
Minimizers and one question about de Bruijn
graphs

Gregory Kucherov (CNRS/Univ Gustave Eiffel)

Minimizers: definition
} Consider alphabet 𝐴, integers 𝐿 > 𝑘 > 0, and a

linear order on 𝐴!. For 𝑠 ∈ 𝐴", the minimizer of 𝑠 is
the smallest substring of 𝑠 of length 𝑘

𝑘

𝐿

Minimizers in a string

} Order can be specified by a hash function ℎ: Σ! → ℕ

a c t t a g t t g g a a c a a a a a c t

a c t t a g

c t t a g t

t t a g t t

g t t g g a

t a g t t g
a g t t g g

t g g a a c

t t g g a a

a a a a c t

g g a a c a
g a a c a a

a a c a a a
a c a a a a

c a a a a a

a a a a a c

𝐿 = 6, 𝑘 = 3
lexicographic order

References
} Credits:

} Schleimer et al. Winnowing: local algorithms for document
fingerprinting, SIGMOD Int Conf on Management of Data, 2003

} Roberts et al. Reducing storage requirements for biological
sequence comparison, Bioinformatics, 2004

} Applications:
} 𝐿-mer processing:

} clustering similar 𝐿-mers (locality-sensitive hashing)
} 𝐿-mer counting [KMC 2015, MSPKmerCounter 2015]
} metagenomic classification [Kraken 2014]

} sampling 𝑘-mers in a genomic sequence to be used as seeds for
similarity search
} read mapping/alignment and assembly [minimap, miniasm 2016, 2018,

MashMap 2018], mapping to variation graphs [V-MAP 2019]
} genome assembly [BCALM 2016 …]

} stringology tasks: sparse suffix array [SamSAMi 2015]
} … and more

Sampling
} General goal: sample positions such that

} consecutive positions cannot be too far away from each
other (each 𝐿-window contains a position)

} identical 𝐿-windows have the same relative sampled
positions

} positions are distributed as sparsely as possible along the
string

Density of minimizers
} We are interested in sparsely distributed minimizers

good:

bad:

} 𝑤 = 𝐿 − 𝑘 + 1 : window of starting positions
} density of minimizers : expected density on

i.i.d. random sequence (𝑛 → ∞)
} [Marçais et al. 17] Given 𝑘,𝑤, the density of

minimizers equals the density of minimizers
on any de Bruijn sequence of order 𝑤 + 𝑘

𝑘𝑤

Which order to choose?
} [Schleimer et al. 03, Roberts et al. 04] Assuming that

every 𝑘-mer from among 𝑤 + 1 consecutive 𝑘-mers
has equal chance to be minimal, the density of
minimizers is 2/(𝑤 + 1)

} lexicographical order performs worse than that
} [Orenstein et al. 17] Expected density of minimizers

for 𝑚 = 𝑤 can be made below 1.8/(𝑤 + 1)
} [Schleimer et al. 03] Lower bound: 1.5/(𝑤 + 1)

Local selection schemes [Zheng et al. 2020]
} Selecting a position from among 𝑤 consecutive

positions does not have to be based on an order of
𝑘-mers starting at these positions

Local selection schemes [Zheng et al. 2020]
} Selecting a position from among 𝑤 consecutive

positions does not have to be based on an order of
𝑘-mers starting at these positions

} Local selection scheme (LSS): 𝑓: 𝐴# → [1. . 𝑤]

Local selection schemes [Zheng et al. 2020]
} Selecting a position from among 𝑤 consecutive

positions does not have to be based on an order of
𝑘-mers starting at these positions

} Local selection scheme (LSS): 𝑓: 𝐴# → [1. . 𝑤]
} Forward LSS: ∀𝑠 ∈ 𝐴#$%, 𝑎, 𝑏 ∈ 𝐴: 𝑓 𝑎𝑠 ≤ 𝑓 𝑠𝑏 + 1

𝑎
𝑏

𝑠

Local selection schemes [Zheng et al. 2020]
} Selecting a position from among 𝑤 consecutive

positions does not have to be based on an order of
𝑘-mers starting at these positions

} Local selection scheme (LSS): 𝑓: 𝐴# → [1. . 𝑤]
} Forward LSS: ∀𝑠 ∈ 𝐴#$%, 𝑎, 𝑏 ∈ 𝐴: 𝑓 𝑎𝑠 ≤ 𝑓 𝑠𝑏 + 1
} Density on string 𝑠: fraction of selected positions for

all windows 𝑠[𝑖. . 𝑖 + 𝑤 − 1]
} [Zheng et al. 20] Density on a random i.i.d. string =

density on a de Bruijn string of order 2𝑤 − 1
(general) or 𝑤 + 1 (forward)

Local selection schemes [Zheng et al. 2020]
} Selecting a position from among 𝑤 consecutive

positions does not have to be based on an order of
𝑘-mers starting at these positions

} Local selection scheme (LSS): 𝑓: 𝐴# → [1. . 𝑤]
} Forward LSS: ∀𝑠 ∈ 𝐴#$%, 𝑎, 𝑏 ∈ 𝐴: 𝑓 𝑎𝑠 ≤ 𝑓 𝑠𝑏 + 1
} Density on string 𝑠: fraction of selected positions for

all windows 𝑠[𝑖. . 𝑖 + 𝑤 − 1]
} [Zheng et al. 20] Density on a random i.i.d. string =

density on a de Bruijn string of order 2𝑤 − 1
(general) or 𝑤 + 1 (forward)

} [Zheng et al. 20] There is a forward LSS with density
𝑂(log𝑤 /𝑤)

Lexicographically smallest rotation LSS
} 𝑓 𝑠 1. . 𝑤 = starting position of the lexicographically

smallest circular shift of 𝑠[1. . 𝑤]

Lexicographically smallest rotation LSS
} 𝑓 𝑠 1. . 𝑤 = starting position of the lexicographically

smallest circular shift of 𝑠[1. . 𝑤]
} this is not a forward LSS

001000100
010001001

Lexicographically smallest rotation LSS
} 𝑓 𝑠 1. . 𝑤 = starting position of the lexicographically

smallest circular shift of 𝑠[1. . 𝑤]
} this is not a forward LSS

Question: what is the density produced by this LSS?

001000100
010001001

Lexicographically smallest rotation: experiment

Density of selected positions by lexicographic smallest
rotation scheme on binary alphabet

Lexicographically smallest rotation: experiment

Density of selected positions by lexicographic smallest
rotation scheme on binary alphabet

lower bound
1.5/(𝑤 + 1)

Questions

} What is the asymptotic density produced by the
smallest rotation scheme? Is it O(%

#
)?

} What about other (better?) schemes?

} What about forward schemes? Is 𝑂(&'(#
#
) the tight

bound? Can we resolve the constant factor?

de Bruijn graph framework
} The number of conjugacy classes is

𝐶 𝑤 =
1
𝑤
-
+|-

𝜙(
𝑤
𝑑
)2+ =

2-

𝑤
(1 + 𝑜(1))

where 𝜙 is Euler’s totient function
} [Mykkelveit 72] There exists an unavoidable

subset 𝑆 ⊆ 𝐴- with 𝑆 = 𝐶(𝑤)
(cf also [Champarnaud et al. 04])

} Equivalently, the decycling number of a de Bruijn graph is
𝐶(𝑤)

} We need more than breaking all cycles
} …

Thanks!

