Minimizers and one question about de Bruijn

 graphs
Minimizers: definition

- Consider alphabet A, integers $L>k>0$, and a linear order on A^{k}. For $s \in A^{L}$, the minimizer of s is the smallest substring of s of length k

Minimizers in a string

$$
\begin{aligned}
& \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \\
& a c t t a g t t g g a \operatorname{c} a \operatorname{a} a \operatorname{a} a c t \\
& \text { a c t t a g t g g a a c a a a a c t } \\
& \text { c t tag } \mathrm{t} \quad \mathrm{~g} \mathrm{~g} \text { a a c a } \\
& t \mathrm{t} a \mathrm{~g} \mathrm{t} t \quad g \mathrm{a} \text { a c a a } \\
& \text { t a g t t g a a c a a a } \\
& \text { a g t t g g a c a a a a } \\
& g t t g g a \quad c a \operatorname{a} a \operatorname{a} a \\
& \text { t t g g a a a a a a a c }
\end{aligned}
$$

- Order can be specified by a hash function $h: \Sigma^{k} \rightarrow \mathbb{N}$

References

- Credits:
, Schleimer et al. Winnowing: local algorithms for document fingerprinting, SIGMOD Int Conf on Management of Data, 2003
- Roberts et al. Reducing storage requirements for biological sequence comparison, Bioinformatics, 2004
- Applications:
- L-mer processing:
- clustering similar L-mers (locality-sensitive hashing)
- L-mer counting [KMC 2015, MSPKmerCounter 2015]
- metagenomic classification [Kraken 2014]
, sampling k-mers in a genomic sequence to be used as seeds for similarity search
- read mapping/alignment and assembly [minimap, miniasm 2016, 2018, MashMap 2018], mapping to variation graphs [V-MAP 2019]
- genome assembly [BCALM 2016 ...]
> stringology tasks: sparse suffix array [SamSAMi 2015]
- ... and more

Sampling

- General goal: sample positions such that
- consecutive positions cannot be too far away from each other (each L-window contains a position)
- identical L-windows have the same relative sampled positions
- positions are distributed as sparsely as possible along the string

Density of minimizers

- We are interested in sparsely distributed minimizers

- $w=L-k+1$: window of starting positions
- density of minimizers : expected density on i.i.d. random sequence $(n \rightarrow \infty)$
- [Marçais et al. 17] Given k, w, the density of minimizers equals the density of minimizers
 on any de Bruijn sequence of order $w+k$

Which order to choose?

- [Schleimer et al. 03, Roberts et al. 04] Assuming that every k-mer from among $w+1$ consecutive k-mers has equal chance to be minimal, the density of minimizers is $2 /(w+1)$
- lexicographical order performs worse than that
- [Orenstein et al. 17] Expected density of minimizers for $m=w$ can be made below $1.8 /(w+1)$
- [Schleimer et al. 03] Lower bound: $1.5 /(w+1)$

Local selection schemes [Zheng et al. 2020]

- Selecting a position from among w consecutive positions does not have to be based on an order of k-mers starting at these positions

Local selection schemes [Zheng et al. 2020]

- Selecting a position from among w consecutive positions does not have to be based on an order of k-mers starting at these positions
- Local selection scheme (LSS): $f: A^{w} \rightarrow[1 . . w]$

Local selection schemes [Zheng et al. 2020]

- Selecting a position from among w consecutive positions does not have to be based on an order of k-mers starting at these positions
- Local selection scheme (LSS): $f: A^{w} \rightarrow[1 . . w]$
- Forward LSS: $\forall s \in A^{w-1}, a, b \in A: f(a s) \leq f(s b)+1$

Local selection schemes [Zheng et al. 2020]

- Selecting a position from among w consecutive positions does not have to be based on an order of k-mers starting at these positions
- Local selection scheme (LSS): $f: A^{w} \rightarrow[1 . . w]$
- Forward LSS: $\forall s \in A^{w-1}, a, b \in A: f(a s) \leq f(s b)+1$
- Density on string s : fraction of selected positions for all windows $s[i . . i+w-1]$
- [Zheng et al. 20] Density on a random i.i.d. string = density on a de Bruijn string of order $2 w-1$ (general) or $w+1$ (forward)

Local selection schemes [Zheng et al. 2020]

- Selecting a position from among w consecutive positions does not have to be based on an order of k-mers starting at these positions
- Local selection scheme (LSS): $f: A^{w} \rightarrow[1 . . w]$
- Forward LSS: $\forall s \in A^{w-1}, a, b \in A: f(a s) \leq f(s b)+1$
- Density on string s : fraction of selected positions for all windows $s[i . . i+w-1]$
- [Zheng et al. 20] Density on a random i.i.d. string = density on a de Bruijn string of order $2 w-1$ (general) or $w+1$ (forward)
- [Zheng et al. 20] There is a forward LSS with density $O(\log w / w)$

Lexicographically smallest rotation LSS

- $f(s[1 . . w])=$ starting position of the lexicographically smallest circular shift of $s[1 . . w]$

Lexicographically smallest rotation LSS

- $f(s[1 . . w])=$ starting position of the lexicographically smallest circular shift of $s[1 . . w]$
- this is not a forward LSS
001000100

$$
010001001
$$

Lexicographically smallest rotation LSS

- $f(s[1 . . w])=$ starting position of the lexicographically smallest circular shift of $s[1 . . w]$
- this is not a forward LSS

Question: what is the density produced by this LSS?

Lexicographically smallest rotation: experiment

Density of selected positions by lexicographic smallest rotation scheme on binary alphabet

Lexicographically smallest rotation: experiment

Density of selected positions by lexicographic smallest rotation scheme on binary alphabet

Questions

- What is the asymptotic density produced by the smallest rotation scheme? Is it $O\left(\frac{1}{w}\right)$?
- What about other (better?) schemes?
-What about forward schemes? Is $O\left(\frac{\log w}{w}\right)$ the tight bound? Can we resolve the constant factor?

de Bruijn graph framework

- The number of conjugacy classes is

$$
C(w)=\frac{1}{w} \sum_{d \mid w} \phi\left(\frac{w}{d}\right) 2^{d}=\frac{2^{w}}{w}(1+o(1))
$$

where ϕ is Euler's totient function

- [Mykkelveit 72] There exists an unavoidable subset $S \subseteq A^{w}$ with $|S|=C(w)$
 (cf also [Champarnaud et al. 04])
Equivalently, the decycling number of a de Bruijn graph is $C(w)$
We need more than breaking all cycles

Thanks!

