, n-i)$, we only need to concern ourselves with $H(n, i)$ for $i \leq n / 2$.
- Clearly $h(n) \leq \sum_{i=1}^{\lfloor n / 2\rfloor} h(n, i)$.
- But in the sum we are double counting those words w that are in multiple $H(n, i)$.

Counting $H(n)$

- Since $H(n, i)=H(n, n-i)$, we only need to concern ourselves with $H(n, i)$ for $i \leq n / 2$.
- Clearly $h(n) \leq \sum_{i=1}^{\lfloor n / 2\rfloor} h(n, i)$.
- But in the sum we are double counting those words w that are in multiple $H(n, i)$.
- Similar to the Fine-Wilf theorem, we need a characterization of words that are in $H(n, i)$ and $H(n, j)$ for $i \neq j$.

Counting $H(n)$

- Since $H(n, i)=H(n, n-i)$, we only need to concern ourselves with $H(n, i)$ for $i \leq n / 2$.
- Clearly $h(n) \leq \sum_{i=1}^{\lfloor n / 2\rfloor} h(n, i)$.
- But in the sum we are double counting those words w that are in multiple $H(n, i)$.
- Similar to the Fine-Wilf theorem, we need a characterization of words that are in $H(n, i)$ and $H(n, j)$ for $i \neq j$.

Lemma

Let n, i, j be positive integers such that $n \geq 2 i>2 j$. Let $g=\operatorname{gcd}(n, i, j)$. Let w be a length-n word. Then $w \in H(n, i)$ and $w \in H(n, j)$ if and only if there exists a word u of length g, a word v of length g with ham $(u, v)=1$, and a non-negative integer $p<n / g$ such that $w=u^{p} v u^{n / g-p-1}$.

Counting $H(n)$

- Since $H(n, i)=H(n, n-i)$, we only need to concern ourselves with $H(n, i)$ for $i \leq n / 2$.
- Clearly $h(n) \leq \sum_{i=1}^{\lfloor n / 2\rfloor} h(n, i)$.
- But in the sum we are double counting those words w that are in multiple $H(n, i)$.
- Similar to the Fine-Wilf theorem, we need a characterization of words that are in $H(n, i)$ and $H(n, j)$ for $i \neq j$.

Lemma

Let n, i, j be positive integers such that $n \geq 2 i>2 j$. Let $g=\operatorname{gcd}(n, i, j)$. Let w be a length-n word. Then $w \in H(n, i)$ and $w \in H(n, j)$ if and only if there exists a word u of length g, a word v of length g with ham $(u, v)=1$, and a non-negative integer $p<n / g$ such that $w=u^{p} v u^{n / g-p-1}$.

- A word w is in multiple $H(n, i)$ if it is Hamming distance 1 away from a power (of exponent 4 or greater).

Counting $H(n)$

- Let $p_{k}(n)$ denote the number of length- n powers.

Counting $H(n)$

- Let $p_{k}(n)$ denote the number of length- n powers.

Theorem
Let n be a positive integer. Then

$$
h(n)=\sum_{i=1}^{\lfloor n / 2\rfloor} h(n, i)-h^{\prime}(n, i)
$$

where

$$
h^{\prime}(n, i)= \begin{cases}n(k-1) p_{k}(i), & \text { if } i \mid n \\ n(k-1) k^{\operatorname{gcd}(n, i)}, & \text { otherwise. }\end{cases}
$$

Counting words with exactly one conjugate

- What about the number of length- n words u that have exactly one conjugate v with ham $(u, v)=2$?

Counting words with exactly one conjugate

- What about the number of length- n words u that have exactly one conjugate v with $\operatorname{ham}(u, v)=2$?
- Let w be such a length- n word.

Counting words with exactly one conjugate

- What about the number of length- n words u that have exactly one conjugate v with ham $(u, v)=2$?
- Let w be such a length- n word.
- Since $H(n, i)=H(n, n-i)$, we must have that n is even and $w \in H(n, n / 2)$.

Counting words with exactly one conjugate

- What about the number of length- n words u that have exactly one conjugate v with ham $(u, v)=2$?
- Let w be such a length- n word.
- Since $H(n, i)=H(n, n-i)$, we must have that n is even and $w \in H(n, n / 2)$.
- But w cannot be in any $H(n, j)$ for $j<n / 2$.

Counting words with exactly one conjugate

- What about the number of length- n words u that have exactly one conjugate v with ham $(u, v)=2$?
- Let w be such a length- n word.
- Since $H(n, i)=H(n, n-i)$, we must have that n is even and $w \in H(n, n / 2)$.
- But w cannot be in any $H(n, j)$ for $j<n / 2$.

Theorem

Let n be a positive integer. If n is odd, then there are 0 length- n words u with exactly one conjugate v such that ham $(u, v)=2$. If n is even, then there are

$$
h(n, n / 2)-n(k-1) p_{k}(n / 2)
$$

length-n words u with exactly one conjugate v such that ham $(u, v)=2$.

Lyndon conjugates

- A word w is said to be a Lyndon word if it is strictly smaller than all of its non-trivial conjugates.

Lyndon conjugates

- A word w is said to be a Lyndon word if it is strictly smaller than all of its non-trivial conjugates.
- All Lyndon words are primitive.

Lyndon conjugates

- A word w is said to be a Lyndon word if it is strictly smaller than all of its non-trivial conjugates.
- All Lyndon words are primitive.

Theorem
There are $\frac{h(n)}{n}$ length-n Lyndon words u that have a conjugate v such that ham $(u, v)=2$.

Lyndon conjugates

- A word w is said to be a Lyndon word if it is strictly smaller than all of its non-trivial conjugates.
- All Lyndon words are primitive.

Theorem

There are $\frac{h(n)}{n}$ length-n Lyndon words u that have a conjugate v such that $\operatorname{ham}(u, v)=2$.

- Clearly $\operatorname{ham}\left(w, \sigma^{i}(w)\right)=\operatorname{ham}\left(\sigma^{j}(w), \sigma^{i+j}(w)\right)$. So if $w \in H(n)$, then any conjugate of w is also in $H(n)$.

Lyndon conjugates

- A word w is said to be a Lyndon word if it is strictly smaller than all of its non-trivial conjugates.
- All Lyndon words are primitive.

Theorem

There are $\frac{h(n)}{n}$ length-n Lyndon words u that have a conjugate v such that $\operatorname{ham}(u, v)=2$.

- Clearly $\operatorname{ham}\left(w, \sigma^{i}(w)\right)=\operatorname{ham}\left(\sigma^{j}(w), \sigma^{i+j}(w)\right)$. So if $w \in H(n)$, then any conjugate of w is also in $H(n)$.
- All that is left is to prove that every element of $H(n)$ is primitive.

Lyndon conjugates

- Suppose that $w \in H(n)$ is a power. Then $w=u^{m}$ for some non-empty word u, and some $m \geq 2$.

Lyndon conjugates

- Suppose that $w \in H(n)$ is a power. Then $w=u^{m}$ for some non-empty word u, and some $m \geq 2$.
- Any conjugate of w is of the form $(t s)^{m}$ where $u=s t$.

Lyndon conjugates

- Suppose that $w \in H(n)$ is a power. Then $w=u^{m}$ for some non-empty word u, and some $m \geq 2$.
- Any conjugate of w is of the form $(t s)^{m}$ where $u=s t$.
- Let $w^{\prime}=(t s)^{m}$ be a conjugate of $w=(s t)^{m}$ such that $\operatorname{ham}\left(w, w^{\prime}\right)=2$.

Lyndon conjugates

- Suppose that $w \in H(n)$ is a power. Then $w=u^{m}$ for some non-empty word u, and some $m \geq 2$.
- Any conjugate of w is of the form $(t s)^{m}$ where $u=s t$.
- Let $w^{\prime}=(t s)^{m}$ be a conjugate of $w=(s t)^{m}$ such that $\operatorname{ham}\left(w, w^{\prime}\right)=2$.
- We have ham $\left(w, w^{\prime}\right)=\operatorname{ham}\left((s t)^{m},(t s)^{m}\right)=m \operatorname{ham}(s t, t s)$.

Lyndon conjugates

- Suppose that $w \in H(n)$ is a power. Then $w=u^{m}$ for some non-empty word u, and some $m \geq 2$.
- Any conjugate of w is of the form $(t s)^{m}$ where $u=s t$.
- Let $w^{\prime}=(t s)^{m}$ be a conjugate of $w=(s t)^{m}$ such that $\operatorname{ham}\left(w, w^{\prime}\right)=2$.
- We have ham $\left(w, w^{\prime}\right)=\operatorname{ham}\left((s t)^{m},(t s)^{m}\right)=m$ ham $(s t, t s)$.
- We have that ham $(s t, t s)=0$ or ham $(s t, t s) \geq 2$.

Lyndon conjugates

- Suppose that $w \in H(n)$ is a power. Then $w=u^{m}$ for some non-empty word u, and some $m \geq 2$.
- Any conjugate of w is of the form $(t s)^{m}$ where $u=s t$.
- Let $w^{\prime}=(t s)^{m}$ be a conjugate of $w=(s t)^{m}$ such that $\operatorname{ham}\left(w, w^{\prime}\right)=2$.
- We have ham $\left(w, w^{\prime}\right)=\operatorname{ham}\left((s t)^{m},(t s)^{m}\right)=m \operatorname{ham}(s t, t s)$.
- We have that ham $(s t, t s)=0$ or ham $(s t, t s) \geq 2$.
- In either case, $\operatorname{ham}\left(w, w^{\prime}\right) \neq 2$, a contradiction.

Asymptotic behaviour of $h(n)$

Lemma
Let n be a prime number. Then $h(n)=\frac{1}{4} k(k-1) n\left(n^{2}-4 n+7\right)$.

Asymptotic behaviour of $h(n)$

Lemma

Let n be a prime number. Then $h(n)=\frac{1}{4} k(k-1) n\left(n^{2}-4 n+7\right)$.

- Since $\operatorname{gcd}(n, i)=1$ for all $i, 1<i \leq n / 2$, it is easy to simplify the sum for $h(n)$ to get the resulting polynomial.

Asymptotic behaviour of $h(n)$

Lemma

Let n be a prime number. Then $h(n)=\frac{1}{4} k(k-1) n\left(n^{2}-4 n+7\right)$.

- Since $\operatorname{gcd}(n, i)=1$ for all $i, 1<i \leq n / 2$, it is easy to simplify the sum for $h(n)$ to get the resulting polynomial.

Lemma

Let $n>1$ be an integer. Then $h(2 n) \geq \frac{1}{2} n k^{n}$.

Asymptotic behaviour of $h(n)$

Lemma

Let n be a prime number. Then $h(n)=\frac{1}{4} k(k-1) n\left(n^{2}-4 n+7\right)$.

- Since $\operatorname{gcd}(n, i)=1$ for all $i, 1<i \leq n / 2$, it is easy to simplify the sum for $h(n)$ to get the resulting polynomial.

Lemma

Let $n>1$ be an integer. Then $h(2 n) \geq \frac{1}{2} n k^{n}$.

Proof.

$H(2 n, n)$ is a subset of $H(2 n)$. Therefore $h(2 n) \geq h(2 n, n) \geq \frac{1}{2}(k-1) n k^{n} \geq \frac{1}{2} n k^{n}$.

Asymptotic behaviour of $h(n)$

Lemma

Let n be a prime number. Then $h(n)=\frac{1}{4} k(k-1) n\left(n^{2}-4 n+7\right)$.

- Since $\operatorname{gcd}(n, i)=1$ for all $i, 1<i \leq n / 2$, it is easy to simplify the sum for $h(n)$ to get the resulting polynomial.

Lemma

Let $n>1$ be an integer. Then $h(2 n) \geq \frac{1}{2} n k^{n}$.

Proof.

$H(2 n, n)$ is a subset of $H(2 n)$. Therefore $h(2 n) \geq h(2 n, n) \geq \frac{1}{2}(k-1) n k^{n} \geq \frac{1}{2} n k^{n}$.

- So $h(n)$ behaves as a polynomial for infinitely many n, and as an exponential for infinitely many n.

Asymptotic behaviour of $h(n)$

Lemma

Let n be a prime number. Then $h(n)=\frac{1}{4} k(k-1) n\left(n^{2}-4 n+7\right)$.

- Since $\operatorname{gcd}(n, i)=1$ for all $i, 1<i \leq n / 2$, it is easy to simplify the sum for $h(n)$ to get the resulting polynomial.

Lemma

Let $n>1$ be an integer. Then $h(2 n) \geq \frac{1}{2} n k^{n}$.

Proof.

$H(2 n, n)$ is a subset of $H(2 n)$. Therefore $h(2 n) \geq h(2 n, n) \geq \frac{1}{2}(k-1) n k^{n} \geq \frac{1}{2} n k^{n}$.

- So $h(n)$ behaves as a polynomial for infinitely many n, and as an exponential for infinitely many n.
- No one easily-expressible bound on $h(n)$.

Conclusions

- We characterized and counted all length- n words u that have a conjugate v such that $\operatorname{ham}(u, v)=2$. Formula corresponds to the sequence: https://oeis.org/A179674.

Conclusions

- We characterized and counted all length- n words u that have a conjugate v such that $\operatorname{ham}(u, v)=2$. Formula corresponds to the sequence: https://oeis.org/A179674.
- One can use this formula to count the number of pairs of almost-commuting words (x, y) with $|x y|=n$.

Conclusions

- We characterized and counted all length- n words u that have a conjugate v such that $\operatorname{ham}(u, v)=2$. Formula corresponds to the sequence: https://oeis.org/A179674.
- One can use this formula to count the number of pairs of almost-commuting words (x, y) with $|x y|=n$.
- We characterized and counted all length- n words u with exactly one conjugate v such that ham $(u, v)=2$. Formula corresponds to the sequence: https://oeis.org/A179677.

Conclusions

- We characterized and counted all length- n words u that have a conjugate v such that $\operatorname{ham}(u, v)=2$. Formula corresponds to the sequence: https://oeis.org/A179674.
- One can use this formula to count the number of pairs of almost-commuting words (x, y) with $|x y|=n$.
- We characterized and counted all length- n words u with exactly one conjugate v such that ham $(u, v)=2$. Formula corresponds to the sequence: https://oeis.org/A179677.
- We also characterized and counted all length- n Lyndon words u with exactly one conjugate v such that ham $(u, v)=2$. Formula corresponds to the sequence: https://oeis.org/A226893.

Conclusions

- We characterized and counted all length- n words u that have a conjugate v such that $\operatorname{ham}(u, v)=2$. Formula corresponds to the sequence: https://oeis.org/A179674.
- One can use this formula to count the number of pairs of almost-commuting words (x, y) with $|x y|=n$.
- We characterized and counted all length- n words u with exactly one conjugate v such that ham $(u, v)=2$. Formula corresponds to the sequence: https://oeis.org/A179677.
- We also characterized and counted all length- n Lyndon words u with exactly one conjugate v such that ham $(u, v)=2$. Formula corresponds to the sequence: https://oeis.org/A226893.
- Finally, we showed that there is no one easily-expressible bound for $h(n)$ by showing that $h(n)$ behaves as a polynomial for all prime n, and that $h(n)$ behaves as an exponential for all even n.

