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Two permutations (xl, . xn) and ( Vi oees yn) are similar if they have the
same relative order:
X, < X, iff y. <y
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How long twins are contained in every permutation?

{n) = the minimum of #sr) over all permutations st of length n.

{n) = the largest k such that every permutation of length n contains twins of length k.
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Let btt(n) be the largest k such that every
permutation of length n contains block-tight
twins of length k.

Theorem (Avgustinovich, Kitaev, Pyatkin, Valyuzhenich, 2011): btf{(n) = 1, forall n > 1.

Theorem (Thue, 1906): The pattern XX is avoidable on words over 3-letter alphabet.

Conjecture (Grytczuk, 2021): Every pattern avoidable on words
is avoidable on permutations.
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4 Digraphs, Posets, Hypergraphs, Matroids, Banach Spaces,...
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A twin path in an edge-ordered graph is a path
whose first half is similar to the second half.

Let #(G) be the largest k such that every
edge-ordering of G has a twin path of length k.

Conjecture (Grytczuk, 2021): K ) = n - o(n).

Theorem (Bucié¢, Kwan, Pokrovskiy, Sudakov, Tran, Wagner, 2020):
Every edge-ordering of a clique K has a monotone path of length nl-ol)

Conjecture (Grytczuk, 2021): {G) < 1000000 for every planar graph G.
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Ulam’s Problem: Given two structures, A and B, what is the least number
k = U(A,B) such that each of these structures can be decomposed into k
substructures that can be matched into k isomorphic pairs?

What is the Ulam number U(e,/5) for a pair of random permutations of length n?



Thank You!



