Abelian and Additive Powers in the Tribonacci Word

Jeffrey Shallit

School of Computer Science, University of Waterloo Waterloo, ON N2L 3G1 Canada shallit@uwaterloo.ca https://cs.uwaterloo.ca/~shallit/

Remember: a word x is said to be an *Abelian k-power* if it can be written in the form $x = y_1y_2 \cdots y_k$, where each y_i is a permutation of y_1 .

Remember: a word x is said to be an *Abelian k-power* if it can be written in the form $x = y_1y_2 \cdots y_k$, where each y_i is a permutation of y_1 .

Example: $reappear = reap \cdot pear$ is an Abelian square and deeded = de \cdot ed \cdot ed is an Abelian cube.

Remember: a word x is said to be an *Abelian k-power* if it can be written in the form $x = y_1y_2 \cdots y_k$, where each y_i is a permutation of y_1 .

Example: $reappear = reap \cdot pear$ is an Abelian square and deeded = de \cdot ed \cdot ed is an Abelian cube.

A word $x \in \mathbb{N}^*$ is said to be an *additive k-power* if it can be written in the form $x = y_1y_2 \cdots y_k$ where $|y_i| = |y_1|$ and $\sum y_i = \sum y_1$ for all *i*.

Remember: a word x is said to be an *Abelian k-power* if it can be written in the form $x = y_1y_2 \cdots y_k$, where each y_i is a permutation of y_1 .

Example: $reappear = reap \cdot pear$ is an Abelian square and deeded = de \cdot ed \cdot ed is an Abelian cube.

A word $x \in \mathbb{N}^*$ is said to be an *additive k-power* if it can be written in the form $x = y_1y_2 \cdots y_k$ where $|y_i| = |y_1|$ and $\sum y_i = \sum y_1$ for all *i*.

Example: vaccinate is an additive cube under the correspondence $a \leftrightarrow 1$, $b \leftrightarrow 2, \ldots, z \leftrightarrow 26$.

Remember: a word x is said to be an *Abelian k-power* if it can be written in the form $x = y_1y_2 \cdots y_k$, where each y_i is a permutation of y_1 .

Example: $reappear = reap \cdot pear$ is an Abelian square and deeded = de \cdot ed \cdot ed is an Abelian cube.

A word $x \in \mathbb{N}^*$ is said to be an *additive k-power* if it can be written in the form $x = y_1y_2 \cdots y_k$ where $|y_i| = |y_1|$ and $\sum y_i = \sum y_1$ for all *i*.

Example: vaccinate is an additive cube under the correspondence $a \leftrightarrow 1$, $b \leftrightarrow 2, \ldots, z \leftrightarrow 26$.

The length of each y_i is called the *order* of the abelian (resp., additive) power.

The Fibonacci word

```
{\bf f} = 0100101001001001010 \cdots
```

is the infinite fixed point of the morphism 0 \rightarrow 01, 1 \rightarrow 0.

We know from a 2016 paper of Fici, Langiu, Lecroq, Lefebvre, Mignosi, Peltomäki, and Prieur-Gaston that the Fibonacci word has an abelian k-power of order n if and only if $\lfloor k\varphi n \rfloor \equiv 0, -1 \pmod{k}$, where $\varphi = (1 + \sqrt{5})/2$, the golden ratio.

The Fibonacci word

```
{\bf f} = 0100101001001001010 \cdots
```

is the infinite fixed point of the morphism 0 \rightarrow 01, 1 \rightarrow 0.

We know from a 2016 paper of Fici, Langiu, Lecroq, Lefebvre, Mignosi, Peltomäki, and Prieur-Gaston that the Fibonacci word has an abelian k-power of order n if and only if $\lfloor k\varphi n \rfloor \equiv 0, -1 \pmod{k}$, where $\varphi = (1 + \sqrt{5})/2$, the golden ratio.

(They actually proved a more general result for all Sturmian words.)

The Fibonacci word

```
{\bf f} = 0100101001001001010 \cdots
```

is the infinite fixed point of the morphism 0 \rightarrow 01, 1 \rightarrow 0.

We know from a 2016 paper of Fici, Langiu, Lecroq, Lefebvre, Mignosi, Peltomäki, and Prieur-Gaston that the Fibonacci word has an abelian k-power of order n if and only if $\lfloor k\varphi n \rfloor \equiv 0, -1 \pmod{k}$, where $\varphi = (1 + \sqrt{5})/2$, the golden ratio.

(They actually proved a more general result for all Sturmian words.)

So abelian powers in these words are well understood. For example, OEIS sequence $\underline{A336487}$ consists of those *n* for which there is an abelian cube of order *n* in **f**:

 $2, 3, 5, 6, 7, 8, 10, 11, 13, 15, 16, 18, 19, 21, 23, 24, 26, \ldots$

Fibonacci automaton for abelian cube orders in the Fibonacci word

It turns out that there is an 11-state finite automaton accepting, in Fibonacci representation, exactly those n for which there is an abelian cube of order n in the Fibonacci word:

More generally: Charlier, Rampersad, Rigo, and Waxweiler proved in 2011 (among many other things) that the minimal Fibonacci automaton recognizing multiples of k has $2k^2$ states.

More generally: Charlier, Rampersad, Rigo, and Waxweiler proved in 2011 (among many other things) that the minimal Fibonacci automaton recognizing multiples of k has $2k^2$ states.

This, together with the criterion of Fici et al. mentioned previously, and the observation that the function $n \rightarrow \lfloor n\varphi \rfloor$ is computed by a synchronized Fibonacci DFA of 7 states, shows that the orders of abelian k-powers in **f** are recognized by a Fibonacci DFA of $O(k^2)$ states.

Recall: the Tribonacci word

 $tr = 0102010\cdots$

is the fixed point of the morphism

$$0 \rightarrow 01; \quad 1 \rightarrow 02; \quad 2 \rightarrow 0.$$

Recall: the Tribonacci word

 $tr = 0102010\cdots$

is the fixed point of the morphism

$$0 \rightarrow 01; \quad 1 \rightarrow 02; \quad 2 \rightarrow 0.$$

We are interested in the abelian and additive powers appearing in tr.

Tribonacci numbers and Tribonacci representation

Remember: the Tribonacci numbers T_i are defined by $T_0 = 0$, $T_1 = 1$, $T_2 = 1$, and

$$T_i = T_{i-1} + T_{i-2} + T_{i-3}$$

for $i \geq 3$.

Tribonacci numbers and Tribonacci representation

Remember: the Tribonacci numbers T_i are defined by $T_0 = 0$, $T_1 = 1$, $T_2 = 1$, and

$$T_i = T_{i-1} + T_{i-2} + T_{i-3}$$

for $i \geq 3$.

Every natural number can be represented uniquely in *Tribonacci representation* as

$$n=\sum_{1\leq i\leq r}e_{i}T_{r+2-i}$$

for $e_i \in \{0,1\}$ provided $e_i e_{i+1} e_{i+2} \neq 1$. We write $(n)_T = e_1 \cdots e_r$.

Tribonacci numbers and Tribonacci representation

Remember: the Tribonacci numbers T_i are defined by $T_0 = 0$, $T_1 = 1$, $T_2 = 1$, and

$$T_i = T_{i-1} + T_{i-2} + T_{i-3}$$

for $i \geq 3$.

Every natural number can be represented uniquely in *Tribonacci representation* as

$$n=\sum_{1\leq i\leq r}e_{i}T_{r+2-i}$$

for $e_i \in \{0,1\}$ provided $e_i e_{i+1} e_{i+2} \neq 1$. We write $(n)_T = e_1 \cdots e_r$.

Example: $(43)_T = 110110$ because

$$43 = T_7 + T_6 + T_4 + T_3 = 24 + 13 + 4 + 2.$$

Alternative representation for the Tribonacci word

Theorem. The *n*'th symbol of the Tribonacci word \mathbf{tr} (starting at index 0) is

$$\begin{cases} 0, & \text{if } (n)_T \text{ ends in } 0; \\ 1, & \text{if } (n)_T \text{ ends in } 01; \\ 2, & \text{if } (n)_T \text{ ends in } 011. \end{cases}$$

This means that the Tribonacci word can be computed by an automaton reading n represented in Tribonacci representation.

Abelian squares in the Tribonacci word

Theorem.

- (a) There are abelian squares of all orders in tr.
- (b) Furthermore, if we consider two abelian squares xx' and yy' to be the same if x is a permutation of y, then every order has either one or two abelian squares.
- (c) Both possibilities occur infinitely often.

Abelian squares in the Tribonacci word

Theorem.

- (a) There are abelian squares of all orders in tr.
- (b) Furthermore, if we consider two abelian squares xx' and yy' to be the same if x is a permutation of y, then every order has either one or two abelian squares.
- (c) Both possibilities occur infinitely often.

Parts (b) and (c) seem to be new.

Abelian cubes in the Tribonacci word

Some surprises!

Abelian cubes in the Tribonacci word

Some surprises!

Theorem. There is a (minimal) Tribonacci automaton of 1169 (!) states recognizing the Tribonacci representation of those n for which there is an abelian cube of order n in **tr**.

Abelian cubes in the Tribonacci word

Some surprises!

Theorem. There is a (minimal) Tribonacci automaton of 1169 (!) states recognizing the Tribonacci representation of those n for which there is an abelian cube of order n in **tr**.

The sequence of these n is

 $4, 6, 7, 11, 13, 17, 18, 20, 24, 26, 27, 30, 31, 33, \ldots$

and is sequence A345717 in the OEIS.

Additive cubes in the Tribonacci word

Theorem. There is a (minimal) Tribonacci automaton of 4927 (!) states recognizing the Tribonacci representation of those n for which there is an additive cube of order n in **tr**.

The sequence of these *n* is

```
3, 4, 6, 7, 10, 11, 13, 14, 16, 17, 18, 20, 21, 23, 24, 26, 27, 30, 31, 33, \ldots
```

and is sequence $\underline{A347752}$ in the OEIS.

It turns out that the frequency of each letter 0, 1, 2 in **tr** is *Tribonacci-synchronized*.

It turns out that the frequency of each letter 0, 1, 2 in **tr** is *Tribonacci-synchronized*.

This means that there is a Tribonacci automaton recognizing, in parallel, n and $|\mathbf{tr}[0..n-1]|_i$ for $i \in \{0, 1, 2\}$.

It turns out that the frequency of each letter 0, 1, 2 in **tr** is *Tribonacci-synchronized*.

This means that there is a Tribonacci automaton recognizing, in parallel, n and $|\mathbf{tr}[0..n-1]|_i$ for $i \in \{0, 1, 2\}$.

So we can write first-order formulas for any fixed abelian power or additive power in the Tribonacci word, and use the Walnut software to create automata for abelian and additive powers.

A research question and a research project

Research question. Is there some simpler description of the orders of abelian and additive cubes in the Tribonacci word?

A research question and a research project

Research question. Is there some simpler description of the orders of abelian and additive cubes in the Tribonacci word?

Research project. Try to understand the orders of abelian and additive powers in episturmian words. Is there something akin to the result of Fici et al.?