Twins in permutations

Jarosław Grytczuk

Warsaw University of Technology

Joint work with Andrzej Dudek and Andrzej Ruciński

Similarity of permutations

A permutation is a sequence of distinct integers.

A permutation is a sequence of distinct integers.

A permutation is a sequence of distinct integers.

A permutation is a sequence of distinct integers.

A permutation is a sequence of distinct integers.

A permutation is a sequence of distinct integers.

Two permutations $\left(x_{1}, \ldots, x_{n}\right)$ and $\left(y_{1}, \ldots, y_{n}\right)$ are similar if they have the same relative order:

$$
x_{i}<x_{j} \text { iff } y_{i}<y_{j} .
$$

General twins

.
 $\begin{array}{lllllllll}6 & 1 & 4 & 7 & 3 & 9 & 8 & 2 & 5\end{array}$

 6147319825

Two similar disjoint subsequences of a permutation π are called twins in π.

Two similar disjoint subsequences of a permutation π are called twins in π.

The length of twins is the length of just one of them.

Two similar disjoint subsequences of a permutation π are called twins in π.

The length of twins is the length of just one of them.
$t(\pi)=$ the maximum length of twins in π.

Two similar disjoint subsequences of a permutation π are called twins in π.

The length of twins is the length of just one of them.
$t(\pi)=$ the maximum length of twins in π.

Two similar disjoint subsequences of a permutation π are called twins in π.

The length of twins is the length of just one of them.
$t(\pi)=$ the maximum length of twins in π.

Two similar disjoint subsequences of a permutation π are called twins in π.

The length of twins is the length of just one of them.
$t(\pi)=$ the maximum length of twins in π.

How long twins are contained in every permutation?

Two similar disjoint subsequences of a permutation π are called twins in π.

The length of twins is the length of just one of them.
$t(\pi)=$ the maximum length of twins in π.

How long twins are contained in every permutation?
$t(n)=$ the minimum of $t(\pi)$ over all permutations π of length n.

Two similar disjoint subsequences of a permutation π are called twins in π.

The length of twins is the length of just one of them.
$\imath(\pi)=$ the maximum length of twins in π.

How long twins are contained in every permutation?
$t(n)=$ the minimum of $t(\pi)$ over all permutations π of length n.
$t(n)=$ the largest k such that every permutation of length n contains twins of length k.

 6147319825

Theorem (Erdös, Szekers, 1932): $t(n) \geq c_{1} n^{1 / 2}$.

Theorem (Erdös, Szekers, 1932): $t(n) \geq c_{1} n^{1 / 2}$.
Theorem (Gawron, 2014): $t(n) \leq c_{2} n^{2 / 3}$.

Theorem (Erdös, Szekers, 1932): $t(n) \geq c_{1} 1^{1 / 2}$.
Theorem (Gawron, 2014): $t(n) \leq c_{2} n^{2 / 3}$.

Conjecture (Gawron, 2014): t(n) ~ $n^{2 / 3}$.

Theorem (Erdös, Szekers, 1932): $t(n) \geq c_{1} n^{1 / 2}$.
Theorem (Gawron, 2014): $t(n) \leq c_{2} n^{2 / 3}$.

Conjecture (Gawron, 2014): $t(n) \sim n^{2 / 3}$.

Theorem (Dudek, Grytczuk, Ruciński, 2019): Gawron's conjecture is almost true (up to a logarithmic factor) for almost all permutations.

Theorem (Erdös, Szekers, 1932): $t(n) \geq c_{1} 1^{1 / 2}$.
Theorem (Gawron, 2014): $t(n) \leq c_{2} n^{2 / 3}$.

Conjecture (Gawron, 2014): $t(n) \sim n^{2 / 3}$.

Theorem (Dudek, Grytczuk, Ruciński, 2019): Gawron's conjecture is almost true (up to a logarithmic factor) for almost all permutations.

Theorem (Bukh, Rudenko, 2020): Gawron's conjecture is true for almost all permutations.

Theorem (Erdös, Szekers, 1932): $t(n) \geq c_{1} 1^{1 / 2}$.
Theorem (Gawron, 2014): $t(n) \leq c_{2} n^{2 / 3}$.

Conjecture (Gawron, 2014): $t(n) \sim n^{2 / 3}$.

Theorem (Dudek, Grytczuk, Ruciński, 2019): Gawron's conjecture is almost true (up to a logarithmic factor) for almost all permutations.

Theorem (Bukh, Rudenko, 2020): Gawron's conjecture is true for almost all permutations.

Theorem (Bukh, Rudenko, 2020): $t(n) \geq c_{3} n^{3 / 5}$.

Tight twins

In.t.
 $\begin{array}{lllllllll}6 & 7 & 1 & 4 & 3 & 8 & 2 & 5 & 9\end{array}$

Twins in a permutation π are called tight if they jointly form a connected segment of π.

Twins in a permutation π are called tight if they jointly form a connected segment of π.

Let $t(n)$ be the largest k such that every permutation of length n contains tight twins of length k.

Twins in a permutation π are called tight if they jointly form a connected segment of π.

Let $t(n)$ be the largest k such that every permutation of length n contains tight twins of length k.

Theorem (Dudek, Grytczuk, Ruciński, 2019): $2 \leq t(n) \leq 12$, for every $n \geq 6$.

Twins in a permutation π are called tight if they jointly form a connected segment of π.

Let $t(n)$ be the largest k such that every permutation of length n contains tight twins of length k.

Theorem (Dudek, Grytczuk, Ruciński, 2019): $2 \leq t(n) \leq 12$, for every $n \geq 6$. Conjecture (Grytczuk, 2021): $t(n)=2$, for all $n \geq 6$.

Twins in a permutation π are called tight if they jointly form a connected segment of π.

Let $t(n)$ be the largest k such that every permutation of length n contains tight twins of length k.

Theorem (Dudek, Grytczuk, Ruciński, 2019): $2 \leq t(n) \leq 12$, for every $n \geq 6$. Conjecture (Grytczuk, 2021): $t(n)=2$, for all $n \geq 6$.

Problem: What is the number of tight twins of length n ?

I.|.|lll $\begin{array}{lllllllll}6 & 7 & 1 & 4 & 2 & 3 & 8 & 5\end{array}$

Twins in a permutation π are called block-tight if they are tight and each forms a connected segment of π.

Twins in a permutation π are called block-tight if they are tight and each forms a connected segment of π.

Let $b t(n)$ be the largest k such that every permutation of length n contains block-tight twins of length k.

Twins in a permutation π are called block-tight if they are tight and each forms a connected segment of π.

Let $b t(n)$ be the largest k such that every permutation of length n contains block-tight twins of length k.

Theorem (Avgustinovich, Kitaev, Pyatkin, Valyuzhenich, 2011): $b t t(n)=1$, for all $n \geq 1$.

Twins in a permutation π are called block-tight if they are tight and each forms a connected segment of π.

Let $b t(n)$ be the largest k such that every permutation of length n contains block-tight twins of length k.

Theorem (Avgustinovich, Kitaev, Pyatkin, Valyuzhenich, 2011): $b t t(n)=1$, for all $n \geq 1$.
Theorem (Thue, 1906): The pattern XX is avoidable on words over 3-letter alphabet.

Twins in a permutation π are called block-tight if they are tight and each forms a connected segment of π.

Let $b t t(n)$ be the largest k such that every permutation of length n contains block-tight twins of length k.

Theorem (Thue, 1906): The pattern XX is avoidable on words over 3-letter alphabet.

Conjecture (Grytczuk, 2021): Every pattern avoidable on words is avoidable on permutations.

Weak twins

I.
 $\begin{array}{lllllllll}6 & 1 & 4 & 3 & 7 & 9 & 8 & 2 & 5\end{array}$

The shape of a permutation $\pi=\left(x_{1}, \ldots, x_{n}\right)$ is a sequence $s(\pi)=\left(s_{1}, \ldots, s_{n-1}\right)$ of signs $\{+,-\}$:

$$
s_{i}=\operatorname{sign}\left(x_{i+1}-x_{i}\right) .
$$

The shape of a permutation $\pi=\left(x_{1}, \ldots, x_{n}\right)$ is a sequence $s(\pi)=\left(s_{1}, \ldots, s_{n-1}\right)$ of signs $\{+,-\}$:

$$
s_{i}=\operatorname{sign}\left(x_{i+1}-x_{i}\right) .
$$

Two permutations π_{1} and π_{2} are weakly similar if they have the same shape: $s\left(\pi_{1}\right)=s\left(\pi_{2}\right)$.

The shape of a permutation $\pi=\left(x_{1}, \ldots, x_{n}\right)$ is a sequence $s(\pi)=\left(s_{1}, \ldots, s_{n-1}\right)$ of signs $\{+,-\}$:

$$
s_{i}=\operatorname{sign}\left(x_{i+1}-x_{i}\right) .
$$

Two permutations π_{1} and π_{2} are weakly similar if they have the same shape: $s\left(\pi_{1}\right)=s\left(\pi_{2}\right)$.

The shape of a permutation $\pi=\left(x_{1}, \ldots, x_{n}\right)$ is a sequence $s(\pi)=\left(s_{1}, \ldots, s_{n-1}\right)$ of signs $\{+,-\}$:

$$
s_{i}=\operatorname{sign}\left(x_{i+1}-x_{i}\right) .
$$

Two permutations π_{1} and π_{2} are weakly similar if they have the same shape: $s\left(\pi_{1}\right)=s\left(\pi_{2}\right)$.

Let $w t(n)$ be the largest k such that every permutation of length n contains weak twins of length k.

The shape of a permutation $\pi=\left(x_{1}, \ldots, x_{n}\right)$ is a sequence $s(\pi)=\left(s_{1}, \ldots, s_{n-1}\right)$ of signs $\{+,-\}$:

$$
s_{i}=\operatorname{sign}\left(x_{i+1}-x_{i}\right) .
$$

Two permutations π_{1} and π_{2} are weakly similar if they have the same shape: $s\left(\pi_{1}\right)=s\left(\pi_{2}\right)$.

Let $w t(n)$ be the largest k such that every permutation of length n contains weak twins of length k.

Theorem (Dudek, Grytczuk, Ruciński, 2020): $n / 12 \leq w t(n) \leq n / 2-c n^{1 / 3}$, for large n.

The shape of a permutation $\pi=\left(x_{1}, \ldots, x_{n}\right)$ is a sequence $s(\pi)=\left(s_{1}, \ldots, s_{n-1}\right)$ of signs $\{+,-\}$:

$$
s_{i}=\operatorname{sign}\left(x_{i+1}-x_{i}\right) .
$$

Two permutations π_{1} and π_{2} are weakly similar if they have the same shape: $s\left(\pi_{1}\right)=s\left(\pi_{2}\right)$.

Let $w t(n)$ be the largest k such that every permutation of length n contains weak twins of length k.

Theorem (Dudek, Grytczuk, Ruciński, 2020): $n / 12 \leq w t(n) \leq n / 2-c n^{1 / 3}$, for large n. Conjecture (Dudek, Grytczuk, Ruciński,2020): wt $(n)=n / 2-o(n)$.

The shape of a permutation $\pi=\left(x_{1}, \ldots, x_{n}\right)$ is a sequence $s(\pi)=\left(s_{1}, \ldots, s_{n-1}\right)$ of signs $\{+,-\}$:

$$
s_{i}=\operatorname{sign}\left(x_{i+1}-x_{i}\right) .
$$

Two permutations π_{1} and π_{2} are weakly similar if they have the same shape: $s\left(\pi_{1}\right)=s\left(\pi_{2}\right)$.

Let $w t(n)$ be the largest k such that every permutation of length n contains weak twins of length k.

Theorem (Dudek, Grytczuk, Ruciński, 2020): $n / 12 \leq w t(n) \leq n / 2-c n^{1 / 3}$, for large n. Conjecture (Dudek, Grytczuk, Ruciński,2020): $w t(n)=n / 2-o(n)$.

Problem: What is the number of weak twins of length n ?

Twins in other structures

Words:

Words: ab.baa.ba.b.b.ba.bab.ba

Words: ab.aa.ba.b.b.b.babab.ba

Theorem (Axenovich, Person, Puzynina, 2013): Every binary word of length n contains twins of length $n / 2-o(n)$.

Words: ab.baa.bab.b.b.babab.ba

Theorem (Axenovich, Person, Puzynina, 2013): Every binary word of length n contains twins of length $n / 2-o(n)$.

Graphs:

Words: ab.baa.ba.b.b.b.baba.b.ba

Theorem (Axenovich, Person, Puzynina, 2013): Every binary word of length n contains twins of length $n / 2-o(n)$.

Graphs:

Words: a.b.baa.ba.b.b.b.ba.ba.b.ba
Theorem (Axenovich, Person, Puzynina, 2013): Every binary word of length n contains twins of length $n / 2-o(n)$.

Graphs:

Theorem (Lee, Loh, Sudakov, 2013): Every graph with m edges contains twins of size $\sim(m \log m)^{2 / 3}$.

Words: ab.baa.bab.b.b.baba.b.ba

Theorem (Axenovich, Person, Puzynina, 2013): Every binary word of length n contains twins of length $n / 2-o(n)$.

Graphs:

Theorem (Lee, Loh, Sudakov, 2013): Every graph with m edges contains twins of size $\sim(m \log m)^{2 / 3}$.

Theorem (Alon, Caro, Krasikov, 1993): Every tree with m edges contains twins of size $m / 2-\mathrm{cm} /(\log \log m)$.

Words: ab.baa.ba.b.b.b.ba.bab.ba

Theorem (Axenovich, Person, Puzynina, 2013): Every binary word of length n contains twins of length $n / 2-o(n)$.

Graphs:

Theorem (Lee, Loh, Sudakov, 2013): Every graph with m edges contains twins of size $\sim(m \log m)^{2 / 3}$.

Theorem (Alon, Caro, Krasikov, 1993): Every tree with m edges contains twins of size $m / 2-\mathrm{cm} /(\log \log m)$.

Digraphs, Posets, Hypergraphs, Matroids, Banach Spaces,...

Twins in edge-ordered graphs

A twin path in an edge-ordered graph is a path whose first half is similar to the second half.

A twin path in an edge-ordered graph is a path whose first half is similar to the second half.

Let $t(G)$ be the largest k such that every edge-ordering of G has a twin path of length k.

A twin path in an edge-ordered graph is a path whose first half is similar to the second half.

Let $t(G)$ be the largest k such that every edge-ordering of G has a twin path of length k.

Conjecture (Grytczuk, 2021): $t\left(K_{n}\right)=n-o(n)$.

A twin path in an edge-ordered graph is a path whose first half is similar to the second half.

Let $t(G)$ be the largest k such that every edge-ordering of G has a twin path of length k. Conjecture (Grytczuk, 2021): $t\left(K_{n}\right)=n-o(n)$.

Theorem (Bucić, Kwan, Pokrovskiy, Sudakov, Tran, Wagner, 2020): Every edge-ordering of a clique K_{n} has a monotone path of length $n^{1-o(1)}$.

A twin path in an edge-ordered graph is a path whose first half is similar to the second half.

Let $t(G)$ be the largest k such that every edge-ordering of G has a twin path of length k.

Conjecture (Grytczuk, 2021): $t\left(K_{n}\right)=n-o(n)$.

Theorem (Bucić, Kwan, Pokrovskiy, Sudakov, Tran, Wagner, 2020): Every edge-ordering of a clique K_{n} has a monotone path of length $n^{1-o(1)}$.

Conjecture (Grytczuk, 2021): $t(G) \leq 1000000$ for every planar graph G.

A problem of Ulam

Ulam's Problem: Given two structures, A and B, what is the least number $k=U(A, B)$ such that each of these structures can be decomposed into k substructures that can be matched into k isomorphic pairs?

Ulam's Problem: Given two structures, A and B, what is the least number $k=U(A, B)$ such that each of these structures can be decomposed into k substructures that can be matched into k isomorphic pairs?

Ulam's Problem: Given two structures, A and B, what is the least number $k=U(A, B)$ such that each of these structures can be decomposed into k substructures that can be matched into k isomorphic pairs?

What is the Ulam number $U(\alpha, \beta)$ for a pair of random permutations of length n ?

Thank You!

