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Minimizers: definition
} Consider alphabet 𝐴, integers 𝐿 > 𝑘 > 0, and a 

linear order on 𝐴!. For 𝑠 ∈ 𝐴", the minimizer of 𝑠 is 
the smallest substring of 𝑠 of length 𝑘
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Minimizers in a string

} Order can be specified by a hash function ℎ: Σ! → ℕ

a c t t a g t t g g a a c a a a a a c t

a c t t a g

c t t a g t

t t a g t t

g t t g g a

t a g t t g
a g t t g g

t g g a a c

t t g g a a

a a a a c t

g g a a c a
g a a c a a

a a c a a a
a c a a a a

c a a a a a

a a a a a c

𝐿 = 6, 𝑘 = 3
lexicographic order
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} Applications:
} 𝐿-mer processing: 

} clustering similar 𝐿-mers (locality-sensitive hashing)
} 𝐿-mer counting [KMC 2015, MSPKmerCounter 2015]
} metagenomic classification [Kraken 2014]

} sampling 𝑘-mers in a genomic sequence to be used as seeds for 
similarity search
} read mapping/alignment and assembly [minimap, miniasm 2016, 2018, 

MashMap 2018], mapping to variation graphs [V-MAP 2019]
} genome assembly [BCALM 2016 …]

} stringology tasks: sparse suffix array [SamSAMi 2015]
} … and more



Sampling
} General goal: sample positions such that

} consecutive positions cannot be too far away from each
other (each 𝐿-window contains a position)

} identical 𝐿-windows have the same relative sampled 
positions

} positions are distributed as sparsely as possible along the
string



Density of minimizers
} We are interested in sparsely distributed minimizers

good:

bad:

} 𝑤 = 𝐿 − 𝑘 + 1 : window of starting positions
} density of minimizers : expected density on 

i.i.d. random sequence (𝑛 → ∞)
} [Marçais et al. 17] Given 𝑘,𝑤, the density of 

minimizers equals the density of minimizers 
on any de Bruijn sequence of order 𝑤 + 𝑘

𝑘𝑤



Which order to choose? 
} [Schleimer et al. 03, Roberts et al. 04] Assuming that 

every 𝑘-mer from among 𝑤 + 1 consecutive 𝑘-mers 
has equal chance to be minimal, the density of 
minimizers is 2/(𝑤 + 1)

} lexicographical order performs worse than that
} [Orenstein et al. 17] Expected density of minimizers 

for 𝑚 = 𝑤 can be made below 1.8/(𝑤 + 1)
} [Schleimer et al. 03] Lower bound: 1.5/(𝑤 + 1)
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} Forward LSS: ∀𝑠 ∈ 𝐴#$%, 𝑎, 𝑏 ∈ 𝐴: 𝑓 𝑎𝑠 ≤ 𝑓 𝑠𝑏 + 1
} Density on string 𝑠: fraction of selected positions for 

all windows 𝑠[𝑖. . 𝑖 + 𝑤 − 1]
} [Zheng et al. 20] Density on a random i.i.d. string = 
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} [Zheng et al. 20] There is a forward LSS with density 
𝑂(log𝑤 /𝑤)



Lexicographically smallest rotation LSS
} 𝑓 𝑠 1. . 𝑤 = starting position of the lexicographically 

smallest circular shift of 𝑠[1. . 𝑤]



Lexicographically smallest rotation LSS
} 𝑓 𝑠 1. . 𝑤 = starting position of the lexicographically 

smallest circular shift of 𝑠[1. . 𝑤]
} this is not a forward LSS

001000100
010001001



Lexicographically smallest rotation LSS
} 𝑓 𝑠 1. . 𝑤 = starting position of the lexicographically 

smallest circular shift of 𝑠[1. . 𝑤]
} this is not a forward LSS

Question: what is the density produced by this LSS? 

001000100
010001001



Lexicographically smallest rotation: experiment

Density of selected positions by lexicographic smallest 
rotation scheme on binary alphabet



Lexicographically smallest rotation: experiment

Density of selected positions by lexicographic smallest 
rotation scheme on binary alphabet

lower bound 
1.5/(𝑤 + 1)



Questions

} What is the asymptotic density produced by the 
smallest rotation scheme? Is it O(%

#
)?

} What about other (better?) schemes? 

} What about forward schemes? Is 𝑂(&'( #
#
) the tight 

bound? Can we resolve the constant factor? 



de Bruijn graph framework
} The number of conjugacy classes is 

𝐶 𝑤 =
1
𝑤
-
+|-

𝜙(
𝑤
𝑑
)2+ =

2-

𝑤
(1 + 𝑜(1))

where 𝜙 is Euler’s totient function
} [Mykkelveit 72] There exists an unavoidable 

subset 𝑆 ⊆ 𝐴- with 𝑆 = 𝐶(𝑤)
(cf also [Champarnaud et al. 04])

} Equivalently, the decycling number of a de Bruijn graph is 
𝐶(𝑤)

} We need more than breaking all cycles
} …



Thanks!


