Twins in permutations

Jarosław Grytczuk

Warsaw University of Technology

Joint work with Andrzej Dudek and Andrzej Ruciński

Similarity of permutations

Two permutations $(x_1, ..., x_n)$ and $(y_1, ..., y_n)$ are similar if they have the same relative order:

 $x_i < x_j$ iff $y_i < y_j$.

General twins

The *length* of twins is the length of just one of them.

The *length* of twins is the length of just one of them.

 $t(\pi)$ = the maximum length of twins in π .

The *length* of twins is the length of just one of them.

 $t(\pi)$ = the maximum length of twins in π .

The *length* of twins is the length of just one of them.

 $t(\pi)$ = the maximum length of twins in π .

The *length* of twins is the length of just one of them.

 $t(\pi)$ = the maximum length of twins in π .

 $t(\pi) = 4$

How long twins are contained in every permutation?

The *length* of twins is the length of just one of them.

 $t(\pi)$ = the maximum length of twins in π .

 $t(\pi) = 4$

How long twins are contained in every permutation?

t(n) = the minimum of $t(\pi)$ over all permutations π of length n.

The *length* of twins is the length of just one of them.

 $t(\pi)$ = the maximum length of twins in π .

How long twins are contained in every permutation?

t(n) = the minimum of $t(\pi)$ over all permutations π of length n.

t(n) = the largest k such that every permutation of length n contains twins of length k.

Theorem (Gawron, 2014): $t(n) \le c_2 n^{2/3}$.

Theorem (Gawron, 2014): $t(n) \le c_2 n^{2/3}$.

Conjecture (Gawron, 2014): $t(n) \sim n^{2/3}$.

Theorem (Gawron, 2014): $t(n) \le c_2 n^{2/3}$.

Conjecture (Gawron, 2014): $t(n) \sim n^{2/3}$.

Theorem (Dudek, Grytczuk, Ruciński, 2019): Gawron's conjecture is *almost* true (up to a logarithmic factor) for *almost* all permutations.

Theorem (Gawron, 2014): $t(n) \le c_2 n^{2/3}$.

Conjecture (Gawron, 2014): $t(n) \sim n^{2/3}$.

Theorem (Dudek, Grytczuk, Ruciński, 2019): Gawron's conjecture is *almost* true (up to a logarithmic factor) for *almost* all permutations.

Theorem (Bukh, Rudenko, 2020): Gawron's conjecture is true for *almost* all permutations.

Theorem (Gawron, 2014): $t(n) \le c_2 n^{2/3}$.

Conjecture (Gawron, 2014): $t(n) \sim n^{2/3}$.

Theorem (Dudek, Grytczuk, Ruciński, 2019): Gawron's conjecture is *almost* true (up to a logarithmic factor) for *almost* all permutations.

Theorem (Bukh, Rudenko, 2020): Gawron's conjecture is true for *almost* all permutations.

Theorem (Bukh, Rudenko, 2020): $t(n) \ge c_3 n^{3/5}$.

Tight twins

Let tt(n) be the largest k such that every permutation of length n contains tight twins of length k.

Let tt(n) be the largest k such that every permutation of length n contains tight twins of length k.

Theorem (Dudek, Grytczuk, Ruciński, 2019): $2 \le tt(n) \le 12$, for every $n \ge 6$.

Let tt(n) be the largest k such that every permutation of length n contains tight twins of length k.

Theorem (Dudek, Grytczuk, Ruciński, 2019): $2 \le tt(n) \le 12$, for every $n \ge 6$.

Conjecture (Grytczuk, 2021): tt(n) = 2, for all $n \ge 6$.

Let tt(n) be the largest k such that every permutation of length n contains tight twins of length k.

Theorem (Dudek, Grytczuk, Ruciński, 2019): $2 \le tt(n) \le 12$, for every $n \ge 6$.

Conjecture (Grytczuk, 2021): tt(n) = 2, for all $n \ge 6$.

Problem: What is the number of tight twins of length *n*?

Let btt(n) be the largest k such that every permutation of length n contains block-tight twins of length k.

Let btt(n) be the largest k such that every permutation of length n contains block-tight twins of length k.

Theorem (Avgustinovich, Kitaev, Pyatkin, Valyuzhenich, 2011): btt(n) = 1, for all $n \ge 1$.

Let btt(n) be the largest k such that every permutation of length n contains block-tight twins of length k.

Theorem (Avgustinovich, Kitaev, Pyatkin, Valyuzhenich, 2011): btt(n) = 1, for all $n \ge 1$.

Theorem (Thue, 1906): The pattern XX is avoidable on words over 3-letter alphabet.

Let btt(n) be the largest k such that every permutation of length n contains block-tight twins of length k.

Theorem (Avgustinovich, Kitaev, Pyatkin, Valyuzhenich, 2011): btt(n) = 1, for all $n \ge 1$.

Theorem (Thue, 1906): The pattern XX is avoidable on words over 3-letter alphabet.

Conjecture (Grytczuk, 2021): Every *pattern* avoidable on words is *avoidable* on permutations.

Weak twins

The shape of a permutation
$$\pi = (x_1, \dots, x_n)$$
 is a
sequence $s(\pi) = (s_1, \dots, s_{n-1})$ of signs $\{+, -\}$:
 $s_i = \operatorname{sign}(x_{i+1} - x_i)$.

Two permutations π_1 and π_2 are weakly similar if they have the same shape: $s(\pi_1) = s(\pi_2)$.

Two permutations π_1 and π_2 are weakly similar if they have the same shape: $s(\pi_1) = s(\pi_2)$.

Two permutations π_1 and π_2 are weakly similar if they have the same shape: $s(\pi_1) = s(\pi_2)$.

Let wt(n) be the largest k such that every permutation of length n contains weak twins of length k.

Two permutations π_1 and π_2 are weakly similar if they have the same shape: $s(\pi_1) = s(\pi_2)$.

Let wt(n) be the largest k such that every permutation of length n contains weak twins of length k.

Theorem (Dudek, Grytczuk, Ruciński, 2020): $n/12 \le wt(n) \le n/2 - cn^{1/3}$, for large *n*.

Two permutations π_1 and π_2 are weakly similar if they have the same shape: $s(\pi_1) = s(\pi_2)$.

Let wt(n) be the largest k such that every permutation of length n contains weak twins of length k.

Theorem (Dudek, Grytczuk, Ruciński, 2020): $n/12 \le wt(n) \le n/2 - cn^{1/3}$, for large *n*.

Conjecture (Dudek, Grytczuk, Ruciński, 2020): wt(n) = n/2 - o(n).

Two permutations π_1 and π_2 are weakly similar if they have the same shape: $s(\pi_1) = s(\pi_2)$.

Let wt(n) be the largest k such that every permutation of length n contains weak twins of length k.

Theorem (Dudek, Grytczuk, Ruciński, 2020): $n/12 \le wt(n) \le n/2 - cn^{1/3}$, for large *n*.

Conjecture (Dudek, Grytczuk, Ruciński,2020): wt(n) = n/2 - o(n).

Problem: What is the number of weak twins of length *n*?

Twins in other structures

Words:

Theorem (Axenovich, Person, Puzynina, 2013): Every binary word of length n contains twins of length n/2 - o(n).

Theorem (Axenovich, Person, Puzynina, 2013): Every binary word of length n contains twins of length n/2 - o(n).

Graphs:

Theorem (Axenovich, Person, Puzynina, 2013): Every binary word of length n contains twins of length n/2 - o(n).

Graphs:

Theorem (Axenovich, Person, Puzynina, 2013): Every binary word of length n contains twins of length n/2 - o(n).

Graphs:

Theorem (Lee, Loh, Sudakov, 2013): Every graph with *m* edges contains twins of size ~ $(m \log m)^{2/3}$.

Theorem (Axenovich, Person, Puzynina, 2013): Every binary word of length n contains twins of length n/2 - o(n).

Graphs:

Theorem (Lee, Loh, Sudakov, 2013): Every graph with *m* edges contains twins of size ~ $(m \log m)^{2/3}$.

Theorem (Alon, Caro, Krasikov, 1993): Every tree with m edges contains twins of size $m/2 - cm/(\log \log m)$.

Theorem (Axenovich, Person, Puzynina, 2013): Every binary word of length n contains twins of length n/2 - o(n).

Graphs:

Theorem (Lee, Loh, Sudakov, 2013): Every graph with *m* edges contains twins of size ~ $(m \log m)^{2/3}$.

Theorem (Alon, Caro, Krasikov, 1993): Every tree with m edges contains twins of size $m/2 - cm/(\log \log m)$.

Digraphs, Posets, Hypergraphs, Matroids, Banach Spaces,...

Twins in edge-ordered graphs

Let t(G) be the largest k such that every edge-ordering of G has a twin path of length k.

Let t(G) be the largest k such that every edge-ordering of G has a twin path of length k.

Conjecture (Grytczuk, 2021): $t(K_n) = n - o(n)$.

Let t(G) be the largest k such that every edge-ordering of G has a twin path of length k.

Conjecture (Grytczuk, 2021): $t(K_n) = n - o(n)$.

Theorem (Bucić, Kwan, Pokrovskiy, Sudakov, Tran, Wagner, 2020): Every edge-ordering of a clique K_n has a *monotone* path of length $n^{1-o(1)}$.

Let t(G) be the largest k such that every edge-ordering of G has a twin path of length k.

Conjecture (Grytczuk, 2021): $t(K_n) = n - o(n)$.

Theorem (Bucić, Kwan, Pokrovskiy, Sudakov, Tran, Wagner, 2020): Every edge-ordering of a clique K_n has a *monotone* path of length $n^{1 - o(1)}$.

Conjecture (Grytczuk, 2021): $t(G) \le 1000000$ for every *planar* graph *G*.

A problem of Ulam

Ulam's Problem: Given two *structures, A* and *B*, what is the least number k = U(A,B) such that each of these structures can be decomposed into *k* substructures that can be matched into *k* isomorphic pairs?

Ulam's Problem: Given two *structures, A* and *B*, what is the least number k = U(A,B) such that each of these structures can be decomposed into *k* substructures that can be matched into *k* isomorphic pairs?

Ulam's Problem: Given two *structures, A* and *B*, what is the least number k = U(A,B) such that each of these structures can be decomposed into *k* substructures that can be matched into *k* isomorphic pairs?

What is the Ulam number $U(\alpha,\beta)$ for a pair of random permutations of length n?

Thank You!