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Explicit formula: The word a is Sturmian if and only if it is given by
an:[an+6}7[a(n71)+ﬂ]7 (TIEN),

for some irrational a € (0,1) and 3 € R (or possibly the same formula
with the floor [e] replaced by the ceiling [e]).

Coding of a rotation: Let R, denote the rotation = +— x + « on the unit
circle R/Z. The word a is Sturmian if and only if, for some irrational
rotation R, and base point 8 € R/Z, a, is given by

an =1<= Ry(B) € [0, ).
Subword complexity: The word a over is Sturmian if and only if it has

subword complexity pa(N) = N +1 (N € N), i.e. for each N there are
precisely N + 1 length-N subwords that appear in a.

Balance: The word a is Sturmian if and only if for each N € N, its
length-N subwords are balanced, i.e., for each u,v € {0,1}" that
appear in a, the number of 1s in u and v differs by at most 1.
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Overview

We will study a more general class, which we dub bracket words.

Explicit formula Bracket words are defined as codings of finitely-valued
generalised polynomials (expressions built with [e], +, X).

Coding of a rotation: Bracket words are given by codings of semialgebraic
partitions of rotations on nilmanifolds.

Subword complexity: Bracket words have polynomial subword complexity.
Balance: All symbols in a bracket word appear with uniform frequency.

Other notable properties:

o Good closure properties (products, codings, orbit closure).

1 if n = Fibonacci number,
o Unexpected examples, such at a, = .
0 otherwise.

2/24



xeneralised polynomials

Definition (Generalised polynomial sequences)

The generalised polynomial sequences N — R (denoted GP) is the smallest
family such that

o all polynomial sequences Z — R belong to GP;

o GP is aring, i.e., g,h € GP = g+ h,g-h € GP;

o GP is closed under the floor function, i.e. g € GP = [g] € GP.
(Operations are pointwise: (g + h)(n) = g(n) + h(n), [g] (n) = [g(n)], etc.)
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(Operations are pointwise: (g + h)(n) = g(n) + h(n), [g] (n) = [g(n)], etc.)

Remark:

e Since {z} = = — [z], GP is also closed under the fractional part
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Definition (Generalised polynomial sequences)

The generalised polynomial sequences N — R (denoted GP) is the smallest
family such that

o all polynomial sequences Z — R belong to GP;

o GP is aring, i.e., g,h € GP = g+ h,g-h € GP;

o GP is closed under the floor function, i.e. g € GP = [g] € GP.
(Operations are pointwise: (g + h)(n) = g(n) + h(n), [g] (n) = [g(n)], etc.)

Remark:

e Since {z} = = — [z], GP is also closed under the fractional part
function, i.e. g € GP = {g} = g — [g] € GP.

o Since [[zlz/z =min|z —a| = ({e+ 3} = 3) - C[{z+3} —3]+1),
GP is also closed under the circle norm, i.e. g € GP = ||g||r/z € GP.
Related concepts:
o The GP sequences N — R? are d-tuples (g1,...,g4) with g; € GP.
o The GP maps Z* — R? or R — R? are defined similarly.
o Aset AC Nisa GP setif 14 is a GP sequence.
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Bracket words

Definition (Bracket word)

A bracket word is a coding of a finitely-valued GP sequence.

More precisely, an infinite word a = (an)s=o over a finite alphabet X is a
bracket word if there exists a GP sequence g: N — R such that g(N) is
finite, and a coding 7: g(N) — X such that

an = m(g(n)), n € N.
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Bracket words

Definition (Bracket word)

A bracket word is a coding of a finitely-valued GP sequence.

More precisely, an infinite word a = (an)s=o over a finite alphabet X is a
bracket word if there exists a GP sequence g: N — R such that g(N) is
finite, and a coding 7: g(N) — X such that

an = m(g(n)), n e N.

Proposal: Let’s study bracket words from the point of view of
Combinatorics on Words.

Remark

The following objects are “equivalent”:
o bracket words;
o finitely-valued GP sequences;
o GP subsets of N.

For instance, if £ C N is a GP subset, then the characteristic word
1r = (1g(n))sX, is a bracket word. In this talk, we focus on bracket words.

4/24



Constructions

Lemma

Suppose that g: N — R is a GP sequence and I C R is an interval. Put

1 ifg(n) €l
0 otherwise.

an = 11(g(n)) = {

Then a = (an)n=o s a bracket word.

Remark: The interval I can be proper, infinite or degenerate
(e.g. I =[z,y), I = (x,00), I ={z}).
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Lemma

Suppose that g: N — R is a GP sequence and I C R is an interval. Put

1 ifg(n) €l
0 otherwise.

an = 11(g(n)) = {

Then a = (an)n=o s a bracket word.

Remark: The interval I can be proper, infinite or degenerate

(eg. I=|[z,y), I =(x,00), I ={x}).

Example: To get a Sturmian sequence, let g(n) = {an + 8} and I = [0, a).
Proof for I = {0}: For = € R, we have

r=0& {2} = (V) =0 o k%@%%{ﬂx} — 1

Hence, 1:(g(n)) = [1 - 5 {g(n)} — 3{v2g9(n)}].
Remark: As long as [ is bounded, similar tricks work. When I is
unbounded, situation becomes more complicated; the analogue in Z if false!
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Constructions

For a set E C N the following conditions are equivalent:
@ The set FE is GP (i.e., 1g: N = R is a GP sequence);
@ The characteristic word 15 = (1g(n))neo € {0,1}*° is a bracket word;
@ There is a GP sequence g with E = {n € N : g(n) = 0};
© There is a GP sequence h with E = {n € N : h(n) > 0}.
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Constructions

Corollary
For a set E C N the following conditions are equivalent:
@ The set FE is GP (i.e., 1g: N = R is a GP sequence);
@ The characteristic word 15 = (1g(n))neo € {0,1}*° is a bracket word;
@ There is a GP sequence g with E = {n € N : g(n) = 0};
© There is a GP sequence h with E = {n € N : h(n) > 0}.

Examples: The following are bracket words:

o a— {1 it {p(n)} € [0.0),

; where p(z) € Rlz] and « € (0,1);
0 otherwise,

where o € (0,1).

o a — {1 if {ﬂn [\/?:n]} € [0, ),

0 otherwise,

Example
Let F; denote the i-th Fibonacci number. Then {F; : ¢ > 1} is a GP set.
Proof: An integer n is a Fibonacci number if and only if ||ne|lr/z < 1/2n,

where ||z|lg/z = min {|z — a| : a € Z}. Take g(n) = n||ng|lr/z, I = [0,1/2).
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Closure properties

Lemma (Closure under codings)

Let a = (an)n=o be a bracket word over an alphabet X and let ¢: ¥ — A be

oo

any map. Then p(a) = (¢(an))rr is a bracket words over A.
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Lemma (Closure under codings)

Let a = (an)n=o be a bracket word over an alphabet X and let ¢: ¥ — A be

oo

any map. Then p(a) = (¢(an))rr is a bracket words over A.

Lemma (Closure under direct products)

Let a = (an)nzo and b = (bn)n>o be bracket words over alphabets ¥ and A
respectively. Then a X b = ((an,bn))r. is a bracket word over X x A.

Consequence: Bracket words over a finite ring constitute a ring.

Lemma (Extracting progressions)

Let a = (an)nzo be a bracket word over an alphabet X and let k € N, r € Ny
be any map. Then (akn-ﬁ-T)Zo:o 1s a bracket word over X.

Let a be an infinite word over an alphabet ¥. Then a word b belongs to the
orbit closure of a if each finite prefix bob; - - - b,—1 of b is a subword of a.

Proposition (Orbit closure)

Let a = (an)nzo be a bracket word over an alphabet . Let b belong to the
orbit closure of a. Then b is a bracket word.
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Nilmanifolds

Let G be a nilpotent Lie group, and I' < G a cocompact discrete subgroup.
@ The space X = G/I' is a nilmanifold.
@ For g € G, the map T;: X — X, x — gz is a nilrotation.
@ The dynamical system (X,7y) is a nilsystem. It has a natural Haar
measure (tx which is Tj-invariant.

© For F: X — R (Lipschitz) and z € X, (F(Ty (x))):’: is a nilsequence.

0
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A reassuring example:
e Take G =R, I'=7Z. Then G/T" = T, the unit circle.
o The circle comes equipped with To(z) = = + a.
o The Haar measure is just the Lebesgue measure.
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Nilmanifolds

Definition

Let G be a nilpotent Lie group, and I' < G a cocompact discrete subgroup.
@ The space X = G/I' is a nilmanifold.
@ For g € G, the map T;: X — X, x — gz is a nilrotation.
@ The dynamical system (X,7y) is a nilsystem. It has a natural Haar
measure (tx which is Tj-invariant.

© For F: X — R (Lipschitz) and z € X, (F(Ty (x))):’: is a nilsequence.

0

A reassuring example:
e Take G =R, I'=7Z. Then G/T" = T, the unit circle.
o The circle comes equipped with To(z) = = + a.
o The Haar measure is just the Lebesgue measure.
2rina

o The additive characters n — e
o Put F =1pqa). Then (F(Ty (x)))nr, is Sturmian. (F not continuous!)

n=0

are 1-step nilsequences.

Remark: Nilsequences are a central object of interest in higher order
Fourier analysis, which we will not discuss here any further.
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Nilmanifolds and generalised polynomials

Theorem (Bergelson, Leibman)

Let g: N — R be a bounded GP sequence. Then is exists a nilsystem (X,T),
a point x € X and a piecewise polynomial map F': X — R such that

g(n) = F(T"(z)), neN
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Nilmanifolds and generalised polynomials

Theorem (Bergelson, Leibman)

Let g: N — R be a bounded GP sequence. Then is exists a nilsystem (X,T),
a point x € X and a piecewise polynomial map F': X — R such that

g(n) = F(T"(z)), neN

Definition: A set S C [0,1)% is semialgebraic if be defined by a finite
number of polynomial equations and inequalities, e.g.

S={(z,y) €[0,1)* : 2 +y* <landz+y#1}.

A map p: [0,1)* = R is piecewise polynomial if there is a finite partition
[0,1)* = U, Si with S; semialgebraic, such that p|s, are polynomials, e.g.

0 ifx+y:17
plr,y) = ay+1 ifz?+y?<landz+y#1,
z+2y ifa® +y7 > 1
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Nilmanifolds and generalised polynomials

Theorem (Bergelson, Leibman)

Let g: N — R be a bounded GP sequence. Then is exists a nilsystem (X,T),
a point x € X and a piecewise polynomial map F': X — R such that

g(n) = F(T"(z)), neN

Definition: A set S C [0,1)% is semialgebraic if be defined by a finite
number of polynomial equations and inequalities, e.g.

S={(z,y) €[0,1)* : 2 +y* <landz+y#1}.

A map p: [0,1)* = R is piecewise polynomial if there is a finite partition
[0,1)* = U, Si with S; semialgebraic, such that p|s, are polynomials, e.g.

0 ife+y=1,
plx,y) =S ay+1 ifz?+y><landz+y#l,
42y ifz? 492> 1.
A nilmanifold X has a system of Mal’cev coordinates, 7: X — [0,1)4m X,
This allows us to speak of piecewise polynomial maps X — R.

9/24



Heisenberg example

, Gs =[G, Gs] ={ec}.

T oz
1 y| T with z,y,z € [0,1).
0 1

1 {na} {f(n)}
r=|(0 1 {ng}|T
0 0 1

o~ Q
— 2

1
0
0

where f(n) = ny + (Z) [na] ng.

]n [1 na n’y+() af
r=1(0 1 np
0

—_
| S
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Subword complexity

Let a = (an)nzo € X°°. The subword complexity pa is given by

pa(N) = # {w eV : wis a subword of a}.
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Subword complexity

Let a = (an)nzo € X°°. The subword complexity pa is given by

pa(N) = # {w eV : wis a subword of a} .

If a is eventually periodic then pa(NV) is bounded.

If pa(N) < N for some N then a is eventually periodic.

The sequence a is Sturmian if and only if po(N) = N + 1 for all N.
If a is automatic then pa(N) = O(N).
o If a is morphic then pa(N) = O(N?).

Theorem (Adamczewski, K.)

If a is a bracket word then pa(N) = O(N) for a constant C > 0.

Question: Given a bracket word a, what is the best possible value of C?
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Proof ideas

o )
° As an example, consider a, = [2{n"v2}] = {? e s
1 n 1.
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Proof ideas

. 2 l
o As an example, consider a, = [2 {nQﬁ}] = {0 if {n’v2} €0, 3),

1 if {n*v2} e [3,1).
o Note that antm = [2 {nQ\/i + nom + ﬁm}} where
am = {2mv2} € [0,1) and B, = {m*V2} € [0,1).
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o As an example, consider a, = [2{n’V2}] = {1 li }Z%ﬁi E z’j K
o Note that antm = [2 {nQ\/i + nom + ﬁm}} where
am = {2mv2} € [0,1) and B, = {m*V2} € [0,1).
o Let N € N. Task: count length- N subwords a.

Instead, we will count length-N prefixes of words a®* (a, 8 € [0, 1))
given by ay’ B = [2 {n2\/§ +na+ ﬁ}]
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Proof ideas

. 3 ) B if {n®v2}€l0,1),
o As an example, consider a, = [2{n’V2}] = {1 it {n2v3) € [11).
o Note that antm = [2 {nQ\/i + nom + ﬁm}} where
am = {2mv2} € [0,1) and B, = {m*V2} € [0,1).
o Let N € N. Task: count length- N subwords a.
Instead, we will count length-N prefixes of words a®* (a, 8 € [0, 1))
given by ay’ B = [2 {n2\/§ +na+ ﬁ}]
o Approximate o ~ o, 8 ~ * by rationals, error < N~'° (N?° choices).
Note that n?v/2 + na + 8 = n*v2 +na* + * + O(N~?) (n < N).
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Proof ideas

. _ 5 _ if {n \[} E
o As an example, consider a, = [2 {n \/5}] = {1 " {nQ\f} el
o Note that antm = [2 {nQ\/i + nom + ﬁm}} where
am = {2mv2} € [0,1) and B, = {m*V2} € [0,1).
o Let N € N. Task: count length- N subwords a.
Instead, we will count length-N prefixes of words a®* (a, 8 € [0, 1))
given by ay’ B = [2 {n2\/§ +na+ ﬁ}]
o Approximate o ~ o, 8 ~ * by rationals, error < N~'° (N?° choices).
Note that n?v/2 + na + 8 = n*v2 +na* + * + O(N~?) (n < N).
@ There are two types of points n < N:
The Good: ||2n°V/2 + 2na* + 28%||r/z > N~°, so we can compute
atP = [2 {n2\f—|—na + B }] If so, we are done.
The Bad. 12n°V2 + 2na” + 28%||r/z < N~%. Let
6n 1= 2n°V2 4 2na + 28 — |2n*V2 4 2na” + 28%] = O(N%).
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given by ay’ B = [2 {n2\/§ +na+ ﬁ}]
o Approximate o ~ o, 8 ~ * by rationals, error < N~'° (N?° choices).
Note that n?v/2 + na + 8 = n*v2 +na* + * + O(N~?) (n < N).
@ There are two types of points n < N:
The Good: ||2n°V/2 + 2na* + 28%||r/z > N~°, so we can compute
atP = [2 {n2\f—|—na + B }] If so, we are done.
The Bad. 12n°V2 + 2na” + 28%||r/z < N~%. Let
6n 1= 2n°V2 4 2na + 28 — |2n*V2 4 2na” + 28%] = O(N%).
o If we know sgn(d,) and a* and $*, then we can recover a2'?. E.g.:
o If {nQﬁJrna* +B*} ~ 0 and 6, > 0 then a%”ﬁ =0.
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Proof ideas

. _ 5 _ if {n \[} E
o As an example, consider a, = [2 {n \/5}] = {1 " {nQ\f} el
o Note that antm = [2 {nQ\/i + nom + ﬁm}} where
am = {2mv2} € [0,1) and B, = {m*V2} € [0,1).
o Let N € N. Task: count length- N subwords a.
Instead, we will count length-N prefixes of words a®* (a, 8 € [0, 1))
given by ay’ B = [2 {n2\/§ +na+ ﬁ}]
o Approximate o ~ o, 8 ~ * by rationals, error < N~'° (N?° choices).
Note that n?v/2 + na + 8 = n*v2 +na* + * + O(N~?) (n < N).
@ There are two types of points n < N:
The Good: ||2n°V/2 + 2na* + 28%||r/z > N~°, so we can compute
atP = [2 {nQ\f—i—na + B }] If so, we are done.
The Bad. 12n°V2 + 2na” + 28%||r/z < N~%. Let
6n 1= 2n°V2 4 2na + 28 — |2n*V2 4 2na” + 28%] = O(N%).
o If we know sgn(d,) and a* and $*, then we can recover a2'?. E.g.:
o If {nQ\/iJrna* +B*} ~ 0 and 6, > 0 then a%”ﬁ =0.
e For each n < N, the set {(«, 3) : , =0} is a line.
Key fact: N lines divide the plane into O(N?) regions.
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Uniform frequency

For an infinite word over X and i € 3, let

o . 1 .
freq*(a,i) = limsup sup —=#{M <n< M+ N : a, =1}
N — o0 MENN

freq, (a,7) = liminf inf %#{M <n<M+N :a,=1i}.

N—oco MEeN
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Proposition

Let a be a bracket word over an alphabet > and let i € . Then
freq*(a, 1) = freq, (a, 1) := freq(a, 7).
Equivalently: If £ C Nis a GP set, then d*(E) = d.(E).
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N — o0 MENN

freq, (a,?) = liminf inf %#{M <n<M+N :a,=1i}.

N—oco MEeN

Proposition

Let a be a bracket word over an alphabet > and let i € . Then

freq*(a, 1) = freq, (a, 1) := freq(a, 7).

Equivalently: If £ C Nis a GP set, then d*(E) = d.(E).

Corollary: If freq(a,i) > 0 then {n € N : a, =i} is syndetic (there exists
N such that for each M € N there exists M <n < M + N with a, = 1).

Remark: The same results remain valid, mutatis mutandis, if i € X is
replaced with a word w € $°. (E.g. because (an@ni1 - Gnte—1)0, is a
bracket word over X¢.)
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Uniform frequency

For an infinite word over X and i € 3, let
o . 1 .
freq”(a,?) = limsup sup —#{M <n< M+ N : a, =i}
N—oco MEeN N

freq, (a,?) = liminf inf %#{M <n<M+N :a,=1i}.

N—oco MEeN

Proposition

Let a be a bracket word over an alphabet > and let i € . Then
freq*(a, 1) = freq, (a, 1) := freq(a, 7).

Equivalently: If £ C Nis a GP set, then d*(E) = d.(E).

Corollary: If freq(a,i) > 0 then {n € N : a, =i} is syndetic (there exists
N such that for each M € N there exists M <n < M + N with a, = 1).

Remark: The same results remain valid, mutatis mutandis, if i € X is
replaced with a word w € $°. (E.g. because (an@ni1 - Gnte—1)0, is a
bracket word over X¢.)

Proof: Apply Bergelson-Leibman; ergodic nilsystems are uniquely ergodic.
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Quantitative frequency

Negative results: Estimates from previous slide cannot be improved. For
any function f: N — [0,1) with f(N) — oo as N — oo, there exists a
bracket word a over {0,1} such that

f(N)S#{n<NN: an:l}—>0asN—>oo.

L if lan|lr/z]|Bnllr/z < 1/n,
0 otherwise,
sufficiently well-approximable by rationals.

We can take a, = where o, 3 € R\ Q are
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Quantitative frequency

Negative results: Estimates from previous slide cannot be improved. For
any function f: N — [0,1) with f(N) — oo as N — oo, there exists a
bracket word a over {0,1} such that

f(N)S#{n<NN: an:l}—>0asN—>oo.

L if lan|lr/z]|Bnllr/z < 1/n,
0 otherwise,
sufficiently well-approximable by rationals.

We can take a, = where o, 3 € R\ Q are

Positive results: Quantitative results on equidistribution of orbits on
nilmanifolds (e.g. Green—Tao) translate into estimates on frequencies of
symbols in bracket words, but we must either

o make additional assumptions about Diophantine properties of the
coefficients in the definition of a; or

o deal with the possibility that a has different behaviour on different
long arithmetic progressions.
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Finite sums. For a sequence (n;);2;, n; € N, define:

FS ((ni)iZ1) {Zm I C N, finite, I#@}

i€l
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IP sets

Finite sums. For a sequence (n;);2;, n; € N, define:
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o Aset ACNisIP if A D FS((n;){2;) for some sequence (n;)52;.
e Aset BCNisIP"if BNFS((n;)2;) # 0 for each sequence (n;)52;.

Any IP* set is syndetic (i.e. intersects any sufficiently long interval).
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Finite sums. For a sequence (n;);2;, n; € N, define:

FS ((ni)iZ1) {Zm I C N, finite, I#Q)}

i€l

o Aset ACNisIP if A D FS((n;){2;) for some sequence (n;)52;.
e Aset BCNisIP"if BNFS((n;)2;) # 0 for each sequence (n;)52;.

Any IP* set is syndetic (i.e. intersects any sufficiently long interval).

Theorem (Hindman)
o If AisanIP set, A=A UAU---UA, then 3j: Aj; is IP.
e If B1,Bz...,B, are IP* sets then B= B1 N BxN---N B, is IP*.
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IP sets and GP sets

Corollary (Bergelson, Leibman)

o Let g: N — R be a bounded GP sequence. Then for almost alln € N,
for any 6 > 0, the set R={m € N : |[g(n +m) — g(n)| < ¢} is IP".

o If a is a bracket word then for almost all n € N the set
{m €N : anym = an} is IP*.

o For any GP set E C N with d(E) > 0, the set E —n is IP* for some n.
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IP sets and GP sets

Corollary (Bergelson, Leibman)

o Let g: N — R be a bounded GP sequence. Then for almost alln € N,
for any 6 > 0, the set R={m € N : |[g(n +m) — g(n)| < ¢} is IP".

o If a is a bracket word then for almost all n € N the set
{m €N : anym = an} is IP*.

o For any GP set E C N with d(E) > 0, the set E —n is IP* for some n.

Stronger versions: Let (n;)i2; be a sequence, and let R be as above.

o IP, recurrence: We can find ), ; n; € R with I C [r] for some r that
depends on g, 6 and n [Bergelson, Leibman];

o SGg recurrence: We can find ., n; € R where I has gaps bounded
by d for some d that depends on g and § [K.];

o VIP recurrence: [Bergelson, Haland Knutson, McCutcheon]|;
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Representations and decidability

One bracket word can have many distinct representations. For instance:

o= 1 (] - [~ {5
= [[\/in]%/in] - [\/in] g on® 41, n € N.
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Representations and decidability

One bracket word can have many distinct representations. For instance:

o= 1 (] - [~ {5
= [[\/in]%/in] - [\/in] g on® 41, n € N.

Question

Can we determine if two bracket words (or GP sequences) are equal?
For polynomial sequences, there are also unexpected identities, like
n*+4=n*+2n+2)(n® — 2n+2).

This is not a problem, since polynomials have a “canonical” representation

d
p(n) = n'ei,  (d€No, a; €R).
=0

Question

Is there an analogous statement for bracket words (or GP sequences)?
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Canonical representation

Let us call a GP sequence g: N — R a generalised monomial if it can be
expressed using only polynomials, fractional part, and multiplication, e.g.

pi(n){pz(n)}, pi(n){p2(n)} {ps(n)}, pi(n) {p2(n)} {ps(n) {pa(n)}},

where p;: N — R are (ordinary) polynomial sequences.
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expressed using only polynomials, fractional part, and multiplication, e.g.

pi(n){pz(n)}, pi(n){p2(n)} {ps(n)}, pi(n) {p2(n)} {ps(n) {pa(n)}},

where p;: N — R are (ordinary) polynomial sequences.

Theorem (Leibman)

Each bounded GP sequence g has a “canonical representation”
g(n) = F (ho(n), hi(n), ha(n), ..., hqe(n)), n €N,

where F' is a piecewise polynomial function, ho is periodic and
hi,ha, ... hqa: N — [0,1) are jointly equidistributed generalised monomials.

Remark: The representation is explicitly computable.
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Canonical representation

Let us call a GP sequence g: N — R a generalised monomial if it can be
expressed using only polynomials, fractional part, and multiplication, e.g.

pi(n){pz(n)}, pi(n){p2(n)} {ps(n)}, pi(n) {p2(n)} {ps(n) {pa(n)}},

where p;: N — R are (ordinary) polynomial sequences.

Theorem (Leibman)

Each bounded GP sequence g has a “canonical representation”
g(n) = F (ho(n), hi(n), ha(n), ..., hqe(n)), n €N,

where F' is a piecewise polynomial function, ho is periodic and
hi,ha, ... hqa: N — [0,1) are jointly equidistributed generalised monomials.

Remark: The representation is explicitly computable.

Corollary

Given (representations of) two bracket words a,b over the same alphabet X,
there is a procedure to determine if a and b are equal almost everywhere,
te. if #{n <N : an #by} /N — 0 as N — oo.
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Canonical representation

Example (Leibman)
Let g(n) = {ﬂn [\/gn] } Then:
o= {1 ()}

= () = (B = (e B (B )

where F' is the piecewise polynomial function given by

z—y+1 ifx<y.

F(z,y) = {z -y} ={
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Canonical representation

Example (Leibman)

Let g(n) = {ﬂn [\/?:n] } Then:
o= [~ on )

= () = (B = (e B (B )

where F' is the piecewise polynomial function given by

F(x’y):{xy}:{m—y-i-l ifex<y

Construction: Start by taking all polynomials p; that appear in the
representation of g, and iteratively construct expressions involving p;, {e} and x.
It is possible to express g using these generalised monomials.

@ We have to be careful which basic sequences to include, e.g. if we add
p(n){g(n)} then we cannot add g(n) {p(n)} because of identities like

vy —x{y} —y{z} —{=z}{y} = [2] [y] = O mod 1.
@ We might need to replace p; with p;/M (M € N).

@ We might need to pass to an arithmetic progression.
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Equality is undecidable

Theorem (Adamczewski, K.)

There is no algorithm which, given a representation of a GP sequence g
with algebraic coefficients, determines if g(n) = 0 for all n € N.

Corollary
There is no algorithm which, given representations of two bracket words
a, b, each involving only algebraic coefficients, determines if a = b.
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Equality is undecidable

Theorem (Adamczewski, K.)

There is no algorithm which, given a representation of a GP sequence g
with algebraic coefficients, determines if g(n) = 0 for all n € N.

Corollary
There is no algorithm which, given representations of two bracket words
a, b, each involving only algebraic coefficients, determines if a = b.

Sketch of proof:
Key fact: There exists a surjective GP map N — N2, for instance:

n— ([n . {ﬁn}lo] , [n . {\/gn}lo]) .

Iterating, we can construct a surjective GP map tq: N — Z? for each d € N.
If we could recognise if a GP sequence is identically zero, then we could also
recognise solvable polynomial equations in Z:

(Fz1,...,2qa €Z) p(x1,...,24) =0 (In €N) 1403 (pota(n)) #0

But it is well-known that this is impossible (cf. Hilbert’s 10th problem).
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Recursive sequences

Let 8 > 1 be an algebraic integer with minimal polynomial

d—1

Let E = {n; : i > 0}, where n; satisfy recurrence:

d—1
Nitd = E AN+
=0
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Recursive sequences

Let 8 > 1 be an algebraic integer with minimal polynomial

d—1

Let E = {n; : i > 0}, where n; satisfy recurrence:

d—1
Nitd = E AN+
Jj=0

Theorem
The set E is GP if B8 is any of the following:
o Quadratic Pisot unit (d =2 and ap = £1);

o Not totally real cubic Pisot unit (d =3, ao = 1, p has two complez roots);

o Salem unit (d > 4 even, ap = 1, p(1/8) = 0, other roots on the unit circle).

Conjecture: These are the only cases where E is GP.
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Extremely sparse sequences

Proposition (Byszewski, K.)

. g o . o logny
Suppose that (n;)2g is a sequence with liminf RN
1—> 00 Og g

Then, E ={n; : i >0} is a GP set. (E.g. ny = o7 .)
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Extremely sparse sequences

Proposition (Byszewski, K.)

. oo . o logn;
Suppose that (n;)2g is a sequence with liminf RN
71— 00 0g N;

Then, E ={n; : i >0} is a GP set. (E.g. ny = o7 .)

Proof strategy: Hope to find a € R and C so that n € E if and only if

lom|lz/z < 1/n° )

By inductive construction, one can show that there exists a Cantor set of «
such that (T) holds for all n € E.
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Extremely sparse sequences

Proposition (Byszewski, K.)

. P | ;
Suppose that (n;)2g is a sequence with liminf PR g

71— 00 Og g )
Then, E ={n; : i >0} is a GP set. (E.g. n; =2%.)
Proof strategy: Hope to find a € R and C so that n € E if and only if

lom|lz/z < 1/n° )

By inductive construction, one can show that there exists a Cantor set of «
such that (T) holds for all n € E.

Problem: (t) might hold for some n € N\ E. First, reduce to the case
where D < logni+1/logn; < 2D for a constant D. We strengthen () to

1/2n < [lanlg/z < 1/n €3]

Under suitable conditions on C and D (e.g. C =5, D = 6), we use
continued fractions to check that no spurious n satisfy (1).
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Negative results: Criteria

How does one prove that a set (or a sequence) is not GP?
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How does one prove that a set (or a sequence) is not GP?

o (Boring answer) Use properties from previous slides.

Theorem (Byszewski, K.)

IfECN, d(E)=0 and E contains an IP set, then E is not GP.

Ezample: The set {Znel 22" . IcC N} is not GP. The set of integers
whose base-10 expansions do not contain 7 is not GP.
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Negative results: Criteria

How does one prove that a set (or a sequence) is not GP?

o (Boring answer) Use properties from previous slides.

Theorem (Byszewski, K.)

IfECN, d(E) =0 and E contains an IP set, then E is not GP.

Ezample: The set {Znel 22" . IcC N} is not GP. The set of integers
whose base-10 expansions do not contain 7 is not GP.

Theorem (K.)

FigkeN. IfECN,d(E)=0and E=E/k:={n €N : kn € E} then E
s not GP.

Ezample: {k™ : n > 0} is not GP.
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Negative results: Examples
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Negative results: Examples

o The squares S = {n® : n € N} are not a GP set. (Proof: S/4=5.)
o The primes are not a GP set. (Proof: use Gowers uniformity of u.)

o Let ¢ > 3. Then (¢(n) mod q);-, is not bracket word.
(Here, p(n) = #(Z/nZ)* is the totient function.)
Proof: The set E={n : ¢(n) Z0mod q} has d(E) =0 and E/p=FE
for any p € P with p > q, gt p — 1.
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Negative results: Examples

o The squares S = {n® : n € N} are not a GP set. (Proof: S/4=5.)
o The primes are not a GP set. (Proof: use Gowers uniformity of u.)

o Let ¢ > 3. Then (¢(n) mod q);-, is not bracket word.
(Here, p(n) = #(Z/nZ)* is the totient function.)
Proof: The set E={n : ¢(n) Z0mod q} has d(E) =0 and E/p=FE
for any p € P withp > ¢, gftp— 1.

@ Recall that a word a = (an)52 is k-automatic if a,, can be computed
by a finite automaton, taking base-k expansion of n as input.

Theorem (Byszewski, K.)

If a is k-automatic and not eventually periodic, then a is not a bracket word.
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The End

THANK YOU FOR YOUR ATTENTION!



Bonus: Recursive sequences

Let 8 > 1, o, & be the roots of X3 - X2 — X — 1. Then the set
{[8] - =0} is GP. B |8"7°] = [8#] + [ ] + [B'); L] = [z + 2])



Bonus: Recursive sequences

Example

Let B > 1, a, & be the roots Qf XP = X_2 — X — 1. Then the set
{181 : iz 0} is GP. (B [B7%] = |37 + |87 + [B']; L] = [+ 3])

Sketch of proof: Note that || < 1. If we guess that n = | 3’| then

n=pg+a +a =Tr(s")
L/Bn"l _ /Bi+1 + ai+1 +ai+1
w2n-| _ /Bi+2 + o2 +ai+2_
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with g = 8%, h = . This defines GP sequences g(n) € Q(8), h(n) € Q(a)
for all n. New goal: n = |B'] <= g(n) = "



Bonus: Recursive sequences

Example

Let 8 > 1, a, @ be the roots of X3 — X2 — X — 1. Then the set
{[8'] : i>0}is GP. B |7°] = |B2] + [871] + [8']; [2] = [z + 3])

Sketch of proof: Note that || < 1. If we guess that n = | 3’| then

n=g+h+ h
|Bn] = Bg + ah + ah
L,BQn] = [329 +a’h + a>h.
with g = 8, h = ’. This defines GP sequences g(n) € Q(8), h(n) € Q(a)
for all n. New goal: n = |B'] <= g(n) = "

Key fact: The group of units of Q(3) has rank 1, § is a generator.



Bonus: Recursive sequences

Example

Let 8 > 1, o, & be the roots of X3 - X2 — X — 1. Then the set
{[8] - =0} is GP. B |8"7] = [87*] + [ ] + [B'); L] = [z + 2])

Sketch of proof: Note that || < 1. If we guess that n = | 3] then

n=g+h+h
|Bn] = Bg + ah + ah
L,6’2n-| = B%g + o*h + &a*h.

with g = 8%, h = . This defines GP sequences g(n) € Q(8), h(n) € Q(«a)
for all n. New goal: n = LBZ] < g(n) = 4.

Key fact: The group of units of Q(8) has rank 1, § is a generator.

g(n) = B" <= g(n) is a unit in Q(B).



Bonus: Recursive sequences

Example

Let B > 1, a, & be the roots Qf XP = X_2 — X — 1. Then the set
{[8] : iz 0} is GP. (B [B7%] = |37 + |87 + [B°]; 2] = [+ 3])

Sketch of proof: Note that || < 1. If we guess that n = | 3’| then

n=g+h+h
|Bn] = Bg + ah + ah
LBQn] = B29 +a?h + &>h.
with g = 8%, h = o'. This defines GP sequences g(n) € Q(8), h(n) € Q(a)
for all n. New goal: n = |B'] <= g(n) = "

Key fact: The group of units of Q(3) has rank 1, 8 is a generator.

g(n) is an algebraic integer

g(n) = f" <= {N(g(n)) =1 <= g(n)h(n)h(n) = 1.



