Finitely valued-generalised polynomials

Jakub Konieczny
Camille Jordan Institute Claude Bernard University Lyon 1

One World Combinatorics on Words Seminar, 20 XII 2021

Based on joint work with B. Adamczewski \mathcal{G} joint work with J. Byszewski.

Motivation: Sturmian sequences

Sturmian words $\mathbf{a}=\left(a_{n}\right)_{n=0}^{\infty} \in\{0,1\}^{\infty}$ have several characterisations:

Motivation: Sturmian sequences

Sturmian words $\mathbf{a}=\left(a_{n}\right)_{n=0}^{\infty} \in\{0,1\}^{\infty}$ have several characterisations:
Explicit formula: The word a is Sturmian if and only if it is given by

$$
a_{n}=[\alpha n+\beta]-[\alpha(n-1)+\beta], \quad(n \in \mathbb{N})
$$

for some irrational $\alpha \in(0,1)$ and $\beta \in \mathbb{R}$ (or possibly the same formula with the floor $[\bullet]$ replaced by the ceiling $\lceil\bullet\rceil)$.

Motivation: Sturmian sequences

Sturmian words $\mathbf{a}=\left(a_{n}\right)_{n=0}^{\infty} \in\{0,1\}^{\infty}$ have several characterisations:
Explicit formula: The word a is Sturmian if and only if it is given by

$$
a_{n}=[\alpha n+\beta]-[\alpha(n-1)+\beta], \quad(n \in \mathbb{N})
$$

for some irrational $\alpha \in(0,1)$ and $\beta \in \mathbb{R}$ (or possibly the same formula with the floor $[\bullet]$ replaced by the ceiling $\lceil\bullet\rceil$).

Coding of a rotation: Let R_{α} denote the rotation $x \mapsto x+\alpha$ on the unit circle \mathbb{R} / \mathbb{Z}. The word a is Sturmian if and only if, for some irrational rotation R_{α} and base point $\beta \in \mathbb{R} / \mathbb{Z}, a_{n}$ is given by

$$
a_{n}=1 \Longleftrightarrow R_{\alpha}^{n}(\beta) \in[0, \alpha)
$$

Motivation: Sturmian sequences

Sturmian words $\mathbf{a}=\left(a_{n}\right)_{n=0}^{\infty} \in\{0,1\}^{\infty}$ have several characterisations:
Explicit formula: The word \mathbf{a} is Sturmian if and only if it is given by

$$
a_{n}=[\alpha n+\beta]-[\alpha(n-1)+\beta], \quad(n \in \mathbb{N})
$$

for some irrational $\alpha \in(0,1)$ and $\beta \in \mathbb{R}$ (or possibly the same formula with the floor $[\bullet]$ replaced by the ceiling $\lceil\bullet\rceil)$.

Coding of a rotation: Let R_{α} denote the rotation $x \mapsto x+\alpha$ on the unit circle \mathbb{R} / \mathbb{Z}. The word a is Sturmian if and only if, for some irrational rotation R_{α} and base point $\beta \in \mathbb{R} / \mathbb{Z}, a_{n}$ is given by

$$
a_{n}=1 \Longleftrightarrow R_{\alpha}^{n}(\beta) \in[0, \alpha)
$$

Subword complexity: The word a over is Sturmian if and only if it has subword complexity $p_{\mathbf{a}}(N)=N+1(N \in \mathbb{N})$, i.e. for each N there are precisely $N+1$ length- N subwords that appear in a.

Motivation: Sturmian sequences

Sturmian words $\mathbf{a}=\left(a_{n}\right)_{n=0}^{\infty} \in\{0,1\}^{\infty}$ have several characterisations:
Explicit formula: The word a is Sturmian if and only if it is given by

$$
a_{n}=[\alpha n+\beta]-[\alpha(n-1)+\beta], \quad(n \in \mathbb{N})
$$

for some irrational $\alpha \in(0,1)$ and $\beta \in \mathbb{R}$ (or possibly the same formula with the floor $[\bullet]$ replaced by the ceiling $\lceil\bullet\rceil)$.

Coding of a rotation: Let R_{α} denote the rotation $x \mapsto x+\alpha$ on the unit circle \mathbb{R} / \mathbb{Z}. The word a is Sturmian if and only if, for some irrational rotation R_{α} and base point $\beta \in \mathbb{R} / \mathbb{Z}, a_{n}$ is given by

$$
a_{n}=1 \Longleftrightarrow R_{\alpha}^{n}(\beta) \in[0, \alpha)
$$

Subword complexity: The word a over is Sturmian if and only if it has subword complexity $p_{\mathbf{a}}(N)=N+1(N \in \mathbb{N})$, i.e. for each N there are precisely $N+1$ length- N subwords that appear in a.

Balance: The word a is Sturmian if and only if for each $N \in \mathbb{N}$, its length $-N$ subwords are balanced, i.e., for each $u, v \in\{0,1\}^{N}$ that appear in a, the number of 1 s in u and v differs by at most 1 .

Overview

We will study a more general class, which we dub bracket words.

Overview

We will study a more general class, which we dub bracket words.

Explicit formula Bracket words are defined as codings of finitely-valued generalised polynomials (expressions built with $[\bullet],+, \times$).

We will study a more general class, which we dub bracket words.

Explicit formula Bracket words are defined as codings of finitely-valued generalised polynomials (expressions built with $[\bullet],+, \times$).

Coding of a rotation: Bracket words are given by codings of semialgebraic partitions of rotations on nilmanifolds.

We will study a more general class, which we dub bracket words.

Explicit formula Bracket words are defined as codings of finitely-valued generalised polynomials (expressions built with $[\bullet],+, \times$).

Coding of a rotation: Bracket words are given by codings of semialgebraic partitions of rotations on nilmanifolds.

Subword complexity: Bracket words have polynomial subword complexity.

We will study a more general class, which we dub bracket words.

Explicit formula Bracket words are defined as codings of finitely-valued generalised polynomials (expressions built with $[\bullet],+, \times$).

Coding of a rotation: Bracket words are given by codings of semialgebraic partitions of rotations on nilmanifolds.

Subword complexity: Bracket words have polynomial subword complexity.

Balance: All symbols in a bracket word appear with uniform frequency.

We will study a more general class, which we dub bracket words.

Explicit formula Bracket words are defined as codings of finitely-valued generalised polynomials (expressions built with $[\bullet],+, \times$).

Coding of a rotation: Bracket words are given by codings of semialgebraic partitions of rotations on nilmanifolds.

Subword complexity: Bracket words have polynomial subword complexity.

Balance: All symbols in a bracket word appear with uniform frequency.

Other notable properties:

We will study a more general class, which we dub bracket words.

Explicit formula Bracket words are defined as codings of finitely-valued generalised polynomials (expressions built with $[\bullet],+, \times$).

Coding of a rotation: Bracket words are given by codings of semialgebraic partitions of rotations on nilmanifolds.

Subword complexity: Bracket words have polynomial subword complexity.

Balance: All symbols in a bracket word appear with uniform frequency.

Other notable properties:

- Good closure properties (products, codings, orbit closure).

We will study a more general class, which we dub bracket words.

Explicit formula Bracket words are defined as codings of finitely-valued generalised polynomials (expressions built with $[\bullet],+, \times$).

Coding of a rotation: Bracket words are given by codings of semialgebraic partitions of rotations on nilmanifolds.

Subword complexity: Bracket words have polynomial subword complexity.

Balance: All symbols in a bracket word appear with uniform frequency.

Other notable properties:

- Good closure properties (products, codings, orbit closure).
- Unexpected examples, such at $a_{n}= \begin{cases}1 & \text { if } n=\text { Fibonacci number, } \\ 0 & \text { otherwise }\end{cases}$

Generalised polynomials

Definition (Generalised polynomial sequences)

The generalised polynomial sequences $\mathbb{N} \rightarrow \mathbb{R}$ (denoted GP) is the smallest family such that

- all polynomial sequences $\mathbb{Z} \rightarrow \mathbb{R}$ belong to GP;
- GP is a ring, i.e., $g, h \in \mathrm{GP} \Longrightarrow g+h, g \cdot h \in \mathrm{GP}$;
- GP is closed under the floor function, i.e. $g \in \mathrm{GP} \Rightarrow[g] \in \mathrm{GP}$.
(Operations are pointwise: $(g+h)(n)=g(n)+h(n),[g](n)=[g(n)]$, etc.)

Generalised polynomials

Definition (Generalised polynomial sequences)

The generalised polynomial sequences $\mathbb{N} \rightarrow \mathbb{R}$ (denoted GP) is the smallest family such that

- all polynomial sequences $\mathbb{Z} \rightarrow \mathbb{R}$ belong to GP;
- GP is a ring, i.e., $g, h \in \mathrm{GP} \Longrightarrow g+h, g \cdot h \in \mathrm{GP}$;
- GP is closed under the floor function, i.e. $g \in \mathrm{GP} \Rightarrow[g] \in \mathrm{GP}$.
(Operations are pointwise: $(g+h)(n)=g(n)+h(n),[g](n)=[g(n)]$, etc.)

Remark:

- Since $\{x\}=x-[x]$, GP is also closed under the fractional part function, i.e. $g \in \mathrm{GP} \Rightarrow\{g\}=g-[g] \in \mathrm{GP}$.
- Since $\|x\|_{\mathbb{R} / \mathbb{Z}}=\min _{a \in \mathbb{Z}}|x-a|=\left(\left\{x+\frac{1}{2}\right\}-\frac{1}{2}\right) \cdot\left(2\left[\left\{x+\frac{1}{2}\right\}-\frac{1}{2}\right]+1\right)$, GP is also closed under the circle norm, i.e. $g \in \mathrm{GP} \Rightarrow\|g\|_{\mathbb{R} / \mathbb{Z}} \in \mathrm{GP}$.

Generalised polynomials

Definition (Generalised polynomial sequences)

The generalised polynomial sequences $\mathbb{N} \rightarrow \mathbb{R}$ (denoted GP) is the smallest family such that

- all polynomial sequences $\mathbb{Z} \rightarrow \mathbb{R}$ belong to GP;
- GP is a ring, i.e., $g, h \in \mathrm{GP} \Longrightarrow g+h, g \cdot h \in \mathrm{GP}$;
- GP is closed under the floor function, i.e. $g \in \mathrm{GP} \Rightarrow[g] \in \mathrm{GP}$.
(Operations are pointwise: $(g+h)(n)=g(n)+h(n),[g](n)=[g(n)]$, etc.)

Remark:

- Since $\{x\}=x-[x]$, GP is also closed under the fractional part function, i.e. $g \in \mathrm{GP} \Rightarrow\{g\}=g-[g] \in \mathrm{GP}$.
- Since $\|x\|_{\mathbb{R} / \mathbb{Z}}=\min _{a \in \mathbb{Z}}|x-a|=\left(\left\{x+\frac{1}{2}\right\}-\frac{1}{2}\right) \cdot\left(2\left[\left\{x+\frac{1}{2}\right\}-\frac{1}{2}\right]+1\right)$, GP is also closed under the circle norm, i.e. $g \in \mathrm{GP} \Rightarrow\|g\|_{\mathbb{R} / \mathbb{Z}} \in \mathrm{GP}$.
Related concepts:
- The GP sequences $\mathbb{N} \rightarrow \mathbb{R}^{d}$ are d-tuples $\left(g_{1}, \ldots, g_{d}\right)$ with $g_{i} \in$ GP.
- The GP maps $\mathbb{Z}^{k} \rightarrow \mathbb{R}^{d}$ or $\mathbb{R}^{k} \rightarrow \mathbb{R}^{d}$ are defined similarly.
- A set $A \subset \mathbb{N}$ is a GP set if 1_{A} is a GP sequence.

Bracket words

Definition (Bracket word)

A bracket word is a coding of a finitely-valued GP sequence.
More precisely, an infinite word $\mathbf{a}=\left(a_{n}\right)_{n=0}^{\infty}$ over a finite alphabet Σ is a bracket word if there exists a GP sequence $g: \mathbb{N} \rightarrow \mathbb{R}$ such that $g(\mathbb{N})$ is finite, and a coding $\pi: g(\mathbb{N}) \rightarrow \Sigma$ such that

$$
a_{n}=\pi(g(n)), \quad n \in \mathbb{N}
$$

Bracket words

Definition (Bracket word)

A bracket word is a coding of a finitely-valued GP sequence.
More precisely, an infinite word $\mathbf{a}=\left(a_{n}\right)_{n=0}^{\infty}$ over a finite alphabet Σ is a bracket word if there exists a GP sequence $g: \mathbb{N} \rightarrow \mathbb{R}$ such that $g(\mathbb{N})$ is finite, and a coding $\pi: g(\mathbb{N}) \rightarrow \Sigma$ such that

$$
a_{n}=\pi(g(n)), \quad n \in \mathbb{N}
$$

Proposal: Let's study bracket words from the point of view of Combinatorics on Words.

Bracket words

Definition (Bracket word)

A bracket word is a coding of a finitely-valued GP sequence. More precisely, an infinite word $\mathbf{a}=\left(a_{n}\right)_{n=0}^{\infty}$ over a finite alphabet Σ is a bracket word if there exists a GP sequence $g: \mathbb{N} \rightarrow \mathbb{R}$ such that $g(\mathbb{N})$ is finite, and a coding $\pi: g(\mathbb{N}) \rightarrow \Sigma$ such that

$$
a_{n}=\pi(g(n)), \quad n \in \mathbb{N}
$$

Proposal: Let's study bracket words from the point of view of Combinatorics on Words.

Remark

The following objects are "equivalent":

- bracket words;
- finitely-valued GP sequences;
- GP subsets of \mathbb{N}.

For instance, if $E \subset \mathbb{N}$ is a GP subset, then the characteristic word $\mathbf{1}_{E}=\left(1_{E}(n)\right)_{n=0}^{\infty}$ is a bracket word. In this talk, we focus on bracket words.

Constructions

Lemma

Suppose that $g: \mathbb{N} \rightarrow \mathbb{R}$ is a GP sequence and $I \subset \mathbb{R}$ is an interval. Put

$$
a_{n}=1_{I}(g(n))= \begin{cases}1 & \text { if } g(n) \in I \\ 0 & \text { otherwise }\end{cases}
$$

Then $\mathbf{a}=\left(a_{n}\right)_{n=0}^{\infty}$ is a bracket word.
Remark: The interval I can be proper, infinite or degenerate (e.g. $I=[x, y), I=(x, \infty), I=\{x\}$).

Constructions

Lemma

Suppose that $g: \mathbb{N} \rightarrow \mathbb{R}$ is a GP sequence and $I \subset \mathbb{R}$ is an interval. Put

$$
a_{n}=1_{I}(g(n))= \begin{cases}1 & \text { if } g(n) \in I \\ 0 & \text { otherwise }\end{cases}
$$

Then $\mathbf{a}=\left(a_{n}\right)_{n=0}^{\infty}$ is a bracket word.
Remark: The interval I can be proper, infinite or degenerate (e.g. $I=[x, y), I=(x, \infty), I=\{x\}$).

Example: To get a Sturmian sequence, let $g(n)=\{\alpha n+\beta\}$ and $I=[0, \alpha)$.

Constructions

Lemma

Suppose that $g: \mathbb{N} \rightarrow \mathbb{R}$ is a GP sequence and $I \subset \mathbb{R}$ is an interval. Put

$$
a_{n}=1_{I}(g(n))= \begin{cases}1 & \text { if } g(n) \in I \\ 0 & \text { otherwise }\end{cases}
$$

Then $\mathbf{a}=\left(a_{n}\right)_{n=0}^{\infty}$ is a bracket word.
Remark: The interval I can be proper, infinite or degenerate (e.g. $I=[x, y), I=(x, \infty), I=\{x\}$).

Example: To get a Sturmian sequence, let $g(n)=\{\alpha n+\beta\}$ and $I=[0, \alpha)$.
Proof for $I=\{0\}$: For $x \in \mathbb{R}$, we have

$$
x=0 \Leftrightarrow\{x\}=\{\sqrt{2} x\}=0 \Leftrightarrow\left[1-\frac{1}{2}\{x\}-\frac{1}{2}\{\sqrt{2} x\}\right]=1
$$

Hence, $1_{I}(g(n))=\left[1-\frac{1}{2}\{g(n)\}-\frac{1}{2}\{\sqrt{2} g(n)\}\right]$.

Constructions

Lemma

Suppose that $g: \mathbb{N} \rightarrow \mathbb{R}$ is a $G P$ sequence and $I \subset \mathbb{R}$ is an interval. Put

$$
a_{n}=1_{I}(g(n))= \begin{cases}1 & \text { if } g(n) \in I \\ 0 & \text { otherwise }\end{cases}
$$

Then $\mathbf{a}=\left(a_{n}\right)_{n=0}^{\infty}$ is a bracket word.
Remark: The interval I can be proper, infinite or degenerate (e.g. $I=[x, y), I=(x, \infty), I=\{x\}$).

Example: To get a Sturmian sequence, let $g(n)=\{\alpha n+\beta\}$ and $I=[0, \alpha)$.
Proof for $I=\{0\}$: For $x \in \mathbb{R}$, we have

$$
x=0 \Leftrightarrow\{x\}=\{\sqrt{2} x\}=0 \Leftrightarrow\left[1-\frac{1}{2}\{x\}-\frac{1}{2}\{\sqrt{2} x\}\right]=1
$$

Hence, $1_{I}(g(n))=\left[1-\frac{1}{2}\{g(n)\}-\frac{1}{2}\{\sqrt{2} g(n)\}\right]$.
Remark: As long as I is bounded, similar tricks work. When I is unbounded, situation becomes more complicated; the analogue in \mathbb{Z} if false!

Constructions

Corollary

For a set $E \subset \mathbb{N}$ the following conditions are equivalent:
(1) The set E is $G P$ (i.e., $1_{E}: \mathbb{N} \rightarrow \mathbb{R}$ is a GP sequence);
(2) The characteristic word $\mathbf{1}_{E}=\left(1_{E}(n)\right)_{n=0}^{\infty} \in\{0,1\}^{\infty}$ is a bracket word;
(8) There is a GP sequence g with $E=\{n \in \mathbb{N}: g(n)=0\}$;
(1) There is a GP sequence h with $E=\{n \in \mathbb{N}: h(n)>0\}$.

Constructions

Corollary

For a set $E \subset \mathbb{N}$ the following conditions are equivalent:
(1) The set E is $G P$ (i.e., $1_{E}: \mathbb{N} \rightarrow \mathbb{R}$ is a GP sequence);
(2) The characteristic word $\mathbf{1}_{E}=\left(1_{E}(n)\right)_{n=0}^{\infty} \in\{0,1\}^{\infty}$ is a bracket word;
(3) There is a GP sequence g with $E=\{n \in \mathbb{N}: g(n)=0\}$;
(1) There is a GP sequence h with $E=\{n \in \mathbb{N}: h(n)>0\}$.

Examples: The following are bracket words:

- $a_{n}=\left\{\begin{array}{ll}1 & \text { if }\{p(n)\} \in[0, \alpha), \\ 0 & \text { otherwise, }\end{array} \quad\right.$ where $p(x) \in \mathbb{R}[x]$ and $\alpha \in(0,1) ;$
- $a_{n}= \begin{cases}1 & \text { if }\{\sqrt{2} n[\sqrt{3} n]\} \in[0, \alpha), \\ 0 & \text { otherwise },\end{cases}$ where $\alpha \in(0,1)$.

Constructions

Corollary

For a set $E \subset \mathbb{N}$ the following conditions are equivalent:
(1) The set E is $G P$ (i.e., $1_{E}: \mathbb{N} \rightarrow \mathbb{R}$ is a GP sequence);
(2) The characteristic word $\mathbf{1}_{E}=\left(1_{E}(n)\right)_{n=0}^{\infty} \in\{0,1\}^{\infty}$ is a bracket word;
(3) There is a GP sequence g with $E=\{n \in \mathbb{N}: g(n)=0\}$;
(1) There is a GP sequence h with $E=\{n \in \mathbb{N}: h(n)>0\}$.

Examples: The following are bracket words:

- $a_{n}= \begin{cases}1 & \text { if }\{p(n)\} \in[0, \alpha), \\ 0 & \text { otherwise },\end{cases}$
- $a_{n}= \begin{cases}1 & \text { if }\{\sqrt{2} n[\sqrt{3} n]\} \in[0, \alpha), \\ 0 & \text { otherwise },\end{cases}$

$$
\text { where } p(x) \in \mathbb{R}[x] \text { and } \alpha \in(0,1)
$$ where $\alpha \in(0,1)$.

Example

Let F_{i} denote the i-th Fibonacci number. Then $\left\{F_{i}: i \geq 1\right\}$ is a GP set.
Proof: An integer n is a Fibonacci number if and only if $\|n \varphi\|_{\mathbb{R} / \mathbb{Z}}<1 / 2 n$, where $\|x\|_{\mathbb{R} / \mathbb{Z}}=\min \{|x-a|: a \in \mathbb{Z}\}$. Take $g(n)=n\|n \varphi\|_{\| \mathbb{R}} / \mathbb{Z}, I=[0,1 / 2)$.

Closure properties

Lemma (Closure under codings)
Let $\mathbf{a}=\left(a_{n}\right)_{n=0}^{\infty}$ be a bracket word over an alphabet Σ and let $\varphi: \Sigma \rightarrow \Lambda$ be any map. Then $\varphi(\mathbf{a})=\left(\varphi\left(a_{n}\right)\right)_{n=0}^{\infty}$ is a bracket words over Λ.

Closure properties

Lemma (Closure under codings)

Let $\mathbf{a}=\left(a_{n}\right)_{n=0}^{\infty}$ be a bracket word over an alphabet Σ and let $\varphi: \Sigma \rightarrow \Lambda$ be any map. Then $\varphi(\mathbf{a})=\left(\varphi\left(a_{n}\right)\right)_{n=0}^{\infty}$ is a bracket words over Λ.

Lemma (Closure under direct products)

Let $\mathbf{a}=\left(a_{n}\right)_{n=0}^{\infty}$ and $\mathbf{b}=\left(b_{n}\right)_{n=0}^{\infty}$ be bracket words over alphabets Σ and Λ respectively. Then $\mathbf{a} \times \mathbf{b}=\left(\left(a_{n}, b_{n}\right)\right)_{n=0}^{\infty}$ is a bracket word over $\Sigma \times \Lambda$.

Consequence: Bracket words over a finite ring constitute a ring.

Closure properties

Lemma (Closure under codings)

Let $\mathbf{a}=\left(a_{n}\right)_{n=0}^{\infty}$ be a bracket word over an alphabet Σ and let $\varphi: \Sigma \rightarrow \Lambda$ be any map. Then $\varphi(\mathbf{a})=\left(\varphi\left(a_{n}\right)\right)_{n=0}^{\infty}$ is a bracket words over Λ.

Lemma (Closure under direct products)

Let $\mathbf{a}=\left(a_{n}\right)_{n=0}^{\infty}$ and $\mathbf{b}=\left(b_{n}\right)_{n=0}^{\infty}$ be bracket words over alphabets Σ and Λ respectively. Then $\mathbf{a} \times \mathbf{b}=\left(\left(a_{n}, b_{n}\right)\right)_{n=0}^{\infty}$ is a bracket word over $\Sigma \times \Lambda$.

Consequence: Bracket words over a finite ring constitute a ring.

Lemma (Extracting progressions)

Let $\mathbf{a}=\left(a_{n}\right)_{n=0}^{\infty}$ be a bracket word over an alphabet Σ and let $k \in \mathbb{N}, r \in \mathbb{N}_{0}$ be any map. Then $\left(a_{k n+r}\right)_{n=0}^{\infty}$ is a bracket word over Σ.

Closure properties

Lemma (Closure under codings)

Let $\mathbf{a}=\left(a_{n}\right)_{n=0}^{\infty}$ be a bracket word over an alphabet Σ and let $\varphi: \Sigma \rightarrow \Lambda$ be any map. Then $\varphi(\mathbf{a})=\left(\varphi\left(a_{n}\right)\right)_{n=0}^{\infty}$ is a bracket words over Λ.

Lemma (Closure under direct products)

Let $\mathbf{a}=\left(a_{n}\right)_{n=0}^{\infty}$ and $\mathbf{b}=\left(b_{n}\right)_{n=0}^{\infty}$ be bracket words over alphabets Σ and Λ respectively. Then $\mathbf{a} \times \mathbf{b}=\left(\left(a_{n}, b_{n}\right)\right)_{n=0}^{\infty}$ is a bracket word over $\Sigma \times \Lambda$.

Consequence: Bracket words over a finite ring constitute a ring.

Lemma (Extracting progressions)

Let $\mathbf{a}=\left(a_{n}\right)_{n=0}^{\infty}$ be a bracket word over an alphabet Σ and let $k \in \mathbb{N}, r \in \mathbb{N}_{0}$ be any map. Then $\left(a_{k n+r}\right)_{n=0}^{\infty}$ is a bracket word over Σ.

Let \mathbf{a} be an infinite word over an alphabet Σ. Then a word \mathbf{b} belongs to the orbit closure of \mathbf{a} if each finite prefix $b_{0} b_{1} \cdots b_{n-1}$ of \mathbf{b} is a subword of \mathbf{a}.

Proposition (Orbit closure)

Let $\mathbf{a}=\left(a_{n}\right)_{n=0}^{\infty}$ be a bracket word over an alphabet Σ. Let \mathbf{b} belong to the orbit closure of \mathbf{a}. Then \mathbf{b} is a bracket word.

Nilmanifolds

Definition

Let G be a nilpotent Lie group, and $\Gamma<G$ a cocompact discrete subgroup.
(1) The space $X=G / \Gamma$ is a nilmanifold.
(2) For $g \in G$, the map $T_{g}: X \rightarrow X, x \mapsto g x$ is a nilrotation.
(3) The dynamical system $\left(X, T_{g}\right)$ is a nilsystem. It has a natural Haar measure μ_{X} which is T_{g}-invariant.
(1) For $F: X \rightarrow \mathbb{R}$ (Lipschitz) and $x \in X,\left(F\left(T_{g}^{n}(x)\right)\right)_{n=0}^{\infty}$ is a nilsequence.

Nilmanifolds

Definition

Let G be a nilpotent Lie group, and $\Gamma<G$ a cocompact discrete subgroup.
(1) The space $X=G / \Gamma$ is a nilmanifold.
(2) For $g \in G$, the map $T_{g}: X \rightarrow X, x \mapsto g x$ is a nilrotation.
(3) The dynamical system $\left(X, T_{g}\right)$ is a nilsystem. It has a natural Haar measure μ_{X} which is T_{g}-invariant.
(1) For $F: X \rightarrow \mathbb{R}$ (Lipschitz) and $x \in X,\left(F\left(T_{g}^{n}(x)\right)\right)_{n=0}^{\infty}$ is a nilsequence.

A reassuring example:

- Take $G=\mathbb{R}, \Gamma=\mathbb{Z}$. Then $G / \Gamma=\mathbb{T}$, the unit circle.
- The circle comes equipped with $T_{\alpha}(x)=x+\alpha$.
- The Haar measure is just the Lebesgue measure.
- The additive characters $n \mapsto e^{2 \pi i n \alpha}$ are 1-step nilsequences.
- Put $F=1_{[0, \alpha)}$. Then $\left(F\left(T_{\alpha}^{n}(x)\right)\right)_{n=0}^{\infty}$ is Sturmian. (F not continuous!)

Nilmanifolds

Definition

Let G be a nilpotent Lie group, and $\Gamma<G$ a cocompact discrete subgroup.
(1) The space $X=G / \Gamma$ is a nilmanifold.
(2) For $g \in G$, the map $T_{g}: X \rightarrow X, x \mapsto g x$ is a nilrotation.
(3) The dynamical system $\left(X, T_{g}\right)$ is a nilsystem. It has a natural Haar measure μ_{X} which is T_{g}-invariant.
(1) For $F: X \rightarrow \mathbb{R}$ (Lipschitz) and $x \in X,\left(F\left(T_{g}^{n}(x)\right)\right)_{n=0}^{\infty}$ is a nilsequence.

A reassuring example:

- Take $G=\mathbb{R}, \Gamma=\mathbb{Z}$. Then $G / \Gamma=\mathbb{T}$, the unit circle.
- The circle comes equipped with $T_{\alpha}(x)=x+\alpha$.
- The Haar measure is just the Lebesgue measure.
- The additive characters $n \mapsto e^{2 \pi i n \alpha}$ are 1-step nilsequences.
- Put $F=1_{[0, \alpha)}$. Then $\left(F\left(T_{\alpha}^{n}(x)\right)\right)_{n=0}^{\infty}$ is Sturmian. (F not continuous!)

Remark: Nilsequences are a central object of interest in higher order Fourier analysis, which we will not discuss here any further.

Nilmanifolds and generalised polynomials

Theorem (Bergelson, Leibman)

Let $g: \mathbb{N} \rightarrow \mathbb{R}$ be a bounded GP sequence. Then is exists a nilsystem (X, T), a point $x \in X$ and a piecewise polynomial map $F: X \rightarrow \mathbb{R}$ such that

$$
g(n)=F\left(T^{n}(x)\right), \quad n \in \mathbb{N}
$$

Nilmanifolds and generalised polynomials

Theorem (Bergelson, Leibman)

Let $g: \mathbb{N} \rightarrow \mathbb{R}$ be a bounded $G P$ sequence. Then is exists a nilsystem (X, T), a point $x \in X$ and a piecewise polynomial map $F: X \rightarrow \mathbb{R}$ such that

$$
g(n)=F\left(T^{n}(x)\right), \quad n \in \mathbb{N}
$$

Definition: A set $S \subset[0,1)^{d}$ is semialgebraic if be defined by a finite number of polynomial equations and inequalities, e.g.

$$
S=\left\{(x, y) \in[0,1)^{2}: x^{2}+y^{2} \leq 1 \text { and } x+y \neq 1\right\}
$$

A map $p:[0,1)^{d} \rightarrow \mathbb{R}$ is piecewise polynomial if there is a finite partition $[0,1)^{d}=\bigcup_{i} S_{i}$ with S_{i} semialgebraic, such that $\left.p\right|_{S_{i}}$ are polynomials, e.g.

$$
p(x, y)= \begin{cases}0 & \text { if } x+y=1 \\ x y+1 & \text { if } x^{2}+y^{2} \leq 1 \text { and } x+y \neq 1 \\ x+2 y & \text { if } x^{2}+y^{2}>1\end{cases}
$$

Nilmanifolds and generalised polynomials

Theorem (Bergelson, Leibman)

Let $g: \mathbb{N} \rightarrow \mathbb{R}$ be a bounded $G P$ sequence. Then is exists a nilsystem (X, T), a point $x \in X$ and a piecewise polynomial map $F: X \rightarrow \mathbb{R}$ such that

$$
g(n)=F\left(T^{n}(x)\right), \quad n \in \mathbb{N}
$$

Definition: A set $S \subset[0,1)^{d}$ is semialgebraic if be defined by a finite number of polynomial equations and inequalities, e.g.

$$
S=\left\{(x, y) \in[0,1)^{2}: x^{2}+y^{2} \leq 1 \text { and } x+y \neq 1\right\}
$$

A map $p:[0,1)^{d} \rightarrow \mathbb{R}$ is piecewise polynomial if there is a finite partition $[0,1)^{d}=\bigcup_{i} S_{i}$ with S_{i} semialgebraic, such that $\left.p\right|_{S_{i}}$ are polynomials, e.g.

$$
p(x, y)= \begin{cases}0 & \text { if } x+y=1 \\ x y+1 & \text { if } x^{2}+y^{2} \leq 1 \text { and } x+y \neq 1 \\ x+2 y & \text { if } x^{2}+y^{2}>1\end{cases}
$$

A nilmanifold X has a system of Mal'cev coordinates, $\tau: X \rightarrow[0,1)^{\operatorname{dim} X}$. This allows us to speak of piecewise polynomial maps $X \rightarrow \mathbb{R}$.

Heisenberg example

$$
\begin{gathered}
G=\left\{\left[\begin{array}{lll}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right], x, y, z \in \mathbb{R}\right\}, \quad \Gamma=\left\{\left[\begin{array}{lll}
1 & a & c \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right], a, b, c \in \mathbb{Z}\right\} \\
G_{2}=[G, G]=\left\{\left[\begin{array}{lll}
1 & 0 & z \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], z \in \mathbb{R}\right\}, \quad G_{3}=\left[G, G_{2}\right]=\left\{e_{G}\right\} .
\end{gathered}
$$

Each element of G / Γ has a represenation $\left[\begin{array}{lll}1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1\end{array}\right] \Gamma$ with $x, y, z \in[0,1)$.

$$
\left[\begin{array}{ccc}
1 & \alpha & \gamma \\
0 & 1 & \beta \\
0 & 0 & 1
\end{array}\right]^{n} \Gamma=\left[\begin{array}{ccc}
1 & n \alpha & n \gamma+\binom{n}{2} \alpha \beta \\
0 & 1 & n \beta \\
0 & 0 & 1
\end{array}\right] \Gamma=\left[\begin{array}{ccc}
1 & \{n \alpha\} & \{f(n)\} \\
0 & 1 & \{n \beta\} \\
0 & 0 & 1
\end{array}\right] \Gamma,
$$

where $f(n)=n \gamma+\binom{n}{2} \alpha \beta-[n \alpha] n \beta$.

Subword complexity

Definition

Let $\mathbf{a}=\left(a_{n}\right)_{n=0}^{\infty} \in \Sigma^{\infty}$. The subword complexity $p_{\mathbf{a}}$ is given by

$$
p_{\mathbf{a}}(N)=\#\left\{w \in \Sigma^{N}: w \text { is a subword of } \mathbf{a}\right\} .
$$

Subword complexity

Definition

Let $\mathbf{a}=\left(a_{n}\right)_{n=0}^{\infty} \in \Sigma^{\infty}$. The subword complexity $p_{\mathbf{a}}$ is given by

$$
p_{\mathbf{a}}(N)=\#\left\{w \in \Sigma^{N}: w \text { is a subword of } \mathbf{a}\right\} .
$$

- If \mathbf{a} is eventually periodic then $p_{\mathbf{a}}(N)$ is bounded.
- If $p_{\mathbf{a}}(N) \leq N$ for some N then a is eventually periodic.
- The sequence \mathbf{a} is Sturmian if and only if $p_{\mathbf{a}}(N)=N+1$ for all N.
- If a is automatic then $p_{\mathbf{a}}(N)=O(N)$.
- If a is morphic then $p_{\mathrm{a}}(N)=O\left(N^{2}\right)$.

Subword complexity

Definition

Let $\mathbf{a}=\left(a_{n}\right)_{n=0}^{\infty} \in \Sigma^{\infty}$. The subword complexity $p_{\mathbf{a}}$ is given by

$$
p_{\mathbf{a}}(N)=\#\left\{w \in \Sigma^{N}: w \text { is a subword of } \mathbf{a}\right\} .
$$

- If \mathbf{a} is eventually periodic then $p_{\mathbf{a}}(N)$ is bounded.
- If $p_{\mathbf{a}}(N) \leq N$ for some N then a is eventually periodic.
- The sequence \mathbf{a} is Sturmian if and only if $p_{\mathbf{a}}(N)=N+1$ for all N.
- If a is automatic then $p_{\mathbf{a}}(N)=O(N)$.
- If a is morphic then $p_{\mathbf{a}}(N)=O\left(N^{2}\right)$.

Theorem (Adamczewski, K.)

If \mathbf{a} is a bracket word then $p_{\mathbf{a}}(N)=O\left(N^{C}\right)$ for a constant $C>0$.
Question: Given a bracket word a, what is the best possible value of C ?

Proof ideas

- As an example, consider $a_{n}=\left[2\left\{n^{2} \sqrt{2}\right\}\right]=\left\{\begin{array}{ll}0 & \text { if }\left\{n^{2} \sqrt{2}\right\} \in\left[0, \frac{1}{2}\right), \\ 1 & \text { if }\left\{n^{2} \sqrt{2}\right\} \in\left[\frac{1}{2}, 1\right) .\end{array}\right.$.

Proof ideas

- As an example, consider $a_{n}=\left[2\left\{n^{2} \sqrt{2}\right\}\right]=\left\{\begin{array}{ll}0 & \text { if }\left\{n^{2} \sqrt{2}\right\} \in\left[0, \frac{1}{2}\right), \\ 1 & \text { if }\left\{n^{2} \sqrt{2}\right\} \in\left[\frac{1}{2}, 1\right) .\end{array}\right.$.
- Note that $a_{n+m}=\left[2\left\{n^{2} \sqrt{2}+n \alpha_{m}+\beta_{m}\right\}\right]$ where

$$
\alpha_{m}=\{2 m \sqrt{2}\} \in[0,1) \text { and } \beta_{m}=\left\{m^{2} \sqrt{2}\right\} \in[0,1) .
$$

Proof ideas

- As an example, consider $a_{n}=\left[2\left\{n^{2} \sqrt{2}\right\}\right]=\left\{\begin{array}{ll}0 & \text { if }\left\{n^{2} \sqrt{2}\right\} \in\left[0, \frac{1}{2}\right), \\ 1 & \text { if }\left\{n^{2} \sqrt{2}\right\} \in\left[\frac{1}{2}, 1\right) .\end{array}\right.$.
- Note that $a_{n+m}=\left[2\left\{n^{2} \sqrt{2}+n \alpha_{m}+\beta_{m}\right\}\right]$ where $\alpha_{m}=\{2 m \sqrt{2}\} \in[0,1)$ and $\beta_{m}=\left\{m^{2} \sqrt{2}\right\} \in[0,1)$.
- Let $N \in \mathbb{N}$. Task: count length- N subwords a. Instead, we will count length- N prefixes of words $\mathbf{a}^{\alpha, \beta}(\alpha, \beta \in[0,1))$ given by $a_{n}^{\alpha, \beta}=\left[2\left\{n^{2} \sqrt{2}+n \alpha+\beta\right\}\right]$.

Proof ideas

- As an example, consider $a_{n}=\left[2\left\{n^{2} \sqrt{2}\right\}\right]=\left\{\begin{array}{ll}0 & \text { if }\left\{n^{2} \sqrt{2}\right\} \in\left[0, \frac{1}{2}\right), \\ 1 & \text { if }\left\{n^{2} \sqrt{2}\right\} \in\left[\frac{1}{2}, 1\right) .\end{array}\right.$.
- Note that $a_{n+m}=\left[2\left\{n^{2} \sqrt{2}+n \alpha_{m}+\beta_{m}\right\}\right]$ where $\alpha_{m}=\{2 m \sqrt{2}\} \in[0,1)$ and $\beta_{m}=\left\{m^{2} \sqrt{2}\right\} \in[0,1)$.
- Let $N \in \mathbb{N}$. Task: count length- N subwords a. Instead, we will count length- N prefixes of words $\mathbf{a}^{\alpha, \beta}(\alpha, \beta \in[0,1))$ given by $a_{n}^{\alpha, \beta}=\left[2\left\{n^{2} \sqrt{2}+n \alpha+\beta\right\}\right]$.
- Approximate $\alpha \simeq \alpha^{*}, \beta \simeq \beta^{*}$ by rationals, error $\leq N^{-10}$ (N^{20} choices). Note that $n^{2} \sqrt{2}+n \alpha+\beta=n^{2} \sqrt{2}+n \alpha^{*}+\beta^{*}+\bar{O}\left(N^{-9}\right)(n<N)$.

Proof ideas

- As an example, consider $a_{n}=\left[2\left\{n^{2} \sqrt{2}\right\}\right]=\left\{\begin{array}{ll}0 & \text { if }\left\{n^{2} \sqrt{2}\right\} \in\left[0, \frac{1}{2}\right), \\ 1 & \text { if }\left\{n^{2} \sqrt{2}\right\} \in\left[\frac{1}{2}, 1\right) .\end{array}\right.$.
- Note that $a_{n+m}=\left[2\left\{n^{2} \sqrt{2}+n \alpha_{m}+\beta_{m}\right\}\right]$ where $\alpha_{m}=\{2 m \sqrt{2}\} \in[0,1)$ and $\beta_{m}=\left\{m^{2} \sqrt{2}\right\} \in[0,1)$.
- Let $N \in \mathbb{N}$. Task: count length- N subwords a. Instead, we will count length- N prefixes of words $\mathbf{a}^{\alpha, \beta}(\alpha, \beta \in[0,1))$ given by $a_{n}^{\alpha, \beta}=\left[2\left\{n^{2} \sqrt{2}+n \alpha+\beta\right\}\right]$.
- Approximate $\alpha \simeq \alpha^{*}, \beta \simeq \beta^{*}$ by rationals, error $\leq N^{-10}$ (N^{20} choices).

Note that $n^{2} \sqrt{2}+n \alpha+\beta=n^{2} \sqrt{2}+n \alpha^{*}+\beta^{*}+O\left(N^{-9}\right)(n<N)$.

- There are two types of points $n<N$:

The Good: $\left\|2 n^{2} \sqrt{2}+2 n \alpha^{*}+2 \beta^{*}\right\|_{\mathbb{R} / \mathbb{Z}}>N^{-8}$, so we can compute

$$
a_{n}^{\alpha, \beta}=\left[2\left\{n^{2} \sqrt{2}+n \alpha^{*}+\beta^{*}\right\}\right] . \text { If so, we are done. }
$$

The Bad: $\left\|2 n^{2} \sqrt{2}+2 n \alpha^{*}+2 \beta^{*}\right\|_{\mathbb{R} / \mathbb{Z}}<N^{-8}$. Let

$$
\delta_{n}:=2 n^{2} \sqrt{2}+2 n \alpha+2 \beta-\left\lfloor 2 n^{2} \sqrt{2}+2 n \alpha^{*}+2 \beta^{*}\right\rceil=O\left(N^{-8}\right)
$$

Proof ideas

- As an example, consider $a_{n}=\left[2\left\{n^{2} \sqrt{2}\right\}\right]=\left\{\begin{array}{ll}0 & \text { if }\left\{n^{2} \sqrt{2}\right\} \in\left[0, \frac{1}{2}\right), \\ 1 & \text { if }\left\{n^{2} \sqrt{2}\right\} \in\left[\frac{1}{2}, 1\right) .\end{array}\right.$.
- Note that $a_{n+m}=\left[2\left\{n^{2} \sqrt{2}+n \alpha_{m}+\beta_{m}\right\}\right]$ where $\alpha_{m}=\{2 m \sqrt{2}\} \in[0,1)$ and $\beta_{m}=\left\{m^{2} \sqrt{2}\right\} \in[0,1)$.
- Let $N \in \mathbb{N}$. Task: count length- N subwords a. Instead, we will count length- N prefixes of words $\mathbf{a}^{\alpha, \beta}(\alpha, \beta \in[0,1))$ given by $a_{n}^{\alpha, \beta}=\left[2\left\{n^{2} \sqrt{2}+n \alpha+\beta\right\}\right]$.
- Approximate $\alpha \simeq \alpha^{*}, \beta \simeq \beta^{*}$ by rationals, error $\leq N^{-10}$ (N^{20} choices). Note that $n^{2} \sqrt{2}+n \alpha+\beta=n^{2} \sqrt{2}+n \alpha^{*}+\beta^{*}+O\left(N^{-9}\right)(n<N)$.
- There are two types of points $n<N$:

The Good: $\left\|2 n^{2} \sqrt{2}+2 n \alpha^{*}+2 \beta^{*}\right\|_{\mathbb{R} / \mathbb{Z}}>N^{-8}$, so we can compute

$$
a_{n}^{\alpha, \beta}=\left[2\left\{n^{2} \sqrt{2}+n \alpha^{*}+\beta^{*}\right\}\right] . \text { If so, we are done. }
$$

The Bad: $\left\|2 n^{2} \sqrt{2}+2 n \alpha^{*}+2 \beta^{*}\right\|_{\mathbb{R} / \mathbb{Z}}<N^{-8}$. Let

$$
\delta_{n}:=2 n^{2} \sqrt{2}+2 n \alpha+2 \beta-\left\lfloor 2 n^{2} \sqrt{2}+2 n \alpha^{*}+2 \beta^{*}\right\rceil=O\left(N^{-8}\right)
$$

- If we know $\operatorname{sgn}\left(\delta_{n}\right)$ and α^{*} and β^{*}, then we can recover $a_{n}^{\alpha, \beta}$. E.g.:
- If $\left\{n^{2} \sqrt{2}+n \alpha^{*}+\beta^{*}\right\} \approx 0$ and $\delta_{n}>0$ then $a_{n}^{\alpha, \beta}=0$.

Proof ideas

- As an example, consider $a_{n}=\left[2\left\{n^{2} \sqrt{2}\right\}\right]=\left\{\begin{array}{ll}0 & \text { if }\left\{n^{2} \sqrt{2}\right\} \in\left[0, \frac{1}{2}\right), \\ 1 & \text { if }\left\{n^{2} \sqrt{2}\right\} \in\left[\frac{1}{2}, 1\right) .\end{array}\right.$.
- Note that $a_{n+m}=\left[2\left\{n^{2} \sqrt{2}+n \alpha_{m}+\beta_{m}\right\}\right]$ where $\alpha_{m}=\{2 m \sqrt{2}\} \in[0,1)$ and $\beta_{m}=\left\{m^{2} \sqrt{2}\right\} \in[0,1)$.
- Let $N \in \mathbb{N}$. Task: count length- N subwords a. Instead, we will count length- N prefixes of words $\mathbf{a}^{\alpha, \beta}(\alpha, \beta \in[0,1))$ given by $a_{n}^{\alpha, \beta}=\left[2\left\{n^{2} \sqrt{2}+n \alpha+\beta\right\}\right]$.
- Approximate $\alpha \simeq \alpha^{*}, \beta \simeq \beta^{*}$ by rationals, error $\leq N^{-10}$ (N^{20} choices).

Note that $n^{2} \sqrt{2}+n \alpha+\beta=n^{2} \sqrt{2}+n \alpha^{*}+\beta^{*}+O\left(N^{-9}\right)(n<N)$.

- There are two types of points $n<N$:

The Good: $\left\|2 n^{2} \sqrt{2}+2 n \alpha^{*}+2 \beta^{*}\right\|_{\mathbb{R} / \mathbb{Z}}>N^{-8}$, so we can compute

$$
a_{n}^{\alpha, \beta}=\left[2\left\{n^{2} \sqrt{2}+n \alpha^{*}+\beta^{*}\right\}\right] . \text { If so, we are done. }
$$

The Bad: $\left\|2 n^{2} \sqrt{2}+2 n \alpha^{*}+2 \beta^{*}\right\|_{\mathbb{R} / \mathbb{Z}}<N^{-8}$. Let

$$
\delta_{n}:=2 n^{2} \sqrt{2}+2 n \alpha+2 \beta-\left\lfloor 2 n^{2} \sqrt{2}+2 n \alpha^{*}+2 \beta^{*}\right\rceil=O\left(N^{-8}\right)
$$

- If we know $\operatorname{sgn}\left(\delta_{n}\right)$ and α^{*} and β^{*}, then we can recover $a_{n}^{\alpha, \beta}$. E.g.:
- If $\left\{n^{2} \sqrt{2}+n \alpha^{*}+\beta^{*}\right\} \approx 0$ and $\delta_{n}>0$ then $a_{n}^{\alpha, \beta}=0$.
- For each $n<N$, the set $\left\{(\alpha, \beta): \delta_{n}=0\right\}$ is a line.

Key fact: N lines divide the plane into $O\left(N^{2}\right)$ regions.

Uniform frequency

For an infinite word over Σ and $i \in \Sigma$, let

$$
\begin{aligned}
& \text { freq}^{*}(\mathbf{a}, i)=\limsup _{N \rightarrow \infty} \sup _{M \in \mathbb{N}} \frac{1}{N} \#\left\{M \leq n<M+N: a_{n}=i\right\} \\
& \operatorname{freq}_{*}(\mathbf{a}, i)=\liminf _{N \rightarrow \infty} \inf _{M \in \mathbb{N}} \frac{1}{N} \#\left\{M \leq n<M+N: a_{n}=i\right\}
\end{aligned}
$$

Uniform frequency

For an infinite word over Σ and $i \in \Sigma$, let

$$
\begin{aligned}
& \operatorname{freq}^{*}(\mathbf{a}, i)=\limsup _{N \rightarrow \infty} \sup _{M \in \mathbb{N}} \frac{1}{N} \#\left\{M \leq n<M+N: a_{n}=i\right\} \\
& \operatorname{freq}_{*}(\mathbf{a}, i)=\liminf _{N \rightarrow \infty} \inf _{M \in \mathbb{N}} \frac{1}{N} \#\left\{M \leq n<M+N: a_{n}=i\right\}
\end{aligned}
$$

Proposition

Let a be a bracket word over an alphabet Σ and let $i \in \Sigma$. Then

$$
\operatorname{freq}^{*}(\mathbf{a}, i)=\operatorname{freq}_{*}(\mathbf{a}, i):=\operatorname{freq}(\mathbf{a}, i)
$$

Equivalently: If $E \subset \mathbb{N}$ is a GP set, then $d^{*}(E)=d_{*}(E)$.

Uniform frequency

For an infinite word over Σ and $i \in \Sigma$, let

$$
\begin{aligned}
& \text { freq }^{*}(\mathbf{a}, i)=\limsup _{N \rightarrow \infty} \sup _{M \in \mathbb{N}} \frac{1}{N} \#\left\{M \leq n<M+N: a_{n}=i\right\} \\
& \operatorname{freq}_{*}(\mathbf{a}, i)=\liminf _{N \rightarrow \infty} \inf _{M \in \mathbb{N}} \frac{1}{N} \#\left\{M \leq n<M+N: a_{n}=i\right\}
\end{aligned}
$$

Proposition

Let a be a bracket word over an alphabet Σ and let $i \in \Sigma$. Then

$$
\operatorname{freq}^{*}(\mathbf{a}, i)=\operatorname{freq}_{*}(\mathbf{a}, i):=\operatorname{freq}(\mathbf{a}, i)
$$

Equivalently: If $E \subset \mathbb{N}$ is a GP set, then $d^{*}(E)=d_{*}(E)$.
Corollary: If freq $(\mathbf{a}, i)>0$ then $\left\{n \in \mathbb{N}: a_{n}=i\right\}$ is syndetic (there exists N such that for each $M \in \mathbb{N}$ there exists $M \leq n<M+N$ with $a_{n}=i$.

Uniform frequency

For an infinite word over Σ and $i \in \Sigma$, let

$$
\begin{aligned}
& \operatorname{freq}^{*}(\mathbf{a}, i)=\limsup _{N \rightarrow \infty} \sup _{M \in \mathbb{N}} \frac{1}{N} \#\left\{M \leq n<M+N: a_{n}=i\right\} \\
& \operatorname{freq}_{*}(\mathbf{a}, i)=\liminf _{N \rightarrow \infty} \inf _{M \in \mathbb{N}} \frac{1}{N} \#\left\{M \leq n<M+N: a_{n}=i\right\}
\end{aligned}
$$

Proposition

Let a be a bracket word over an alphabet Σ and let $i \in \Sigma$. Then

$$
\operatorname{freq}^{*}(\mathbf{a}, i)=\operatorname{freq}_{*}(\mathbf{a}, i):=\operatorname{freq}(\mathbf{a}, i)
$$

Equivalently: If $E \subset \mathbb{N}$ is a GP set, then $d^{*}(E)=d_{*}(E)$.
Corollary: If freq $(\mathbf{a}, i)>0$ then $\left\{n \in \mathbb{N}: a_{n}=i\right\}$ is syndetic (there exists N such that for each $M \in \mathbb{N}$ there exists $M \leq n<M+N$ with $a_{n}=i$.
Remark: The same results remain valid, mutatis mutandis, if $i \in \Sigma$ is replaced with a word $w \in \Sigma^{\ell}$. (E.g. because $\left(a_{n} a_{n+1} \cdots a_{n+\ell-1}\right)_{n=0}^{\infty}$ is a bracket word over Σ^{ℓ}.)

Uniform frequency

For an infinite word over Σ and $i \in \Sigma$, let

$$
\begin{aligned}
& \operatorname{freq}^{*}(\mathbf{a}, i)=\limsup _{N \rightarrow \infty} \sup _{M \in \mathbb{N}} \frac{1}{N} \#\left\{M \leq n<M+N: a_{n}=i\right\} \\
& \operatorname{freq}_{*}(\mathbf{a}, i)=\liminf _{N \rightarrow \infty} \inf _{M \in \mathbb{N}} \frac{1}{N} \#\left\{M \leq n<M+N: a_{n}=i\right\}
\end{aligned}
$$

Proposition

Let a be a bracket word over an alphabet Σ and let $i \in \Sigma$. Then

$$
\operatorname{freq}^{*}(\mathbf{a}, i)=\operatorname{freq}_{*}(\mathbf{a}, i):=\operatorname{freq}(\mathbf{a}, i)
$$

Equivalently: If $E \subset \mathbb{N}$ is a GP set, then $d^{*}(E)=d_{*}(E)$.
Corollary: If freq $(\mathbf{a}, i)>0$ then $\left\{n \in \mathbb{N}: a_{n}=i\right\}$ is syndetic (there exists N such that for each $M \in \mathbb{N}$ there exists $M \leq n<M+N$ with $a_{n}=i$.
Remark: The same results remain valid, mutatis mutandis, if $i \in \Sigma$ is replaced with a word $w \in \Sigma^{\ell}$. (E.g. because $\left(a_{n} a_{n+1} \cdots a_{n+\ell-1}\right)_{n=0}^{\infty}$ is a bracket word over Σ^{ℓ}.)

Proof: Apply Bergelson-Leibman; ergodic nilsystems are uniquely ergodic.

Quantitative frequency

\qquad

Quantitative frequency

Negative results: Estimates from previous slide cannot be improved. For any function $f: \mathbb{N} \rightarrow[0,1)$ with $f(N) \rightarrow \infty$ as $N \rightarrow \infty$, there exists a bracket word a over $\{0,1\}$ such that

$$
f(N) \leq \frac{\#\left\{n<N: a_{n}=1\right\}}{N} \rightarrow 0 \text { as } N \rightarrow \infty
$$

We can take $a_{n}=\left\{\begin{array}{ll}1 & \text { if }\|\alpha n\|_{\mathbb{R} / \mathbb{Z}}\|\beta n\|_{\mathbb{R} / \mathbb{Z}}<1 / n, \\ 0 & \text { otherwise, }\end{array}\right.$ where $\alpha, \beta \in \mathbb{R} \backslash \mathbb{Q}$ are sufficiently well-approximable by rationals.

Negative results: Estimates from previous slide cannot be improved. For any function $f: \mathbb{N} \rightarrow[0,1)$ with $f(N) \rightarrow \infty$ as $N \rightarrow \infty$, there exists a bracket word a over $\{0,1\}$ such that

$$
f(N) \leq \frac{\#\left\{n<N: a_{n}=1\right\}}{N} \rightarrow 0 \text { as } N \rightarrow \infty
$$

We can take $a_{n}=\left\{\begin{array}{ll}1 & \text { if }\|\alpha n\|_{\mathbb{R} / \mathbb{Z}}\|\beta n\|_{\mathbb{R} / \mathbb{Z}}<1 / n, \\ 0 & \text { otherwise },\end{array}\right.$ where $\alpha, \beta \in \mathbb{R} \backslash \mathbb{Q}$ are sufficiently well-approximable by rationals.

Positive results: Quantitative results on equidistribution of orbits on nilmanifolds (e.g. Green-Tao) translate into estimates on frequencies of symbols in bracket words, but we must either

- make additional assumptions about Diophantine properties of the coefficients in the definition of \mathbf{a}; or
- deal with the possibility that a has different behaviour on different long arithmetic progressions.

Finite sums. For a sequence $\left(n_{i}\right)_{i=1}^{\infty}, n_{i} \in \mathbb{N}$, define:

$$
\operatorname{FS}\left(\left(n_{i}\right)_{i=1}^{\infty}\right)=\left\{\sum_{i \in I} n_{i}: I \subset \mathbb{N}, \text { finite, } I \neq \emptyset\right\}
$$

IP sets

Finite sums. For a sequence $\left(n_{i}\right)_{i=1}^{\infty}, n_{i} \in \mathbb{N}$, define:

$$
\mathrm{FS}\left(\left(n_{i}\right)_{i=1}^{\infty}\right)=\left\{\sum_{i \in I} n_{i}: I \subset \mathbb{N} \text {, finite, } I \neq \emptyset\right\} .
$$

- A set $A \subset \mathbb{N}$ is IP if $A \supset \mathrm{FS}\left(\left(n_{i}\right)_{i=1}^{\infty}\right)$ for some sequence $\left(n_{i}\right)_{i=1}^{\infty}$.
- A set $B \subset \mathbb{N}$ is IP* if $B \cap \mathrm{FS}\left(\left(n_{i}\right)_{i=1}^{\infty}\right) \neq \emptyset$ for each sequence $\left(n_{i}\right)_{i=1}^{\infty}$.

IP sets

Finite sums. For a sequence $\left(n_{i}\right)_{i=1}^{\infty}, n_{i} \in \mathbb{N}$, define:

$$
\mathrm{FS}\left(\left(n_{i}\right)_{i=1}^{\infty}\right)=\left\{\sum_{i \in I} n_{i}: I \subset \mathbb{N}, \text { finite, } I \neq \emptyset\right\}
$$

- A set $A \subset \mathbb{N}$ is IP if $A \supset \operatorname{FS}\left(\left(n_{i}\right)_{i=1}^{\infty}\right)$ for some sequence $\left(n_{i}\right)_{i=1}^{\infty}$.
- A set $B \subset \mathbb{N}$ is IP * if $B \cap \operatorname{FS}\left(\left(n_{i}\right)_{i=1}^{\infty}\right) \neq \emptyset$ for each sequence $\left(n_{i}\right)_{i=1}^{\infty}$.

Fact

Any IP^{*} set is syndetic (i.e. intersects any sufficiently long interval).

IP sets

Finite sums. For a sequence $\left(n_{i}\right)_{i=1}^{\infty}, n_{i} \in \mathbb{N}$, define:

$$
\operatorname{FS}\left(\left(n_{i}\right)_{i=1}^{\infty}\right)=\left\{\sum_{i \in I} n_{i}: I \subset \mathbb{N}, \text { finite, } I \neq \emptyset\right\}
$$

- A set $A \subset \mathbb{N}$ is IP if $A \supset \operatorname{FS}\left(\left(n_{i}\right)_{i=1}^{\infty}\right)$ for some sequence $\left(n_{i}\right)_{i=1}^{\infty}$.
- A set $B \subset \mathbb{N}$ is IP * if $B \cap \operatorname{FS}\left(\left(n_{i}\right)_{i=1}^{\infty}\right) \neq \emptyset$ for each sequence $\left(n_{i}\right)_{i=1}^{\infty}$.

Fact

Any IP^{*} set is syndetic (i.e. intersects any sufficiently long interval).

Theorem (Hindman)

- If A is an IP set, $A=A_{1} \cup A_{2} \cup \cdots \cup A_{r}$ then $\exists j: A_{j}$ is IP.
- If $B_{1}, B_{2} \ldots, B_{r}$ are IP^{*} sets then $B=B_{1} \cap B_{2} \cap \cdots \cap B_{r}$ is IP^{*}.

IP sets and GP sets

Corollary (Bergelson, Leibman)

- Let $g: \mathbb{N} \rightarrow \mathbb{R}$ be a bounded GP sequence. Then for almost all $n \in \mathbb{N}$, for any $\delta>0$, the set $R=\{m \in \mathbb{N}:|g(n+m)-g(n)|<\delta\}$ is IP^{*}.
- If \mathbf{a} is a bracket word then for almost all $n \in \mathbb{N}$ the set $\left\{m \in \mathbb{N}: a_{n+m}=a_{n}\right\}$ is IP^{*}.
- For any $G P$ set $E \subset \mathbb{N}$ with $d(E)>0$, the set $E-n$ is IP^{*} for some n.

IP sets and GP sets

Corollary (Bergelson, Leibman)

- Let $g: \mathbb{N} \rightarrow \mathbb{R}$ be a bounded GP sequence. Then for almost all $n \in \mathbb{N}$, for any $\delta>0$, the set $R=\{m \in \mathbb{N}:|g(n+m)-g(n)|<\delta\}$ is IP^{*}.
- If \mathbf{a} is a bracket word then for almost all $n \in \mathbb{N}$ the set $\left\{m \in \mathbb{N}: a_{n+m}=a_{n}\right\}$ is IP^{*}.
- For any $G P$ set $E \subset \mathbb{N}$ with $d(E)>0$, the set $E-n$ is IP^{*} for some n.

Stronger versions: Let $\left(n_{i}\right)_{i=1}^{\infty}$ be a sequence, and let R be as above.

- IP_{r} recurrence: We can find $\sum_{i \in I} n_{i} \in R$ with $I \subset[r]$ for some r that depends on g, δ and n [Bergelson, Leibman];
- SG_{d} recurrence: We can find $\sum_{i \in I} n_{i} \in R$ where I has gaps bounded by d for some d that depends on g and δ [K.];
- VIP recurrence: [Bergelson, Håland Knutson, McCutcheon];

Representations and decidability

One bracket word can have many distinct representations. For instance:

$$
\begin{aligned}
1_{\{0\}}(n) & =[1-\{\sqrt{2} n\}]=[1-\{\sqrt{3} n\}] \\
& =[[\sqrt{2} n] 2 \sqrt{2} n]-[\sqrt{2} n]^{2}-2 n^{2}+1, \quad n \in \mathbb{N}
\end{aligned}
$$

Representations and decidability

One bracket word can have many distinct representations. For instance:

$$
\begin{aligned}
1_{\{0\}}(n) & =[1-\{\sqrt{2} n\}]=[1-\{\sqrt{3} n\}] \\
& =[[\sqrt{2} n] 2 \sqrt{2} n]-[\sqrt{2} n]^{2}-2 n^{2}+1, \quad n \in \mathbb{N} .
\end{aligned}
$$

Question

Can we determine if two bracket words (or GP sequences) are equal?

Representations and decidability

One bracket word can have many distinct representations. For instance:

$$
\begin{aligned}
1_{\{0\}}(n) & =[1-\{\sqrt{2} n\}]=[1-\{\sqrt{3} n\}] \\
& =[[\sqrt{2} n] 2 \sqrt{2} n]-[\sqrt{2} n]^{2}-2 n^{2}+1, \quad n \in \mathbb{N}
\end{aligned}
$$

Question

Can we determine if two bracket words (or GP sequences) are equal?
For polynomial sequences, there are also unexpected identities, like

$$
n^{4}+4=\left(n^{2}+2 n+2\right)\left(n^{2}-2 n+2\right)
$$

This is not a problem, since polynomials have a "canonical" representation

$$
p(n)=\sum_{i=0}^{d} n^{i} \alpha_{i}, \quad\left(d \in \mathbb{N}_{0}, \alpha_{i} \in \mathbb{R}\right)
$$

Question

Is there an analogous statement for bracket words (or GP sequences)?

Canonical representation

Let us call a GP sequence $g: \mathbb{N} \rightarrow \mathbb{R}$ a generalised monomial if it can be expressed using only polynomials, fractional part, and multiplication, e.g.

$$
p_{1}(n)\left\{p_{2}(n)\right\}, p_{1}(n)\left\{p_{2}(n)\right\}\left\{p_{3}(n)\right\}, p_{1}(n)\left\{p_{2}(n)\right\}\left\{p_{3}(n)\left\{p_{4}(n)\right\}\right\}
$$

where $p_{i}: \mathbb{N} \rightarrow \mathbb{R}$ are (ordinary) polynomial sequences.

Canonical representation

Let us call a GP sequence $g: \mathbb{N} \rightarrow \mathbb{R}$ a generalised monomial if it can be expressed using only polynomials, fractional part, and multiplication, e.g.

$$
p_{1}(n)\left\{p_{2}(n)\right\}, p_{1}(n)\left\{p_{2}(n)\right\}\left\{p_{3}(n)\right\}, p_{1}(n)\left\{p_{2}(n)\right\}\left\{p_{3}(n)\left\{p_{4}(n)\right\}\right\},
$$

where $p_{i}: \mathbb{N} \rightarrow \mathbb{R}$ are (ordinary) polynomial sequences.

Theorem (Leibman)

Each bounded GP sequence g has a "canonical representation"

$$
g(n)=F\left(h_{0}(n), h_{1}(n), h_{2}(n), \ldots, h_{d}(n)\right), \quad n \in \mathbb{N}
$$

where F is a piecewise polynomial function, h_{0} is periodic and $h_{1}, h_{2}, \ldots, h_{d}: \mathbb{N} \rightarrow[0,1)$ are jointly equidistributed generalised monomials.

Remark: The representation is explicitly computable.

Canonical representation

Let us call a GP sequence $g: \mathbb{N} \rightarrow \mathbb{R}$ a generalised monomial if it can be expressed using only polynomials, fractional part, and multiplication, e.g.

$$
p_{1}(n)\left\{p_{2}(n)\right\}, p_{1}(n)\left\{p_{2}(n)\right\}\left\{p_{3}(n)\right\}, p_{1}(n)\left\{p_{2}(n)\right\}\left\{p_{3}(n)\left\{p_{4}(n)\right\}\right\}
$$

where $p_{i}: \mathbb{N} \rightarrow \mathbb{R}$ are (ordinary) polynomial sequences.

Theorem (Leibman)

Each bounded GP sequence g has a "canonical representation"

$$
g(n)=F\left(h_{0}(n), h_{1}(n), h_{2}(n), \ldots, h_{d}(n)\right), \quad n \in \mathbb{N}
$$

where F is a piecewise polynomial function, h_{0} is periodic and $h_{1}, h_{2}, \ldots, h_{d}: \mathbb{N} \rightarrow[0,1)$ are jointly equidistributed generalised monomials.

Remark: The representation is explicitly computable.

Corollary

Given (representations of) two bracket words a, b over the same alphabet Σ, there is a procedure to determine if \mathbf{a} and \mathbf{b} are equal almost everywhere, i.e. if $\#\left\{n \leq N: a_{n} \neq b_{n}\right\} / N \rightarrow 0$ as $N \rightarrow \infty$.

Canonical representation

Example (Leibman)

Let $g(n)=\{\sqrt{2} n[\sqrt{3} n]\}$. Then:

$$
\begin{aligned}
g(n) & =\left\{\sqrt{6} n^{2}-\sqrt{2} n\{\sqrt{3} n\}\right\} \\
& =\left\{\left\{\sqrt{6} n^{2}\right\}-\{\sqrt{2} n\{\sqrt{3} n\}\}\right\}=F\left(\left\{\sqrt{6} n^{2}\right\},\{\sqrt{2} n\{\sqrt{3} n\}\}\right)
\end{aligned}
$$

where F is the piecewise polynomial function given by

$$
F(x, y)=\{x-y\}= \begin{cases}x-y & \text { if } x \geq y \\ x-y+1 & \text { if } x<y\end{cases}
$$

Canonical representation

Example (Leibman)

Let $g(n)=\{\sqrt{2} n[\sqrt{3} n]\}$. Then:

$$
\begin{aligned}
g(n) & =\left\{\sqrt{6} n^{2}-\sqrt{2} n\{\sqrt{3} n\}\right\} \\
& =\left\{\left\{\sqrt{6} n^{2}\right\}-\{\sqrt{2} n\{\sqrt{3} n\}\}\right\}=F\left(\left\{\sqrt{6} n^{2}\right\},\{\sqrt{2} n\{\sqrt{3} n\}\}\right)
\end{aligned}
$$

where F is the piecewise polynomial function given by

$$
F(x, y)=\{x-y\}= \begin{cases}x-y & \text { if } x \geq y \\ x-y+1 & \text { if } x<y\end{cases}
$$

Construction: Start by taking all polynomials p_{i} that appear in the representation of g, and iteratively construct expressions involving $p_{i},\{\bullet\}$ and \times. It is possible to express g using these generalised monomials.
(1) We have to be careful which basic sequences to include, e.g. if we add $p(n)\{q(n)\}$ then we cannot add $q(n)\{p(n)\}$ because of identities like

$$
x y-x\{y\}-y\{x\}-\{x\}\{y\} \equiv[x][y]=0 \bmod 1 .
$$

(2) We might need to replace p_{i} with $p_{i} / M(M \in \mathbb{N})$.
(3) We might need to pass to an arithmetic progression.

Equality is undecidable

Theorem (Adamczewski, K.)

There is no algorithm which, given a representation of a GP sequence g with algebraic coefficients, determines if $g(n)=0$ for all $n \in \mathbb{N}$.

Corollary

There is no algorithm which, given representations of two bracket words \mathbf{a}, \mathbf{b}, each involving only algebraic coefficients, determines if $\mathbf{a}=\mathbf{b}$.

Equality is undecidable

Theorem (Adamczewski, K.)

There is no algorithm which, given a representation of a GP sequence g with algebraic coefficients, determines if $g(n)=0$ for all $n \in \mathbb{N}$.

Corollary

There is no algorithm which, given representations of two bracket words \mathbf{a}, \mathbf{b}, each involving only algebraic coefficients, determines if $\mathbf{a}=\mathbf{b}$.

Sketch of proof:

Key fact: There exists a surjective GP map $\mathbb{N} \rightarrow \mathbb{N}^{2}$, for instance:

$$
n \mapsto\left(\left[n \cdot\{\sqrt{2} n\}^{10}\right],\left[n \cdot\{\sqrt{3} n\}^{10}\right]\right)
$$

Iterating, we can construct a surjective GP map $\iota_{d}: \mathbb{N} \rightarrow \mathbb{Z}^{d}$ for each $d \in \mathbb{N}$. If we could recognise if a GP sequence is identically zero, then we could also recognise solvable polynomial equations in \mathbb{Z} :

$$
\left(\exists x_{1}, \ldots, x_{d} \in \mathbb{Z}\right) p\left(x_{1}, \ldots, x_{d}\right)=0 \Leftrightarrow(\exists n \in \mathbb{N}) 1_{\{0\}}\left(p \circ \iota_{d}(n)\right) \neq 0
$$

But it is well-known that this is impossible (cf. Hilbert's 10th problem).

Recursive sequences

Let $\beta>1$ be an algebraic integer with minimal polynomial

$$
p(X)=X^{d}-\sum_{j=0}^{d-1} a_{j} X_{j} .
$$

Let $E=\left\{n_{i}: i \geq 0\right\}$, where n_{i} satisfy recurrence:

$$
n_{i+d}=\sum_{j=0}^{d-1} a_{j} n_{i+j}
$$

Recursive sequences

Let $\beta>1$ be an algebraic integer with minimal polynomial

$$
p(X)=X^{d}-\sum_{j=0}^{d-1} a_{j} X_{j} .
$$

Let $E=\left\{n_{i}: i \geq 0\right\}$, where n_{i} satisfy recurrence:

$$
n_{i+d}=\sum_{j=0}^{d-1} a_{j} n_{i+j}
$$

Theorem

The set E is GP if β is any of the following:

Recursive sequences

Let $\beta>1$ be an algebraic integer with minimal polynomial

$$
p(X)=X^{d}-\sum_{j=0}^{d-1} a_{j} X_{j} .
$$

Let $E=\left\{n_{i}: i \geq 0\right\}$, where n_{i} satisfy recurrence:

$$
n_{i+d}=\sum_{j=0}^{d-1} a_{j} n_{i+j}
$$

Theorem

The set E is $G P$ if β is any of the following:

- Quadratic Pisot unit ($d=2$ and $a_{0}= \pm 1$);

Recursive sequences

Let $\beta>1$ be an algebraic integer with minimal polynomial

$$
p(X)=X^{d}-\sum_{j=0}^{d-1} a_{j} X_{j}
$$

Let $E=\left\{n_{i}: i \geq 0\right\}$, where n_{i} satisfy recurrence:

$$
n_{i+d}=\sum_{j=0}^{d-1} a_{j} n_{i+j}
$$

Theorem

The set E is GP if β is any of the following:

- Quadratic Pisot unit ($d=2$ and $a_{0}= \pm 1$);
- Not totally real cubic Pisot unit ($d=3, a_{0}=1, p$ has two complex roots);

Recursive sequences

Let $\beta>1$ be an algebraic integer with minimal polynomial

$$
p(X)=X^{d}-\sum_{j=0}^{d-1} a_{j} X_{j}
$$

Let $E=\left\{n_{i}: i \geq 0\right\}$, where n_{i} satisfy recurrence:

$$
n_{i+d}=\sum_{j=0}^{d-1} a_{j} n_{i+j}
$$

Theorem

The set E is GP if β is any of the following:

- Quadratic Pisot unit ($d=2$ and $a_{0}= \pm 1$);
- Not totally real cubic Pisot unit ($d=3, a_{0}=1, p$ has two complex roots);
- Salem unit ($d \geq 4$ even, $a_{0}=1, p(1 / \beta)=0$, other roots on the unit circle).

Recursive sequences

Let $\beta>1$ be an algebraic integer with minimal polynomial

$$
p(X)=X^{d}-\sum_{j=0}^{d-1} a_{j} X_{j}
$$

Let $E=\left\{n_{i}: i \geq 0\right\}$, where n_{i} satisfy recurrence:

$$
n_{i+d}=\sum_{j=0}^{d-1} a_{j} n_{i+j}
$$

Theorem

The set E is GP if β is any of the following:

- Quadratic Pisot unit ($d=2$ and $a_{0}= \pm 1$);
- Not totally real cubic Pisot unit ($d=3, a_{0}=1, p$ has two complex roots);
- Salem unit ($d \geq 4$ even, $a_{0}=1, p(1 / \beta)=0$, other roots on the unit circle).

Conjecture: These are the only cases where E is GP.

Extremely sparse sequences

Proposition (Byszewski, K.)

Suppose that $\left(n_{i}\right)_{i=0}^{\infty}$ is a sequence with $\liminf _{i \rightarrow \infty} \frac{\log n_{i+1}}{\log n_{i}}>1$.
Then, $E=\left\{n_{i}: i \geq 0\right\}$ is a GP set. (E.g. $n_{i}=2^{2^{i}}$.)

Extremely sparse sequences

Proposition (Byszewski, K.)

Suppose that $\left(n_{i}\right)_{i=0}^{\infty}$ is a sequence with $\liminf _{i \rightarrow \infty} \frac{\log n_{i+1}}{\log n_{i}}>1$.
Then, $E=\left\{n_{i}: i \geq 0\right\}$ is a GP set. (E.g. $n_{i}=2^{2^{i}}$.)

Proof strategy: Hope to find $\alpha \in \mathbb{R}$ and C so that $n \in E$ if and only if

$$
\|\alpha n\|_{\mathbb{R} / \mathbb{Z}}<1 / n^{C}
$$

By inductive construction, one can show that there exists a Cantor set of α such that (\dagger) holds for all $n \in E$.

Extremely sparse sequences

Proposition (Byszewski, K.)

Suppose that $\left(n_{i}\right)_{i=0}^{\infty}$ is a sequence with $\liminf _{i \rightarrow \infty} \frac{\log n_{i+1}}{\log n_{i}}>1$.
Then, $E=\left\{n_{i}: i \geq 0\right\}$ is a GP set.
(E.g. $n_{i}=2^{2^{i}}$.)

Proof strategy: Hope to find $\alpha \in \mathbb{R}$ and C so that $n \in E$ if and only if

$$
\|\alpha n\|_{\mathbb{R} / \mathbb{Z}}<1 / n^{C}
$$

By inductive construction, one can show that there exists a Cantor set of α such that (\dagger) holds for all $n \in E$.

Problem: (\dagger) might hold for some $n \in \mathbb{N} \backslash E$. First, reduce to the case where $D<\log n_{i+1} / \log n_{i}<2 D$ for a constant D. We strengthen (\dagger) to

$$
1 / 2 n^{C}<\|\alpha n\|_{\mathbb{R} / \mathbb{Z}}<1 / n^{C}
$$

Under suitable conditions on C and D (e.g. $C=5, D=6$), we use continued fractions to check that no spurious n satisfy (\ddagger).

Negative results: Criteria

How does one prove that a set (or a sequence) is not GP?

Negative results: Criteria

How does one prove that a set (or a sequence) is not GP?

- (Boring answer) Use properties from previous slides.

Negative results: Criteria

How does one prove that a set (or a sequence) is not GP?

- (Boring answer) Use properties from previous slides.

Theorem (Byszewski, K.)

If $E \subset \mathbb{N}, d(E)=0$ and E contains an IP set, then E is not $G P$.
Example: The set $\left\{\sum_{n \in I} 2^{2^{n}}: I \subset \mathbb{N}\right\}$ is not GP. The set of integers whose base-10 expansions do not contain 7 is not GP.

Negative results: Criteria

How does one prove that a set (or a sequence) is not GP?

- (Boring answer) Use properties from previous slides.

Theorem (Byszewski, K.)

If $E \subset \mathbb{N}, d(E)=0$ and E contains an IP set, then E is not GP.
Example: The set $\left\{\sum_{n \in I} 2^{2^{n}}: I \subset \mathbb{N}\right\}$ is not GP. The set of integers whose base-10 expansions do not contain 7 is not GP.

Theorem (K.)

Fix $k \in \mathbb{N}$. If $E \subset \mathbb{N}, d(E)=0$ and $E=E / k:=\{n \in \mathbb{N}: k n \in E\}$ then E is not GP.

Example: $\left\{k^{n}: n \geq 0\right\}$ is not GP.

Negative results: Examples

\qquad

Negative results: Examples

- The squares $S=\left\{n^{2}: n \in \mathbb{N}\right\}$ are not a GP set. (Proof: $S / 4=S$.)

Negative results: Examples

- The squares $S=\left\{n^{2}: n \in \mathbb{N}\right\}$ are not a GP set. (Proof: $S / 4=S$.)
- The primes are not a GP set. (Proof: use Gowers uniformity of μ.)

Negative results: Examples

- The squares $S=\left\{n^{2}: n \in \mathbb{N}\right\}$ are not a GP set. (Proof: $S / 4=S$.)
- The primes are not a GP set. (Proof: use Gowers uniformity of μ.)
- Let $q \geq 3$. Then $(\varphi(n) \bmod q)_{n=0}^{\infty}$ is not bracket word.
(Here, $\varphi(n)=\#(\mathbb{Z} / n \mathbb{Z})^{\times}$is the totient function.) Proof: The set $E=\{n: \varphi(n) \not \equiv 0 \bmod q\}$ has $d(E)=0$ and $E / p=E$ for any $p \in \mathcal{P}$ with $p>q, q \nmid p-1$.

Negative results: Examples

- The squares $S=\left\{n^{2}: n \in \mathbb{N}\right\}$ are not a GP set. (Proof: $S / 4=S$.)
- The primes are not a GP set. (Proof: use Gowers uniformity of μ.)
- Let $q \geq 3$. Then $(\varphi(n) \bmod q)_{n=0}^{\infty}$ is not bracket word.
(Here, $\varphi(n)=\#(\mathbb{Z} / n \mathbb{Z})^{\times}$is the totient function.) Proof: The set $E=\{n: \varphi(n) \not \equiv 0 \bmod q\}$ has $d(E)=0$ and $E / p=E$ for any $p \in \mathcal{P}$ with $p>q, q \nmid p-1$.
- Recall that a word $\mathbf{a}=\left(a_{n}\right)_{n=0}^{\infty}$ is k-automatic if a_{n} can be computed by a finite automaton, taking base- k expansion of n as input.

Theorem (Byszewski, K.)
If \mathbf{a} is k-automatic and not eventually periodic, then \mathbf{a} is not a bracket word.

The End

Thank You for your attention！

Bonus: Recursive sequences

Example

Let $\beta>1, \alpha, \bar{\alpha}$ be the roots of $X^{3}-X^{2}-X-1$. Then the set $\left\{\left\lfloor\beta^{i}\right\rceil: i \geq 0\right\}$ is GP. (NB $\left.\left\lfloor\beta^{i+3}\right\rceil=\left\lfloor\beta^{i+2}\right\rceil+\left\lfloor\beta^{i+1}\right\rceil+\left\lfloor\beta^{i}\right\rceil ;\lfloor x\rceil=\left[x+\frac{1}{2}\right\rceil.\right)$

Bonus: Recursive sequences

Example

Let $\beta>1, \alpha, \bar{\alpha}$ be the roots of $X^{3}-X^{2}-X-1$. Then the set
$\left\{\left\lfloor\beta^{i}\right\rceil: i \geq 0\right\}$ is GP. ($\mathrm{NB}\left\lfloor\beta^{i+3}\right\rceil=\left\lfloor\beta^{i+2}\right\rceil+\left\lfloor\beta^{i+1}\right\rceil+\left\lfloor\beta^{i}\right\rceil ;\lfloor x\rceil=\left[x+\frac{1}{2}\right\rceil$.)

Sketch of proof: Note that $|\alpha|<1$. If we guess that $n=\left\lfloor\beta^{i}\right\rceil$ then

$$
\begin{aligned}
n & =\beta^{i}+\alpha^{i}+\bar{\alpha}^{i}=\operatorname{Tr}\left(\beta^{i}\right) \\
\lfloor\beta n\rceil & =\beta^{i+1}+\alpha^{i+1}+\bar{\alpha}^{i+1} \\
\left\lfloor\beta^{2} n\right\rceil & =\beta^{i+2}+\alpha^{i+2}+\bar{\alpha}^{i+2}
\end{aligned}
$$

Bonus: Recursive sequences

Example

Let $\beta>1, \alpha, \bar{\alpha}$ be the roots of $X^{3}-X^{2}-X-1$. Then the set
$\left\{\left\lfloor\beta^{i}\right\rceil: i \geq 0\right\}$ is GP. (NB $\left\lfloor\beta^{i+3}\right\rceil=\left\lfloor\beta^{i+2}\right\rceil+\left\lfloor\beta^{i+1}\right\rceil+\left\lfloor\beta^{i}\right\rceil ;\lfloor x\rceil=\left[x+\frac{1}{2}\right\rfloor$.)

Sketch of proof: Note that $|\alpha|<1$. If we guess that $n=\left\lfloor\beta^{i}\right\rceil$ then

$$
\begin{aligned}
n & =g+h+\bar{h} \\
\lfloor\beta n\rceil & =\beta g+\alpha h+\bar{\alpha} \bar{h} \\
\left\lfloor\beta^{2} n\right\rceil & =\beta^{2} g+\alpha^{2} h+\bar{\alpha}^{2} \bar{h}
\end{aligned}
$$

with $g=\beta^{i}, h=\alpha^{i}$. This defines GP sequences $g(n) \in \mathbb{Q}(\beta), h(n) \in \mathbb{Q}(\alpha)$ for all n. New goal: $n=\left\lfloor\beta^{i}\right\rceil \Longleftrightarrow g(n)=\beta^{i}$.

Bonus: Recursive sequences

Example

Let $\beta>1, \alpha, \bar{\alpha}$ be the roots of $X^{3}-X^{2}-X-1$. Then the set
$\left\{\left\lfloor\beta^{i}\right\rceil: i \geq 0\right\}$ is GP. (NB $\left\lfloor\beta^{i+3}\right\rceil=\left\lfloor\beta^{i+2}\right\rceil+\left\lfloor\beta^{i+1}\right\rceil+\left\lfloor\beta^{i}\right\rceil ;\lfloor x\rceil=\left[x+\frac{1}{2}\right\rceil$.)

Sketch of proof: Note that $|\alpha|<1$. If we guess that $n=\left\lfloor\beta^{i}\right\rceil$ then

$$
\begin{aligned}
n & =g+h+\bar{h} \\
\lfloor\beta n\rceil & =\beta g+\alpha h+\bar{\alpha} \bar{h} \\
\left\lfloor\beta^{2} n\right\rceil & =\beta^{2} g+\alpha^{2} h+\bar{\alpha}^{2} \bar{h}
\end{aligned}
$$

with $g=\beta^{i}, h=\alpha^{i}$. This defines GP sequences $g(n) \in \mathbb{Q}(\beta), h(n) \in \mathbb{Q}(\alpha)$ for all n. New goal: $n=\left\lfloor\beta^{i}\right\rceil \Longleftrightarrow g(n)=\beta^{i}$.

Key fact: The group of units of $\mathbb{Q}(\beta)$ has rank $1, \beta$ is a generator.

Bonus: Recursive sequences

Example

Let $\beta>1, \alpha, \bar{\alpha}$ be the roots of $X^{3}-X^{2}-X-1$. Then the set $\left\{\left\lfloor\beta^{i}\right\rceil: i \geq 0\right\}$ is GP. (NB $\left\lfloor\beta^{i+3}\right\rceil=\left\lfloor\beta^{i+2}\right\rceil+\left\lfloor\beta^{i+1}\right\rceil+\left\lfloor\beta^{i}\right\rceil ;\lfloor x\rceil=\left[x+\frac{1}{2}\right\rfloor$.)

Sketch of proof: Note that $|\alpha|<1$. If we guess that $n=\left\lfloor\beta^{i}\right\rceil$ then

$$
\begin{aligned}
n & =g+h+\bar{h} \\
\lfloor\beta n\rceil & =\beta g+\alpha h+\bar{\alpha} \bar{h} \\
\left\lfloor\beta^{2} n\right\rceil & =\beta^{2} g+\alpha^{2} h+\bar{\alpha}^{2} \bar{h}
\end{aligned}
$$

with $g=\beta^{i}, h=\alpha^{i}$. This defines GP sequences $g(n) \in \mathbb{Q}(\beta), h(n) \in \mathbb{Q}(\alpha)$ for all n. New goal: $n=\left\lfloor\beta^{i}\right\rceil \Longleftrightarrow g(n)=\beta^{i}$.

Key fact: The group of units of $\mathbb{Q}(\beta)$ has rank $1, \beta$ is a generator.

$$
g(n)=\beta^{i} \Longleftrightarrow g(n) \text { is a unit in } \mathbb{Q}(\beta)
$$

Bonus: Recursive sequences

Example

Let $\beta>1, \alpha, \bar{\alpha}$ be the roots of $X^{3}-X^{2}-X-1$. Then the set
$\left\{\left\lfloor\beta^{i}\right\rceil: i \geq 0\right\}$ is GP. (NB $\left.\left\lfloor\beta^{i+3}\right\rceil=\left\lfloor\beta^{i+2}\right\rceil+\left\lfloor\beta^{i+1}\right\rceil+\left\lfloor\beta^{i}\right\rceil ;\lfloor x\rceil=\left[x+\frac{1}{2}\right\rceil.\right)$
Sketch of proof: Note that $|\alpha|<1$. If we guess that $n=\left\lfloor\beta^{i}\right\rceil$ then

$$
\begin{aligned}
n & =g+h+\bar{h} \\
\lfloor\beta n\rceil & =\beta g+\alpha h+\bar{\alpha} \bar{h} \\
\left\lfloor\beta^{2} n\right\rceil & =\beta^{2} g+\alpha^{2} h+\bar{\alpha}^{2} \bar{h}
\end{aligned}
$$

with $g=\beta^{i}, h=\alpha^{i}$. This defines GP sequences $g(n) \in \mathbb{Q}(\beta), h(n) \in \mathbb{Q}(\alpha)$ for all n. New goal: $n=\left\lfloor\beta^{i}\right\rceil \Longleftrightarrow g(n)=\beta^{i}$.

Key fact: The group of units of $\mathbb{Q}(\beta)$ has rank $1, \beta$ is a generator.

$$
g(n)=\beta^{i} \Longleftrightarrow\left\{\begin{array}{l}
g(n) \text { is an algebraic integer } \\
\mathrm{N}(g(n))=1 \Longleftrightarrow g(n) h(n) \bar{h}(n)=1
\end{array}\right.
$$

