Finitely valued-generalised polynomials

Jakub Konieczny

Camille Jordan Institute Claude Bernard University Lyon 1

One World Combinatorics on Words Seminar, 20 XII 2021

Based on joint work with B. Adamczewski & joint work with J. Byszewski.

(□) (@) (E) (E) E

Sturmian words $\mathbf{a} = (a_n)_{n=0}^{\infty} \in \{0,1\}^{\infty}$ have several characterisations:

Sturmian words $\mathbf{a} = (a_n)_{n=0}^{\infty} \in \{0,1\}^{\infty}$ have several characterisations:

Explicit formula: The word \mathbf{a} is Sturmian if and only if it is given by

$$a_n = [\alpha n + \beta] - [\alpha (n-1) + \beta], \qquad (n \in \mathbb{N}),$$

for some irrational $\alpha \in (0, 1)$ and $\beta \in \mathbb{R}$ (or possibly the same formula with the floor $[\bullet]$ replaced by the ceiling $[\bullet]$).

Sturmian words $\mathbf{a} = (a_n)_{n=0}^{\infty} \in \{0,1\}^{\infty}$ have several characterisations:

Explicit formula: The word \mathbf{a} is Sturmian if and only if it is given by

$$a_n = [\alpha n + \beta] - [\alpha (n-1) + \beta], \qquad (n \in \mathbb{N}),$$

for some irrational $\alpha \in (0, 1)$ and $\beta \in \mathbb{R}$ (or possibly the same formula with the floor $[\bullet]$ replaced by the ceiling $[\bullet]$).

Coding of a rotation: Let R_{α} denote the rotation $x \mapsto x + \alpha$ on the unit circle \mathbb{R}/\mathbb{Z} . The word **a** is Sturmian if and only if, for some irrational rotation R_{α} and base point $\beta \in \mathbb{R}/\mathbb{Z}$, a_n is given by

$$a_n = 1 \iff R^n_{\alpha}(\beta) \in [0, \alpha).$$

1/24

Sturmian words $\mathbf{a} = (a_n)_{n=0}^{\infty} \in \{0,1\}^{\infty}$ have several characterisations:

Explicit formula: The word \mathbf{a} is Sturmian if and only if it is given by

$$a_n = [\alpha n + \beta] - [\alpha (n-1) + \beta], \qquad (n \in \mathbb{N}),$$

for some irrational $\alpha \in (0, 1)$ and $\beta \in \mathbb{R}$ (or possibly the same formula with the floor $[\bullet]$ replaced by the ceiling $[\bullet]$).

Coding of a rotation: Let R_{α} denote the rotation $x \mapsto x + \alpha$ on the unit circle \mathbb{R}/\mathbb{Z} . The word **a** is Sturmian if and only if, for some irrational rotation R_{α} and base point $\beta \in \mathbb{R}/\mathbb{Z}$, a_n is given by

$$a_n = 1 \iff R^n_{\alpha}(\beta) \in [0, \alpha).$$

Subword complexity: The word **a** over is Sturmian if and only if it has subword complexity $p_{\mathbf{a}}(N) = N + 1$ ($N \in \mathbb{N}$), i.e. for each N there are precisely N + 1 length-N subwords that appear in **a**.

Sturmian words $\mathbf{a} = (a_n)_{n=0}^{\infty} \in \{0,1\}^{\infty}$ have several characterisations:

Explicit formula: The word **a** is Sturmian if and only if it is given by

$$a_n = [\alpha n + \beta] - [\alpha (n-1) + \beta], \qquad (n \in \mathbb{N}),$$

for some irrational $\alpha \in (0, 1)$ and $\beta \in \mathbb{R}$ (or possibly the same formula with the floor $[\bullet]$ replaced by the ceiling $[\bullet]$).

Coding of a rotation: Let R_{α} denote the rotation $x \mapsto x + \alpha$ on the unit circle \mathbb{R}/\mathbb{Z} . The word **a** is Sturmian if and only if, for some irrational rotation R_{α} and base point $\beta \in \mathbb{R}/\mathbb{Z}$, a_n is given by

$$a_n = 1 \iff R^n_{\alpha}(\beta) \in [0, \alpha).$$

Subword complexity: The word **a** over is Sturmian if and only if it has subword complexity $p_{\mathbf{a}}(N) = N + 1$ $(N \in \mathbb{N})$, i.e. for each N there are precisely N + 1 length-N subwords that appear in **a**.

Balance: The word **a** is Sturmian if and only if for each $N \in \mathbb{N}$, its length-N subwords are balanced, i.e., for each $u, v \in \{0, 1\}^N$ that appear in **a**, the number of 1s in u and v differs by at most 1.

イロト イロト イヨト イヨト 二日

Overview

We will study a more general class, which we dub bracket words.

Explicit formula Bracket words are defined as codings of finitely-valued generalised polynomials (expressions built with $[\bullet], +, \times$).

Explicit formula Bracket words are defined as codings of finitely-valued generalised polynomials (expressions built with $[\bullet], +, \times$).

Coding of a rotation: Bracket words are given by codings of semialgebraic partitions of rotations on nilmanifolds.

Explicit formula Bracket words are defined as codings of finitely-valued generalised polynomials (expressions built with $[\bullet], +, \times$).

Coding of a rotation: Bracket words are given by codings of semialgebraic partitions of rotations on nilmanifolds.

Subword complexity: Bracket words have polynomial subword complexity.

Explicit formula Bracket words are defined as codings of finitely-valued generalised polynomials (expressions built with $[\bullet], +, \times$).

Coding of a rotation: Bracket words are given by codings of semialgebraic partitions of rotations on nilmanifolds.

Subword complexity: Bracket words have polynomial subword complexity.

Balance: All symbols in a bracket word appear with uniform frequency.

Explicit formula Bracket words are defined as codings of finitely-valued generalised polynomials (expressions built with $[\bullet], +, \times$).

Coding of a rotation: Bracket words are given by codings of semialgebraic partitions of rotations on nilmanifolds.

Subword complexity: Bracket words have polynomial subword complexity.

Balance: All symbols in a bracket word appear with uniform frequency.

イロト イヨト イヨト イヨト 三日

2/24

Other notable properties:

Explicit formula Bracket words are defined as codings of finitely-valued generalised polynomials (expressions built with $[\bullet], +, \times$).

Coding of a rotation: Bracket words are given by codings of semialgebraic partitions of rotations on nilmanifolds.

Subword complexity: Bracket words have polynomial subword complexity.

Balance: All symbols in a bracket word appear with uniform frequency.

Other notable properties:

• Good closure properties (products, codings, orbit closure).

Explicit formula Bracket words are defined as codings of finitely-valued generalised polynomials (expressions built with $[\bullet], +, \times$).

Coding of a rotation: Bracket words are given by codings of semialgebraic partitions of rotations on nilmanifolds.

Subword complexity: Bracket words have polynomial subword complexity.

Balance: All symbols in a bracket word appear with uniform frequency.

Other notable properties:

- Good closure properties (products, codings, orbit closure).
- Unexpected examples, such at $a_n = \begin{cases} 1 & \text{if } n = \text{Fibonacci number}, \\ 0 & \text{otherwise.} \end{cases}$

Definition (Generalised polynomial sequences)

The generalised polynomial sequences $\mathbb{N}\to\mathbb{R}$ (denoted GP) is the smallest family such that

- all polynomial sequences $\mathbb{Z} \to \mathbb{R}$ belong to GP;
- GP is a ring, i.e., $g, h \in \text{GP} \Longrightarrow g + h, g \cdot h \in \text{GP}$;
- GP is closed under the floor function, i.e. $g \in \text{GP} \Rightarrow [g] \in \text{GP}$.

(Operations are pointwise: (g+h)(n) = g(n) + h(n), [g](n) = [g(n)], etc.)

Definition (Generalised polynomial sequences)

The generalised polynomial sequences $\mathbb{N}\to\mathbb{R}$ (denoted GP) is the smallest family such that

- all polynomial sequences $\mathbb{Z} \to \mathbb{R}$ belong to GP;
- GP is a ring, i.e., $g, h \in \text{GP} \Longrightarrow g + h, g \cdot h \in \text{GP};$
- GP is closed under the floor function, i.e. $g \in \text{GP} \Rightarrow [g] \in \text{GP}$.

(Operations are pointwise: (g+h)(n) = g(n) + h(n), [g](n) = [g(n)], etc.)

Remark:

- Since {x} = x [x], GP is also closed under the fractional part function, i.e. g ∈ GP ⇒ {g} = g [g] ∈ GP.
- Since $||x||_{\mathbb{R}/\mathbb{Z}} = \min_{a \in \mathbb{Z}} |x-a| = \left(\left\{x + \frac{1}{2}\right\} \frac{1}{2}\right) \cdot \left(2\left[\left\{x + \frac{1}{2}\right\} \frac{1}{2}\right] + 1\right),$ GP is also closed under the circle norm, i.e. $g \in \mathrm{GP} \Rightarrow ||g||_{\mathbb{R}/\mathbb{Z}} \in \mathrm{GP}.$

Definition (Generalised polynomial sequences)

The generalised polynomial sequences $\mathbb{N}\to\mathbb{R}$ (denoted GP) is the smallest family such that

- all polynomial sequences $\mathbb{Z} \to \mathbb{R}$ belong to GP;
- GP is a ring, i.e., $g, h \in \text{GP} \Longrightarrow g + h, g \cdot h \in \text{GP};$
- GP is closed under the floor function, i.e. $g \in \text{GP} \Rightarrow [g] \in \text{GP}$.

(Operations are pointwise: (g+h)(n) = g(n) + h(n), [g](n) = [g(n)], etc.)

Remark:

- Since {x} = x [x], GP is also closed under the fractional part function, i.e. g ∈ GP ⇒ {g} = g [g] ∈ GP.
- Since $||x||_{\mathbb{R}/\mathbb{Z}} = \min_{a \in \mathbb{Z}} |x-a| = \left(\left\{x + \frac{1}{2}\right\} \frac{1}{2}\right) \cdot \left(2\left[\left\{x + \frac{1}{2}\right\} \frac{1}{2}\right] + 1\right),$ GP is also closed under the circle norm, i.e. $g \in \mathrm{GP} \Rightarrow ||g||_{\mathbb{R}/\mathbb{Z}} \in \mathrm{GP}.$

Related concepts:

- The GP sequences $\mathbb{N} \to \mathbb{R}^d$ are *d*-tuples (g_1, \ldots, g_d) with $g_i \in \text{GP}$.
- The GP maps $\mathbb{Z}^k \to \mathbb{R}^d$ or $\mathbb{R}^k \to \mathbb{R}^d$ are defined similarly.
- A set $A \subset \mathbb{N}$ is a GP set if 1_A is a GP sequence.

Definition (Bracket word)

A bracket word is a coding of a finitely-valued GP sequence. More precisely, an infinite word $\mathbf{a} = (a_n)_{n=0}^{\infty}$ over a finite alphabet Σ is a bracket word if there exists a GP sequence $g: \mathbb{N} \to \mathbb{R}$ such that $g(\mathbb{N})$ is finite, and a coding $\pi: g(\mathbb{N}) \to \Sigma$ such that

$$a_n = \pi(g(n)), \qquad n \in \mathbb{N}.$$

Definition (Bracket word)

A bracket word is a coding of a finitely-valued GP sequence. More precisely, an infinite word $\mathbf{a} = (a_n)_{n=0}^{\infty}$ over a finite alphabet Σ is a bracket word if there exists a GP sequence $g: \mathbb{N} \to \mathbb{R}$ such that $g(\mathbb{N})$ is finite, and a coding $\pi: g(\mathbb{N}) \to \Sigma$ such that

$$a_n = \pi(g(n)), \qquad n \in \mathbb{N}.$$

Proposal: Let's study bracket words from the point of view of Combinatorics on Words.

Definition (Bracket word)

A bracket word is a coding of a finitely-valued GP sequence. More precisely, an infinite word $\mathbf{a} = (a_n)_{n=0}^{\infty}$ over a finite alphabet Σ is a bracket word if there exists a GP sequence $g \colon \mathbb{N} \to \mathbb{R}$ such that $g(\mathbb{N})$ is finite, and a coding $\pi \colon g(\mathbb{N}) \to \Sigma$ such that

$$a_n = \pi(g(n)), \qquad n \in \mathbb{N}.$$

Proposal: Let's study bracket words from the point of view of Combinatorics on Words.

Remark

The following objects are "equivalent":

- bracket words;
- finitely-valued GP sequences;
- GP subsets of \mathbb{N} .

For instance, if $E \subset \mathbb{N}$ is a GP subset, then the characteristic word $\mathbf{1}_E = (\mathbf{1}_E(n))_{n=0}^{\infty}$ is a bracket word. In this talk, we focus on bracket words.

イロト イロト イヨト イヨト 三日

Suppose that $g: \mathbb{N} \to \mathbb{R}$ is a GP sequence and $I \subset \mathbb{R}$ is an interval. Put

$$a_n = 1_I(g(n)) = \begin{cases} 1 & \text{if } g(n) \in I, \\ 0 & otherwise. \end{cases}$$

5/24

Then $\mathbf{a} = (a_n)_{n=0}^{\infty}$ is a bracket word.

Remark: The interval I can be proper, infinite or degenerate (e.g. $I = [x, y), I = (x, \infty), I = \{x\}$).

Suppose that $g \colon \mathbb{N} \to \mathbb{R}$ is a GP sequence and $I \subset \mathbb{R}$ is an interval. Put

$$a_n = 1_I(g(n)) = \begin{cases} 1 & \text{if } g(n) \in I, \\ 0 & \text{otherwise.} \end{cases}$$

Then $\mathbf{a} = (a_n)_{n=0}^{\infty}$ is a bracket word.

Remark: The interval I can be proper, infinite or degenerate (e.g. $I = [x, y), I = (x, \infty), I = \{x\}$).

Example: To get a Sturmian sequence, let $g(n) = \{\alpha n + \beta\}$ and $I = [0, \alpha)$.

Suppose that $g \colon \mathbb{N} \to \mathbb{R}$ is a GP sequence and $I \subset \mathbb{R}$ is an interval. Put

$$a_n = 1_I(g(n)) = \begin{cases} 1 & \text{if } g(n) \in I, \\ 0 & \text{otherwise.} \end{cases}$$

Then $\mathbf{a} = (a_n)_{n=0}^{\infty}$ is a bracket word.

Remark: The interval I can be proper, infinite or degenerate (e.g. $I = [x, y), I = (x, \infty), I = \{x\}$).

Example: To get a Sturmian sequence, let $g(n) = \{\alpha n + \beta\}$ and $I = [0, \alpha)$. **Proof for** $I = \{0\}$: For $x \in \mathbb{R}$, we have

$$x = 0 \Leftrightarrow \{x\} = \{\sqrt{2}x\} = 0 \Leftrightarrow \left[1 - \frac{1}{2}\{x\} - \frac{1}{2}\{\sqrt{2}x\}\right] = 1.$$

・ロト ・四ト ・ヨト ・ヨト 三日

5/24

Hence, $1_I(g(n)) = \left[1 - \frac{1}{2} \{g(n)\} - \frac{1}{2} \{\sqrt{2}g(n)\}\right].$

Suppose that $g \colon \mathbb{N} \to \mathbb{R}$ is a GP sequence and $I \subset \mathbb{R}$ is an interval. Put

$$a_n = 1_I(g(n)) = \begin{cases} 1 & \text{if } g(n) \in I, \\ 0 & otherwise. \end{cases}$$

Then $\mathbf{a} = (a_n)_{n=0}^{\infty}$ is a bracket word.

Remark: The interval I can be proper, infinite or degenerate (e.g. $I = [x, y), I = (x, \infty), I = \{x\}$).

Example: To get a Sturmian sequence, let $g(n) = \{\alpha n + \beta\}$ and $I = [0, \alpha)$. **Proof for** $I = \{0\}$: For $x \in \mathbb{R}$, we have

$$x = 0 \Leftrightarrow \{x\} = \{\sqrt{2}x\} = 0 \Leftrightarrow \left[1 - \frac{1}{2}\{x\} - \frac{1}{2}\{\sqrt{2}x\}\right] = 1.$$

Hence, $1_I(g(n)) = \left[1 - \frac{1}{2} \{g(n)\} - \frac{1}{2} \{\sqrt{2}g(n)\}\right].$

Remark: As long as I is bounded, similar tricks work. When I is unbounded, situation becomes more complicated; the analogue in \mathbb{Z} if false!

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Constructions

Corollary

For a set $E \subset \mathbb{N}$ the following conditions are equivalent:

- **()** The set E is GP (i.e., $1_E : \mathbb{N} \to \mathbb{R}$ is a GP sequence);
- **2** The characteristic word $\mathbf{1}_E = (\mathbf{1}_E(n))_{n=0}^{\infty} \in \{0,1\}^{\infty}$ is a bracket word;
- **3** There is a GP sequence g with $E = \{n \in \mathbb{N} : g(n) = 0\};$
- **(**) There is a GP sequence h with $E = \{n \in \mathbb{N} : h(n) > 0\}.$

Constructions

Corollary

For a set $E \subset \mathbb{N}$ the following conditions are equivalent:

- The set E is GP (i.e., $1_E : \mathbb{N} \to \mathbb{R}$ is a GP sequence);
- **2** The characteristic word $\mathbf{1}_E = (\mathbf{1}_E(n))_{n=0}^{\infty} \in \{0,1\}^{\infty}$ is a bracket word;
- **3** There is a GP sequence g with $E = \{n \in \mathbb{N} : g(n) = 0\};$
- **3** There is a GP sequence h with $E = \{n \in \mathbb{N} : h(n) > 0\}$.

Examples: The following are bracket words:

•
$$a_n = \begin{cases} 1 & \text{if } \{p(n)\} \in [0, \alpha), \\ 0 & \text{otherwise,} \end{cases}$$
 where $p(x) \in \mathbb{R}[x]$ and $\alpha \in (0, 1);$
• $a_n = \begin{cases} 1 & \text{if } \{\sqrt{2}n \left[\sqrt{3}n\right]\} \in [0, \alpha), \\ 0 & \text{otherwise,} \end{cases}$ where $\alpha \in (0, 1).$

Constructions

Corollary

For a set $E \subset \mathbb{N}$ the following conditions are equivalent:

- **1** The set E is GP (i.e., $1_E : \mathbb{N} \to \mathbb{R}$ is a GP sequence);
- **2** The characteristic word $\mathbf{1}_E = (\mathbf{1}_E(n))_{n=0}^{\infty} \in \{0,1\}^{\infty}$ is a bracket word;
- There is a GP sequence g with $E = \{n \in \mathbb{N} : g(n) = 0\};$
- **3** There is a GP sequence h with $E = \{n \in \mathbb{N} : h(n) > 0\}$.

Examples: The following are bracket words:

•
$$a_n = \begin{cases} 1 & \text{if } \{p(n)\} \in [0, \alpha), \\ 0 & \text{otherwise}, \end{cases}$$
 where $p(x) \in \mathbb{R}[x]$ and $\alpha \in (0, 1);$
• $a_n = \begin{cases} 1 & \text{if } \{\sqrt{2n} [\sqrt{3n}]\} \in [0, \alpha), \\ 0 & \text{otherwise}, \end{cases}$ where $\alpha \in (0, 1).$

Example

Let F_i denote the *i*-th Fibonacci number. Then $\{F_i : i \ge 1\}$ is a GP set.

Proof: An integer *n* is a Fibonacci number if and only if $||n\varphi||_{\mathbb{R}/\mathbb{Z}} < 1/2n$, where $||x||_{\mathbb{R}/\mathbb{Z}} = \min\{|x-a| : a \in \mathbb{Z}\}$. Take $g(n) = n ||n\varphi||_{\mathbb{R}/\mathbb{Z}}$, I = [0, 1/2).

Let $\mathbf{a} = (a_n)_{n=0}^{\infty}$ be a bracket word over an alphabet Σ and let $\varphi \colon \Sigma \to \Lambda$ be any map. Then $\varphi(\mathbf{a}) = (\varphi(a_n))_{n=0}^{\infty}$ is a bracket words over Λ .

Let $\mathbf{a} = (a_n)_{n=0}^{\infty}$ be a bracket word over an alphabet Σ and let $\varphi \colon \Sigma \to \Lambda$ be any map. Then $\varphi(\mathbf{a}) = (\varphi(a_n))_{n=0}^{\infty}$ is a bracket words over Λ .

Lemma (Closure under direct products)

Let $\mathbf{a} = (a_n)_{n=0}^{\infty}$ and $\mathbf{b} = (b_n)_{n=0}^{\infty}$ be bracket words over alphabets Σ and Λ respectively. Then $\mathbf{a} \times \mathbf{b} = ((a_n, b_n))_{n=0}^{\infty}$ is a bracket word over $\Sigma \times \Lambda$.

Consequence: Bracket words over a finite ring constitute a ring.

Let $\mathbf{a} = (a_n)_{n=0}^{\infty}$ be a bracket word over an alphabet Σ and let $\varphi \colon \Sigma \to \Lambda$ be any map. Then $\varphi(\mathbf{a}) = (\varphi(a_n))_{n=0}^{\infty}$ is a bracket words over Λ .

Lemma (Closure under direct products)

Let $\mathbf{a} = (a_n)_{n=0}^{\infty}$ and $\mathbf{b} = (b_n)_{n=0}^{\infty}$ be bracket words over alphabets Σ and Λ respectively. Then $\mathbf{a} \times \mathbf{b} = ((a_n, b_n))_{n=0}^{\infty}$ is a bracket word over $\Sigma \times \Lambda$.

Consequence: Bracket words over a finite ring constitute a ring.

Lemma (Extracting progressions)

Let $\mathbf{a} = (a_n)_{n=0}^{\infty}$ be a bracket word over an alphabet Σ and let $k \in \mathbb{N}$, $r \in \mathbb{N}_0$ be any map. Then $(a_{kn+r})_{n=0}^{\infty}$ is a bracket word over Σ .

Let $\mathbf{a} = (a_n)_{n=0}^{\infty}$ be a bracket word over an alphabet Σ and let $\varphi \colon \Sigma \to \Lambda$ be any map. Then $\varphi(\mathbf{a}) = (\varphi(a_n))_{n=0}^{\infty}$ is a bracket words over Λ .

Lemma (Closure under direct products)

Let $\mathbf{a} = (a_n)_{n=0}^{\infty}$ and $\mathbf{b} = (b_n)_{n=0}^{\infty}$ be bracket words over alphabets Σ and Λ respectively. Then $\mathbf{a} \times \mathbf{b} = ((a_n, b_n))_{n=0}^{\infty}$ is a bracket word over $\Sigma \times \Lambda$.

Consequence: Bracket words over a finite ring constitute a ring.

Lemma (Extracting progressions)

Let $\mathbf{a} = (a_n)_{n=0}^{\infty}$ be a bracket word over an alphabet Σ and let $k \in \mathbb{N}$, $r \in \mathbb{N}_0$ be any map. Then $(a_{kn+r})_{n=0}^{\infty}$ is a bracket word over Σ .

Let **a** be an infinite word over an alphabet Σ . Then a word **b** belongs to the *orbit closure of* **a** if each finite prefix $b_0b_1 \cdots b_{n-1}$ of **b** is a subword of **a**.

Proposition (Orbit closure)

Let $\mathbf{a} = (a_n)_{n=0}^{\infty}$ be a bracket word over an alphabet Σ . Let \mathbf{b} belong to the orbit closure of \mathbf{a} . Then \mathbf{b} is a bracket word.

Nilmanifolds

Definition

Let G be a nilpotent Lie group, and $\Gamma < G$ a *cocompact* discrete subgroup.

- The space $X = G/\Gamma$ is a *nilmanifold*.
- **2** For $g \in G$, the map $T_g \colon X \to X$, $x \mapsto gx$ is a *nilrotation*.
- The dynamical system (X, T_g) is a nilsystem. It has a natural Haar measure µ_X which is T_g-invariant.
- For $F: X \to \mathbb{R}$ (Lipschitz) and $x \in X$, $\left(F(T_g^n(x))\right)_{n=0}^{\infty}$ is a nilsequence.

Definition

Let G be a nilpotent Lie group, and $\Gamma < G$ a *cocompact* discrete subgroup.

- The space $X = G/\Gamma$ is a *nilmanifold*.
- **2** For $g \in G$, the map $T_g \colon X \to X$, $x \mapsto gx$ is a nilrotation.
- The dynamical system (X, T_g) is a nilsystem. It has a natural Haar measure µ_X which is T_g-invariant.
- For $F: X \to \mathbb{R}$ (Lipschitz) and $x \in X$, $\left(F(T_g^n(x))\right)_{n=0}^{\infty}$ is a nilsequence.

A reassuring example:

- Take $G = \mathbb{R}$, $\Gamma = \mathbb{Z}$. Then $G/\Gamma = \mathbb{T}$, the unit circle.
- The circle comes equipped with $T_{\alpha}(x) = x + \alpha$.
- The Haar measure is just the Lebesgue measure.
- The additive characters $n \mapsto e^{2\pi i n \alpha}$ are 1-step nils equences.
- Put $F = 1_{[0,\alpha)}$. Then $(F(T^n_{\alpha}(x)))_{n=0}^{\infty}$ is Sturmian. (F not continuous!)

Definition

Let G be a nilpotent Lie group, and $\Gamma < G$ a *cocompact* discrete subgroup.

- The space $X = G/\Gamma$ is a *nilmanifold*.
- **2** For $g \in G$, the map $T_g \colon X \to X$, $x \mapsto gx$ is a nilrotation.
- The dynamical system (X, T_g) is a nilsystem. It has a natural Haar measure µ_X which is T_g-invariant.
- For $F: X \to \mathbb{R}$ (Lipschitz) and $x \in X$, $\left(F(T_g^n(x))\right)_{n=0}^{\infty}$ is a nilsequence.

A reassuring example:

- Take $G = \mathbb{R}$, $\Gamma = \mathbb{Z}$. Then $G/\Gamma = \mathbb{T}$, the unit circle.
- The circle comes equipped with $T_{\alpha}(x) = x + \alpha$.
- The Haar measure is just the Lebesgue measure.
- The additive characters $n \mapsto e^{2\pi i n \alpha}$ are 1-step nils equences.
- Put $F = 1_{[0,\alpha)}$. Then $(F(T^n_{\alpha}(x)))_{n=0}^{\infty}$ is Sturmian. (F not continuous!)

Remark: Nilsequences are a central object of interest in higher order Fourier analysis, which we will not discuss here any further.

イロン スロン スロン スロン 一日

Theorem (Bergelson, Leibman)

Let $g: \mathbb{N} \to \mathbb{R}$ be a bounded GP sequence. Then is exists a nilsystem (X, T), a point $x \in X$ and a piecewise polynomial map $F: X \to \mathbb{R}$ such that

 $g(n) = F(T^n(x)), \qquad n \in \mathbb{N}.$

Theorem (Bergelson, Leibman)

Let $g: \mathbb{N} \to \mathbb{R}$ be a bounded GP sequence. Then is exists a nilsystem (X,T), a point $x \in X$ and a piecewise polynomial map $F: X \to \mathbb{R}$ such that

$$g(n) = F(T^n(x)), \qquad n \in \mathbb{N}.$$

Definition: A set $S \subset [0,1)^d$ is *semialgebraic* if be defined by a finite number of polynomial equations and inequalities, e.g.

$$S = \left\{ (x, y) \in [0, 1)^2 : x^2 + y^2 \le 1 \text{ and } x + y \ne 1 \right\}.$$

A map $p: [0,1)^d \to \mathbb{R}$ is piecewise polynomial if there is a finite partition $[0,1)^d = \bigcup_i S_i$ with S_i semialgebraic, such that $p|_{S_i}$ are polynomials, e.g.

$$p(x,y) = \begin{cases} 0 & \text{if } x + y = 1, \\ xy + 1 & \text{if } x^2 + y^2 \le 1 \text{ and } x + y \ne 1, \\ x + 2y & \text{if } x^2 + y^2 > 1. \end{cases}$$

イロト イヨト イヨト イヨト 三日
Theorem (Bergelson, Leibman)

Let $g: \mathbb{N} \to \mathbb{R}$ be a bounded GP sequence. Then is exists a nilsystem (X, T), a point $x \in X$ and a piecewise polynomial map $F: X \to \mathbb{R}$ such that

$$g(n) = F(T^n(x)), \qquad n \in \mathbb{N}.$$

Definition: A set $S \subset [0,1)^d$ is *semialgebraic* if be defined by a finite number of polynomial equations and inequalities, e.g.

$$S = \left\{ (x, y) \in [0, 1)^2 : x^2 + y^2 \le 1 \text{ and } x + y \ne 1 \right\}.$$

A map $p: [0,1)^d \to \mathbb{R}$ is piecewise polynomial if there is a finite partition $[0,1)^d = \bigcup_i S_i$ with S_i semialgebraic, such that $p|_{S_i}$ are polynomials, e.g.

$$p(x,y) = \begin{cases} 0 & \text{if } x+y=1, \\ xy+1 & \text{if } x^2+y^2 \le 1 \text{ and } x+y \ne 1, \\ x+2y & \text{if } x^2+y^2 > 1. \end{cases}$$

A nilmanifold X has a system of Mal'cev coordinates, $\tau \colon X \to [0, 1)^{\dim X}$. This allows us to speak of piecewise polynomial maps $X \to \mathbb{R}$.

$$\begin{split} G &= \left\{ \begin{bmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{bmatrix}, \ x, y, z \in \mathbb{R} \right\}, \qquad \Gamma = \left\{ \begin{bmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{bmatrix}, \ a, b, c \in \mathbb{Z} \right\} \\ G_2 &= [G, G] = \left\{ \begin{bmatrix} 1 & 0 & z \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \ z \in \mathbb{R} \right\}, \quad G_3 = [G, G_2] = \{e_G\}. \end{split}$$

Each element of G/Γ has a representation $\begin{bmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{bmatrix} \Gamma$ with $x, y, z \in [0, 1).$
$$\begin{bmatrix} 1 & \alpha & \gamma \\ 0 & 1 & \beta \\ 0 & 0 & 1 \end{bmatrix}^n \Gamma = \begin{bmatrix} 1 & n\alpha & n\gamma + \binom{n}{2}\alpha\beta \\ 0 & 1 & n\beta \\ 0 & 0 & 1 \end{bmatrix} \Gamma = \begin{bmatrix} 1 & \{n\alpha\} & \{f(n)\} \\ 0 & 1 & \{n\beta\} \\ 0 & 0 & 1 \end{bmatrix} \Gamma, \end{aligned}$$

where $f(n) = n\gamma + \binom{n}{2}\alpha\beta - [n\alpha]n\beta.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Definition

Let $\mathbf{a} = (a_n)_{n=0}^{\infty} \in \Sigma^{\infty}$. The subword complexity $p_{\mathbf{a}}$ is given by

$$p_{\mathbf{a}}(N) = \# \left\{ w \in \Sigma^N : w \text{ is a subword of } \mathbf{a} \right\}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Definition

Let $\mathbf{a} = (a_n)_{n=0}^{\infty} \in \Sigma^{\infty}$. The subword complexity $p_{\mathbf{a}}$ is given by

$$p_{\mathbf{a}}(N) = \# \left\{ w \in \Sigma^N : w \text{ is a subword of } \mathbf{a} \right\}.$$

- If **a** is eventually periodic then $p_{\mathbf{a}}(N)$ is bounded.
- If $p_{\mathbf{a}}(N) \leq N$ for some N then **a** is eventually periodic.
- The sequence **a** is Sturmian if and only if $p_{\mathbf{a}}(N) = N + 1$ for all N.

イロト イロト イヨト イヨト 二日

- If a is automatic then $p_{\mathbf{a}}(N) = O(N)$.
- If a is morphic then $p_{\mathbf{a}}(N) = O(N^2)$.

Definition

Let $\mathbf{a} = (a_n)_{n=0}^{\infty} \in \Sigma^{\infty}$. The subword complexity $p_{\mathbf{a}}$ is given by

$$p_{\mathbf{a}}(N) = \# \left\{ w \in \Sigma^N : w \text{ is a subword of } \mathbf{a} \right\}.$$

- If **a** is eventually periodic then $p_{\mathbf{a}}(N)$ is bounded.
- If $p_{\mathbf{a}}(N) \leq N$ for some N then **a** is eventually periodic.
- The sequence **a** is Sturmian if and only if $p_{\mathbf{a}}(N) = N + 1$ for all N.
- If a is automatic then $p_{\mathbf{a}}(N) = O(N)$.
- If a is morphic then $p_{\mathbf{a}}(N) = O(N^2)$.

Theorem (Adamczewski, K.)

If **a** is a bracket word then $p_{\mathbf{a}}(N) = O(N^C)$ for a constant C > 0.

Question: Given a bracket word \mathbf{a} , what is the best possible value of C?

• As an example, consider
$$a_n = \left[2\left\{n^2\sqrt{2}\right\}\right] = \begin{cases} 0 & \text{if } \left\{n^2\sqrt{2}\right\} \in [0, \frac{1}{2}), \\ 1 & \text{if } \left\{n^2\sqrt{2}\right\} \in [\frac{1}{2}, 1). \end{cases}$$

• As an example, consider $a_n = \left[2\left\{n^2\sqrt{2}\right\}\right] = \begin{cases} 0 & \text{if } \left\{n^2\sqrt{2}\right\} \in [0, \frac{1}{2}), \\ 1 & \text{if } \left\{n^2\sqrt{2}\right\} \in [\frac{1}{2}, 1). \end{cases}$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

• Note that
$$a_{n+m} = \left[2\left\{n^2\sqrt{2} + n\alpha_m + \beta_m\right\}\right]$$
 where $\alpha_m = \left\{2m\sqrt{2}\right\} \in [0,1)$ and $\beta_m = \left\{m^2\sqrt{2}\right\} \in [0,1).$

- As an example, consider $a_n = \left[2\left\{n^2\sqrt{2}\right\}\right] = \begin{cases} 0 & \text{if } \left\{n^2\sqrt{2}\right\} \in [0, \frac{1}{2}), \\ 1 & \text{if } \left\{n^2\sqrt{2}\right\} \in [\frac{1}{2}, 1). \end{cases}$
- Note that $a_{n+m} = \left[2\left\{n^2\sqrt{2} + n\alpha_m + \beta_m\right\}\right]$ where $\alpha_m = \left\{2m\sqrt{2}\right\} \in [0,1)$ and $\beta_m = \left\{m^2\sqrt{2}\right\} \in [0,1).$
- Let $N \in \mathbb{N}$. Task: count length-N subwords **a**. Instead, we will count length-N prefixes of words $\mathbf{a}^{\alpha,\beta}$ $(\alpha,\beta \in [0,1))$ given by $a_n^{\alpha,\beta} = \left[2\left\{n^2\sqrt{2} + n\alpha + \beta\right\}\right]$.

- As an example, consider $a_n = \left[2\left\{n^2\sqrt{2}\right\}\right] = \begin{cases} 0 & \text{if } \left\{n^2\sqrt{2}\right\} \in [0, \frac{1}{2}), \\ 1 & \text{if } \left\{n^2\sqrt{2}\right\} \in [\frac{1}{2}, 1). \end{cases}$
- Note that $a_{n+m} = \left[2\left\{n^2\sqrt{2} + n\alpha_m + \beta_m\right\}\right]$ where $\alpha_m = \left\{2m\sqrt{2}\right\} \in [0,1)$ and $\beta_m = \left\{m^2\sqrt{2}\right\} \in [0,1).$
- Let $N \in \mathbb{N}$. Task: count length-N subwords **a**. Instead, we will count length-N prefixes of words $\mathbf{a}^{\alpha,\beta}$ $(\alpha,\beta \in [0,1))$ given by $a_n^{\alpha,\beta} = \left[2\left\{n^2\sqrt{2} + n\alpha + \beta\right\}\right]$.
- Approximate $\alpha \simeq \alpha^*$, $\beta \simeq \beta^*$ by rationals, error $\leq N^{-10}$ (N^{20} choices). Note that $n^2\sqrt{2} + n\alpha + \beta = n^2\sqrt{2} + n\alpha^* + \beta^* + O(N^{-9})$ (n < N).

<ロト <回 > < 三 > < 三 > 三 三

• As an example, consider
$$a_n = \left[2\left\{n^2\sqrt{2}\right\}\right] = \begin{cases} 0 & \text{if } \left\{n^2\sqrt{2}\right\} \in [0, \frac{1}{2}), \\ 1 & \text{if } \left\{n^2\sqrt{2}\right\} \in [\frac{1}{2}, 1). \end{cases}$$

- Note that $a_{n+m} = \left[2\left\{n^2\sqrt{2} + n\alpha_m + \beta_m\right\}\right]$ where $\alpha_m = \left\{2m\sqrt{2}\right\} \in [0,1)$ and $\beta_m = \left\{m^2\sqrt{2}\right\} \in [0,1).$
- Let $N \in \mathbb{N}$. Task: count length-N subwords **a**. Instead, we will count length-N prefixes of words $\mathbf{a}^{\alpha,\beta}$ $(\alpha,\beta \in [0,1))$ given by $a_n^{\alpha,\beta} = \left[2\left\{n^2\sqrt{2} + n\alpha + \beta\right\}\right]$.
- Approximate $\alpha \simeq \alpha^*$, $\beta \simeq \beta^*$ by rationals, error $\leq N^{-10}$ (N^{20} choices). Note that $n^2\sqrt{2} + n\alpha + \beta = n^2\sqrt{2} + n\alpha^* + \beta^* + O(N^{-9})$ (n < N).

• There are two types of points
$$n < N$$
:
The Good: $||2n^2\sqrt{2} + 2n\alpha^* + 2\beta^*||_{\mathbb{R}/\mathbb{Z}} > N^{-8}$, so we can compute
 $a_n^{\alpha,\beta} = \left[2\left\{n^2\sqrt{2} + n\alpha^* + \beta^*\right\}\right]$. If so, we are done.
The Bad: $||2n^2\sqrt{2} + 2n\alpha^* + 2\beta^*||_{\mathbb{R}/\mathbb{Z}} < N^{-8}$. Let
 $\delta_n := 2n^2\sqrt{2} + 2n\alpha + 2\beta - \left\lfloor 2n^2\sqrt{2} + 2n\alpha^* + 2\beta^* \right\rfloor = O(N^{-8})$.

• As an example, consider
$$a_n = \left[2\left\{n^2\sqrt{2}\right\}\right] = \begin{cases} 0 & \text{if } \left\{n^2\sqrt{2}\right\} \in [0, \frac{1}{2}), \\ 1 & \text{if } \left\{n^2\sqrt{2}\right\} \in [\frac{1}{2}, 1). \end{cases}$$

- Note that $a_{n+m} = \left[2\left\{n^2\sqrt{2} + n\alpha_m + \beta_m\right\}\right]$ where $\alpha_m = \left\{2m\sqrt{2}\right\} \in [0,1)$ and $\beta_m = \left\{m^2\sqrt{2}\right\} \in [0,1).$
- Let $N \in \mathbb{N}$. Task: count length-N subwords **a**. Instead, we will count length-N prefixes of words $\mathbf{a}^{\alpha,\beta}$ $(\alpha,\beta \in [0,1))$ given by $a_n^{\alpha,\beta} = \left[2\left\{n^2\sqrt{2} + n\alpha + \beta\right\}\right]$.
- Approximate $\alpha \simeq \alpha^*$, $\beta \simeq \beta^*$ by rationals, error $\leq N^{-10}$ (N^{20} choices). Note that $n^2\sqrt{2} + n\alpha + \beta = n^2\sqrt{2} + n\alpha^* + \beta^* + O(N^{-9})$ (n < N).

• There are two types of points
$$n < N$$
:
The Good: $||2n^2\sqrt{2} + 2n\alpha^* + 2\beta^*||_{\mathbb{R}/\mathbb{Z}} > N^{-8}$, so we can compute
 $a_n^{\alpha,\beta} = \left[2\left\{n^2\sqrt{2} + n\alpha^* + \beta^*\right\}\right]$. If so, we are done.
The Bad: $||2n^2\sqrt{2} + 2n\alpha^* + 2\beta^*||_{\mathbb{R}/\mathbb{Z}} < N^{-8}$. Let
 $\delta_n := 2n^2\sqrt{2} + 2n\alpha + 2\beta - \left\lfloor 2n^2\sqrt{2} + 2n\alpha^* + 2\beta^* \right\rfloor = O(N^{-8})$.

If we know sgn(δ_n) and α^{*} and β^{*}, then we can recover a^{α,β}_n. E.g.:
If {n²√2 + nα^{*} + β^{*}} ≈ 0 and δ_n > 0 then a^{α,β}_n = 0.

• As an example, consider
$$a_n = \left[2\left\{n^2\sqrt{2}\right\}\right] = \begin{cases} 0 & \text{if } \left\{n^2\sqrt{2}\right\} \in [0, \frac{1}{2}), \\ 1 & \text{if } \left\{n^2\sqrt{2}\right\} \in [\frac{1}{2}, 1). \end{cases}$$

- Note that $a_{n+m} = \left[2\left\{n^2\sqrt{2} + n\alpha_m + \beta_m\right\}\right]$ where $\alpha_m = \left\{2m\sqrt{2}\right\} \in [0,1)$ and $\beta_m = \left\{m^2\sqrt{2}\right\} \in [0,1).$
- Let $N \in \mathbb{N}$. Task: count length-N subwords **a**. Instead, we will count length-N prefixes of words $\mathbf{a}^{\alpha,\beta}$ $(\alpha,\beta \in [0,1))$ given by $a_n^{\alpha,\beta} = \left[2\left\{n^2\sqrt{2} + n\alpha + \beta\right\}\right]$.
- Approximate $\alpha \simeq \alpha^*$, $\beta \simeq \beta^*$ by rationals, error $\leq N^{-10}$ (N^{20} choices). Note that $n^2\sqrt{2} + n\alpha + \beta = n^2\sqrt{2} + n\alpha^* + \beta^* + O(N^{-9})$ (n < N).

• There are two types of points
$$n < N$$
:
The Good: $||2n^2\sqrt{2} + 2n\alpha^* + 2\beta^*||_{\mathbb{R}/\mathbb{Z}} > N^{-8}$, so we can compute
 $a_n^{\alpha,\beta} = \left[2\left\{n^2\sqrt{2} + n\alpha^* + \beta^*\right\}\right]$. If so, we are done.
The Bad: $||2n^2\sqrt{2} + 2n\alpha^* + 2\beta^*||_{\mathbb{R}/\mathbb{Z}} < N^{-8}$. Let
 $\delta_n := 2n^2\sqrt{2} + 2n\alpha + 2\beta - \left\lfloor 2n^2\sqrt{2} + 2n\alpha^* + 2\beta^* \right\rfloor = O(N^{-8})$.

- If we know sgn(δ_n) and α^{*} and β^{*}, then we can recover a^{α,β}_n. E.g.:
 If {n²√2 + nα^{*} + β^{*}} ≈ 0 and δ_n > 0 then a^{α,β}_n = 0.
- For each n < N, the set $\{(\alpha, \beta) : \delta_n = 0\}$ is a line. Key fact: N lines divide the plane into $O(N^2)$ regions.

For an infinite word over Σ and $i \in \Sigma$, let

$$\operatorname{freq}^{*}(\mathbf{a}, i) = \limsup_{N \to \infty} \sup_{M \in \mathbb{N}} \frac{1}{N} \# \{ M \le n < M + N : a_{n} = i \}$$
$$\operatorname{freq}_{*}(\mathbf{a}, i) = \liminf_{N \to \infty} \inf_{M \in \mathbb{N}} \frac{1}{N} \# \{ M \le n < M + N : a_{n} = i \}.$$

For an infinite word over Σ and $i \in \Sigma$, let

$$\operatorname{freq}^{*}(\mathbf{a}, i) = \limsup_{N \to \infty} \sup_{M \in \mathbb{N}} \frac{1}{N} \# \{ M \le n < M + N : a_{n} = i \}$$
$$\operatorname{freq}_{*}(\mathbf{a}, i) = \liminf_{N \to \infty} \inf_{M \in \mathbb{N}} \frac{1}{N} \# \{ M \le n < M + N : a_{n} = i \}.$$

Proposition

Let **a** be a bracket word over an alphabet Σ and let $i \in \Sigma$. Then

 $\operatorname{freq}^*(\mathbf{a}, i) = \operatorname{freq}_*(\mathbf{a}, i) := \operatorname{freq}(\mathbf{a}, i).$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

13/24

Equivalently: If $E \subset \mathbb{N}$ is a GP set, then $d^*(E) = d_*(E)$.

For an infinite word over Σ and $i \in \Sigma$, let

$$\operatorname{freq}^{*}(\mathbf{a}, i) = \limsup_{N \to \infty} \sup_{M \in \mathbb{N}} \frac{1}{N} \# \{ M \le n < M + N : a_{n} = i \}$$
$$\operatorname{freq}_{*}(\mathbf{a}, i) = \liminf_{N \to \infty} \inf_{M \in \mathbb{N}} \frac{1}{N} \# \{ M \le n < M + N : a_{n} = i \}.$$

Proposition

Let **a** be a bracket word over an alphabet Σ and let $i \in \Sigma$. Then

$$\operatorname{freq}^*(\mathbf{a}, i) = \operatorname{freq}_*(\mathbf{a}, i) := \operatorname{freq}(\mathbf{a}, i).$$

Equivalently: If $E \subset \mathbb{N}$ is a GP set, then $d^*(E) = d_*(E)$.

Corollary: If freq(\mathbf{a}, i) > 0 then { $n \in \mathbb{N} : a_n = i$ } is syndetic (there exists N such that for each $M \in \mathbb{N}$ there exists $M \le n < M + N$ with $a_n = i$).

For an infinite word over Σ and $i \in \Sigma$, let

$$\operatorname{freq}^{*}(\mathbf{a}, i) = \limsup_{N \to \infty} \sup_{M \in \mathbb{N}} \frac{1}{N} \# \{ M \le n < M + N : a_{n} = i \}$$
$$\operatorname{freq}_{*}(\mathbf{a}, i) = \liminf_{N \to \infty} \inf_{M \in \mathbb{N}} \frac{1}{N} \# \{ M \le n < M + N : a_{n} = i \}.$$

Proposition

Let **a** be a bracket word over an alphabet Σ and let $i \in \Sigma$. Then

$$\operatorname{freq}^*(\mathbf{a}, i) = \operatorname{freq}_*(\mathbf{a}, i) := \operatorname{freq}(\mathbf{a}, i).$$

Equivalently: If $E \subset \mathbb{N}$ is a GP set, then $d^*(E) = d_*(E)$.

Corollary: If freq(**a**, i) > 0 then { $n \in \mathbb{N} : a_n = i$ } is syndetic (there exists N such that for each $M \in \mathbb{N}$ there exists $M \leq n < M + N$ with $a_n = i$).

Remark: The same results remain valid, mutatis mutandis, if $i \in \Sigma$ is replaced with a word $w \in \Sigma^{\ell}$. (E.g. because $(a_n a_{n+1} \cdots a_{n+\ell-1})_{n=0}^{\infty}$ is a bracket word over Σ^{ℓ} .)

For an infinite word over Σ and $i \in \Sigma$, let

$$\operatorname{freq}^{*}(\mathbf{a}, i) = \limsup_{N \to \infty} \sup_{M \in \mathbb{N}} \frac{1}{N} \# \{ M \le n < M + N : a_{n} = i \}$$
$$\operatorname{freq}_{*}(\mathbf{a}, i) = \liminf_{N \to \infty} \inf_{M \in \mathbb{N}} \frac{1}{N} \# \{ M \le n < M + N : a_{n} = i \}.$$

Proposition

Let **a** be a bracket word over an alphabet Σ and let $i \in \Sigma$. Then

$$\operatorname{freq}^*(\mathbf{a}, i) = \operatorname{freq}_*(\mathbf{a}, i) := \operatorname{freq}(\mathbf{a}, i).$$

Equivalently: If $E \subset \mathbb{N}$ is a GP set, then $d^*(E) = d_*(E)$.

Corollary: If freq(**a**, i) > 0 then { $n \in \mathbb{N} : a_n = i$ } is syndetic (there exists N such that for each $M \in \mathbb{N}$ there exists $M \leq n < M + N$ with $a_n = i$).

Remark: The same results remain valid, mutatis mutandis, if $i \in \Sigma$ is replaced with a word $w \in \Sigma^{\ell}$. (E.g. because $(a_n a_{n+1} \cdots a_{n+\ell-1})_{n=0}^{\infty}$ is a bracket word over Σ^{ℓ} .)

Proof: Apply Bergelson-Leibman; ergodic nilsystems are uniquely ergodic.

Quantitative frequency

< □ ▶ < ⑦ ▶ < ≧ ▶ < ≧ ▶ ≧ りへで 14/24 **Negative results:** Estimates from previous slide cannot be improved. For any function $f: \mathbb{N} \to [0, 1)$ with $f(N) \to \infty$ as $N \to \infty$, there exists a bracket word **a** over $\{0, 1\}$ such that

$$f(N) \leq \frac{\# \{n < N : a_n = 1\}}{N} \to 0 \text{ as } N \to \infty.$$

We can take $a_n = \begin{cases} 1 & \text{if } \|\alpha n\|_{\mathbb{R}/\mathbb{Z}} \|\beta n\|_{\mathbb{R}/\mathbb{Z}} < 1/n, \\ 0 & \text{otherwise,} \end{cases}$ where $\alpha, \beta \in \mathbb{R} \setminus \mathbb{Q}$ are

sufficiently well-approximable by rationals.

Negative results: Estimates from previous slide cannot be improved. For any function $f: \mathbb{N} \to [0, 1)$ with $f(N) \to \infty$ as $N \to \infty$, there exists a bracket word **a** over $\{0, 1\}$ such that

$$f(N) \leq \frac{\# \left\{ n < N \, : \, a_n = 1 \right\}}{N} \rightarrow 0 \text{ as } N \rightarrow \infty.$$

We can take $a_n = \begin{cases} 1 & \text{if } \|\alpha n\|_{\mathbb{R}/\mathbb{Z}} \|\beta n\|_{\mathbb{R}/\mathbb{Z}} < 1/n, \\ 0 & \text{otherwise,} \end{cases}$ where $\alpha, \beta \in \mathbb{R} \setminus \mathbb{Q}$ are

sufficiently well-approximable by rationals.

Positive results: Quantitative results on equidistribution of orbits on nilmanifolds (e.g. Green–Tao) translate into estimates on frequencies of symbols in bracket words, but we must either

- make additional assumptions about Diophantine properties of the coefficients in the definition of **a**; or
- deal with the possibility that **a** has different behaviour on different long arithmetic progressions.

IP sets

Finite sums. For a sequence $(n_i)_{i=1}^{\infty}$, $n_i \in \mathbb{N}$, define:

$$\mathrm{FS}\left((n_i)_{i=1}^{\infty}\right) = \Big\{\sum_{i \in I} n_i \, : \, I \subset \mathbb{N}, \text{ finite, } I \neq \emptyset \Big\}.$$

IP sets

Finite sums. For a sequence $(n_i)_{i=1}^{\infty}$, $n_i \in \mathbb{N}$, define:

$$\mathrm{FS}\left((n_i)_{i=1}^{\infty}\right) = \Big\{\sum_{i\in I} n_i : I \subset \mathbb{N}, \text{ finite, } I \neq \emptyset \Big\}.$$

- A set $A \subset \mathbb{N}$ is IP if $A \supset FS((n_i)_{i=1}^{\infty})$ for some sequence $(n_i)_{i=1}^{\infty}$.
- A set $B \subset \mathbb{N}$ is IP^{*} if $B \cap FS((n_i)_{i=1}^{\infty}) \neq \emptyset$ for each sequence $(n_i)_{i=1}^{\infty}$.

$\operatorname{IP}\,\operatorname{sets}$

Finite sums. For a sequence $(n_i)_{i=1}^{\infty}$, $n_i \in \mathbb{N}$, define:

$$\operatorname{FS}\left((n_i)_{i=1}^{\infty}\right) = \Big\{\sum_{i \in I} n_i : I \subset \mathbb{N}, \text{ finite, } I \neq \emptyset \Big\}.$$

- A set $A \subset \mathbb{N}$ is IP if $A \supset FS((n_i)_{i=1}^{\infty})$ for some sequence $(n_i)_{i=1}^{\infty}$.
- A set $B \subset \mathbb{N}$ is IP^{*} if $B \cap FS((n_i)_{i=1}^{\infty}) \neq \emptyset$ for each sequence $(n_i)_{i=1}^{\infty}$.

Fact

Any IP^{*} set is syndetic (i.e. intersects any sufficiently long interval).

IP sets

Finite sums. For a sequence $(n_i)_{i=1}^{\infty}$, $n_i \in \mathbb{N}$, define:

$$\operatorname{FS}\left((n_i)_{i=1}^{\infty}\right) = \Big\{\sum_{i \in I} n_i : I \subset \mathbb{N}, \text{ finite, } I \neq \emptyset \Big\}.$$

- A set $A \subset \mathbb{N}$ is IP if $A \supset FS((n_i)_{i=1}^{\infty})$ for some sequence $(n_i)_{i=1}^{\infty}$.
- A set $B \subset \mathbb{N}$ is IP^{*} if $B \cap FS((n_i)_{i=1}^{\infty}) \neq \emptyset$ for each sequence $(n_i)_{i=1}^{\infty}$.

Fact

Any IP^{*} set is syndetic (i.e. intersects any sufficiently long interval).

Theorem (Hindman)

- If A is an IP set, $A = A_1 \cup A_2 \cup \cdots \cup A_r$ then $\exists j : A_j$ is IP.
- If B_1, B_2, \ldots, B_r are IP^* sets then $B = B_1 \cap B_2 \cap \cdots \cap B_r$ is IP^* .

Corollary (Bergelson, Leibman)

- Let $g: \mathbb{N} \to \mathbb{R}$ be a bounded GP sequence. Then for almost all $n \in \mathbb{N}$, for any $\delta > 0$, the set $R = \{m \in \mathbb{N} : |g(n+m) g(n)| < \delta\}$ is IP^{*}.
- If a is a bracket word then for almost all n ∈ N the set {m ∈ N : a_{n+m} = a_n} is IP*.
- For any GP set $E \subset \mathbb{N}$ with d(E) > 0, the set E n is IP^* for some n.

Corollary (Bergelson, Leibman)

- Let $g: \mathbb{N} \to \mathbb{R}$ be a bounded GP sequence. Then for almost all $n \in \mathbb{N}$, for any $\delta > 0$, the set $R = \{m \in \mathbb{N} : |g(n+m) g(n)| < \delta\}$ is IP^{*}.
- If a is a bracket word then for almost all n ∈ N the set {m ∈ N : a_{n+m} = a_n} is IP*.
- For any GP set $E \subset \mathbb{N}$ with d(E) > 0, the set E n is IP^* for some n.

Stronger versions: Let $(n_i)_{i=1}^{\infty}$ be a sequence, and let R be as above.

- IP_r recurrence: We can find $\sum_{i \in I} n_i \in R$ with $I \subset [r]$ for some r that depends on g, δ and n [Bergelson, Leibman];
- SG_d recurrence: We can find $\sum_{i \in I} n_i \in R$ where I has gaps bounded by d for some d that depends on g and δ [K.];
- VIP recurrence: [Bergelson, Håland Knutson, McCutcheon];

Representations and decidability

One bracket word can have many distinct representations. For instance:

$$1_{\{0\}}(n) = \left[1 - \left\{\sqrt{2}n\right\}\right] = \left[1 - \left\{\sqrt{3}n\right\}\right]$$
$$= \left[\left[\sqrt{2}n\right]2\sqrt{2}n\right] - \left[\sqrt{2}n\right]^2 - 2n^2 + 1, \qquad n \in \mathbb{N}.$$

Representations and decidability

One bracket word can have many distinct representations. For instance:

$$1_{\{0\}}(n) = \left[1 - \left\{\sqrt{2}n\right\}\right] = \left[1 - \left\{\sqrt{3}n\right\}\right]$$
$$= \left[\left[\sqrt{2}n\right]2\sqrt{2}n\right] - \left[\sqrt{2}n\right]^2 - 2n^2 + 1, \qquad n \in \mathbb{N}.$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

17/24

Question

Can we determine if two bracket words (or GP sequences) are equal?

Representations and decidability

One bracket word can have many distinct representations. For instance:

$$1_{\{0\}}(n) = \left[1 - \left\{\sqrt{2}n\right\}\right] = \left[1 - \left\{\sqrt{3}n\right\}\right]$$
$$= \left[\left[\sqrt{2}n\right]2\sqrt{2}n\right] - \left[\sqrt{2}n\right]^2 - 2n^2 + 1, \qquad n \in \mathbb{N}.$$

Question

Can we determine if two bracket words (or GP sequences) are equal?

For polynomial sequences, there are also unexpected identities, like

$$n^{4} + 4 = (n^{2} + 2n + 2)(n^{2} - 2n + 2).$$

This is not a problem, since polynomials have a "canonical" representation

$$p(n) = \sum_{i=0}^{d} n^{i} \alpha_{i}, \qquad (d \in \mathbb{N}_{0}, \ \alpha_{i} \in \mathbb{R}).$$

Question

Is there an analogous statement for bracket words (or GP sequences)?

Let us call a GP sequence $g: \mathbb{N} \to \mathbb{R}$ a generalised monomial if it can be expressed using only polynomials, fractional part, and multiplication, e.g.

 $p_1(n) \{p_2(n)\}, p_1(n) \{p_2(n)\} \{p_3(n)\}, p_1(n) \{p_2(n)\} \{p_3(n) \{p_4(n)\}\},$

where $p_i \colon \mathbb{N} \to \mathbb{R}$ are (ordinary) polynomial sequences.

Let us call a GP sequence $g: \mathbb{N} \to \mathbb{R}$ a generalised monomial if it can be expressed using only polynomials, fractional part, and multiplication, e.g.

 $p_1(n) \{p_2(n)\}, p_1(n) \{p_2(n)\} \{p_3(n)\}, p_1(n) \{p_2(n)\} \{p_3(n) \{p_4(n)\}\},$

where $p_i \colon \mathbb{N} \to \mathbb{R}$ are (ordinary) polynomial sequences.

Theorem (Leibman)

Each bounded GP sequence g has a "canonical representation"

$$g(n) = F(h_0(n), h_1(n), h_2(n), \dots, h_d(n)), \qquad n \in \mathbb{N},$$

where F is a piecewise polynomial function, h_0 is periodic and $h_1, h_2, \ldots, h_d \colon \mathbb{N} \to [0, 1)$ are jointly equidistributed generalised monomials.

Remark: The representation is explicitly computable.

Let us call a GP sequence $g: \mathbb{N} \to \mathbb{R}$ a generalised monomial if it can be expressed using only polynomials, fractional part, and multiplication, e.g.

 $p_1(n) \{p_2(n)\}, p_1(n) \{p_2(n)\} \{p_3(n)\}, p_1(n) \{p_2(n)\} \{p_3(n) \{p_4(n)\}\},$

where $p_i \colon \mathbb{N} \to \mathbb{R}$ are (ordinary) polynomial sequences.

Theorem (Leibman)

Each bounded GP sequence g has a "canonical representation"

$$g(n) = F(h_0(n), h_1(n), h_2(n), \dots, h_d(n)), \qquad n \in \mathbb{N},$$

where F is a piecewise polynomial function, h_0 is periodic and $h_1, h_2, \ldots, h_d \colon \mathbb{N} \to [0, 1)$ are jointly equidistributed generalised monomials.

Remark: The representation is explicitly computable.

Corollary

Given (representations of) two bracket words \mathbf{a}, \mathbf{b} over the same alphabet Σ , there is a procedure to determine if \mathbf{a} and \mathbf{b} are equal almost everywhere, i.e. if $\# \{n \leq N : a_n \neq b_n\} / N \to 0$ as $N \to \infty$.

Example (Leibman)

Let
$$g(n) = \{\sqrt{2}n [\sqrt{3}n]\}$$
. Then:
 $g(n) = \{\sqrt{6}n^2 - \sqrt{2}n \{\sqrt{3}n\}\}$
 $= \{\{\sqrt{6}n^2\} - \{\sqrt{2}n \{\sqrt{3}n\}\}\} = F(\{\sqrt{6}n^2\}, \{\sqrt{2}n \{\sqrt{3}n\}\}),$

where F is the piecewise polynomial function given by

$$F(x,y) = \{x - y\} = \begin{cases} x - y & \text{if } x \ge y, \\ x - y + 1 & \text{if } x < y. \end{cases}$$

Example (Leibman)

Let
$$g(n) = \{\sqrt{2}n [\sqrt{3}n]\}$$
. Then:
 $g(n) = \{\sqrt{6}n^2 - \sqrt{2}n \{\sqrt{3}n\}\}\$
 $= \{\{\sqrt{6}n^2\} - \{\sqrt{2}n \{\sqrt{3}n\}\}\}\$ = $F(\{\sqrt{6}n^2\}, \{\sqrt{2}n \{\sqrt{3}n\}\})$,

where F is the piecewise polynomial function given by

$$F(x,y) = \{x - y\} = \begin{cases} x - y & \text{if } x \ge y, \\ x - y + 1 & \text{if } x < y. \end{cases}$$

Construction: Start by taking all polynomials p_i that appear in the representation of g, and iteratively construct expressions involving p_i , $\{\bullet\}$ and \times . It is possible to express g using these generalised monomials.

() We have to be careful which basic sequences to include, e.g. if we add $p(n) \{q(n)\}$ then we cannot add $q(n) \{p(n)\}$ because of identities like

$$xy - x \{y\} - y \{x\} - \{x\} \{y\} \equiv [x] [y] = 0 \mod 1.$$

2 We might need to replace p_i with p_i/M $(M \in \mathbb{N})$.

Theorem (Adamczewski, K.)

There is no algorithm which, given a representation of a GP sequence g with algebraic coefficients, determines if g(n) = 0 for all $n \in \mathbb{N}$.

Corollary

There is no algorithm which, given representations of two bracket words \mathbf{a}, \mathbf{b} , each involving only algebraic coefficients, determines if $\mathbf{a} = \mathbf{b}$.

Theorem (Adamczewski, K.)

There is no algorithm which, given a representation of a GP sequence g with algebraic coefficients, determines if g(n) = 0 for all $n \in \mathbb{N}$.

Corollary

There is no algorithm which, given representations of two bracket words \mathbf{a}, \mathbf{b} , each involving only algebraic coefficients, determines if $\mathbf{a} = \mathbf{b}$.

Sketch of proof:

Key fact: There exists a surjective GP map $\mathbb{N} \to \mathbb{N}^2$, for instance:

$$n \mapsto \left(\left[n \cdot \left\{ \sqrt{2}n \right\}^{10} \right], \left[n \cdot \left\{ \sqrt{3}n \right\}^{10} \right] \right).$$

Iterating, we can construct a surjective GP map $\iota_d \colon \mathbb{N} \to \mathbb{Z}^d$ for each $d \in \mathbb{N}$. If we could recognise if a GP sequence is identically zero, then we could also recognise solvable polynomial equations in \mathbb{Z} :

$$(\exists x_1,\ldots,x_d\in\mathbb{Z})\ p(x_1,\ldots,x_d)=0\Leftrightarrow(\exists n\in\mathbb{N})\ 1_{\{0\}}\ (p\circ\iota_d(n))\neq 0$$

But it is well-known that this is impossible (cf. Hilbert's 10th problem).
$$p(X) = X^d - \sum_{j=0}^{d-1} a_j X_j.$$

Let $E = \{n_i : i \ge 0\}$, where n_i satisfy recurrence:

$$n_{i+d} = \sum_{j=0}^{d-1} a_j n_{i+j}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 ● のへの

21/24

$$p(X) = X^d - \sum_{j=0}^{d-1} a_j X_j.$$

Let $E = \{n_i : i \ge 0\}$, where n_i satisfy recurrence:

$$n_{i+d} = \sum_{j=0}^{d-1} a_j n_{i+j}$$

Theorem

The set E is GP if β is any of the following:

$$p(X) = X^d - \sum_{j=0}^{d-1} a_j X_j.$$

Let $E = \{n_i : i \ge 0\}$, where n_i satisfy recurrence:

$$n_{i+d} = \sum_{j=0}^{d-1} a_j n_{i+j}$$

Theorem

The set E is GP if β is any of the following:

• Quadratic Pisot unit $(d = 2 \text{ and } a_0 = \pm 1)$;

$$p(X) = X^d - \sum_{j=0}^{d-1} a_j X_j.$$

Let $E = \{n_i : i \ge 0\}$, where n_i satisfy recurrence:

$$n_{i+d} = \sum_{j=0}^{d-1} a_j n_{i+j}$$

Theorem

The set E is GP if β is any of the following:

- Quadratic Pisot unit $(d = 2 \text{ and } a_0 = \pm 1)$;
- Not totally real cubic Pisot unit $(d = 3, a_0 = 1, p \text{ has two complex roots});$

$$p(X) = X^d - \sum_{j=0}^{d-1} a_j X_j.$$

Let $E = \{n_i : i \ge 0\}$, where n_i satisfy recurrence:

$$n_{i+d} = \sum_{j=0}^{d-1} a_j n_{i+j}$$

Theorem

The set E is GP if β is any of the following:

- Quadratic Pisot unit $(d = 2 \text{ and } a_0 = \pm 1)$;
- Not totally real cubic Pisot unit $(d = 3, a_0 = 1, p \text{ has two complex roots});$
- Salem unit $(d \ge 4 \text{ even}, a_0 = 1, p(1/\beta) = 0, \text{ other roots on the unit circle}).$

$$p(X) = X^d - \sum_{j=0}^{d-1} a_j X_j.$$

Let $E = \{n_i : i \ge 0\}$, where n_i satisfy recurrence:

$$n_{i+d} = \sum_{j=0}^{d-1} a_j n_{i+j}$$

Theorem

The set E is GP if β is any of the following:

- Quadratic Pisot unit $(d = 2 \text{ and } a_0 = \pm 1)$;
- Not totally real cubic Pisot unit $(d = 3, a_0 = 1, p \text{ has two complex roots});$
- Salem unit $(d \ge 4 \text{ even}, a_0 = 1, p(1/\beta) = 0, \text{ other roots on the unit circle}).$

Conjecture: These are the only cases where E is GP.

イロト (個) (目) (日) 日 の

Proposition (Byszewski, K.)

Suppose that $(n_i)_{i=0}^{\infty}$ is a sequence with $\liminf_{i \to \infty} \frac{\log n_{i+1}}{\log n_i} > 1$. Then, $E = \{n_i : i \ge 0\}$ is a GP set. (E.g. $n_i = 2^{2^i}$.)

Proposition (Byszewski, K.)

Suppose that
$$(n_i)_{i=0}^{\infty}$$
 is a sequence with $\liminf_{i \to \infty} \frac{\log n_{i+1}}{\log n_i} > 1$.
Then, $E = \{n_i : i \ge 0\}$ is a GP set. (E.g. $n_i = 2^{2^i}$.)

Proof strategy: Hope to find $\alpha \in \mathbb{R}$ and C so that $n \in E$ if and only if

$$\|\alpha n\|_{\mathbb{R}/\mathbb{Z}} < 1/n^C \tag{(\dagger)}$$

By inductive construction, one can show that there exists a Cantor set of α such that (\dagger) holds for all $n \in E$.

Proposition (Byszewski, K.)

Suppose that
$$(n_i)_{i=0}^{\infty}$$
 is a sequence with $\liminf_{i \to \infty} \frac{\log n_{i+1}}{\log n_i} > 1$.
Then, $E = \{n_i : i \ge 0\}$ is a GP set. (E.g. $n_i = 2^{2^i}$.)

Proof strategy: Hope to find $\alpha \in \mathbb{R}$ and C so that $n \in E$ if and only if

$$\|\alpha n\|_{\mathbb{R}/\mathbb{Z}} < 1/n^C \tag{(\dagger)}$$

By inductive construction, one can show that there exists a Cantor set of α such that (\dagger) holds for all $n \in E$.

Problem: (†) might hold for some $n \in \mathbb{N} \setminus E$. First, reduce to the case where $D < \log n_{i+1} / \log n_i < 2D$ for a constant D. We strengthen (†) to

$$1/2n^C < \|\alpha n\|_{\mathbb{R}/\mathbb{Z}} < 1/n^C \tag{\ddagger}$$

Under suitable conditions on C and D (e.g. C = 5, D = 6), we use continued fractions to check that no spurious n satisfy (‡).

・ロト ・ 合ト ・ 言ト ・ 言 うへで 22 / 24

• (Boring answer) Use properties from previous slides.

• (Boring answer) Use properties from previous slides.

Theorem (Byszewski, K.)

If $E \subset \mathbb{N}$, d(E) = 0 and E contains an IP set, then E is not GP.

Example: The set $\left\{\sum_{n \in I} 2^{2^n} : I \subset \mathbb{N}\right\}$ is not GP. The set of integers whose base-10 expansions do not contain 7 is not GP.

• (Boring answer) Use properties from previous slides.

Theorem (Byszewski, K.)

If $E \subset \mathbb{N}$, d(E) = 0 and E contains an IP set, then E is not GP.

Example: The set $\left\{\sum_{n \in I} 2^{2^n} : I \subset \mathbb{N}\right\}$ is not GP. The set of integers whose base-10 expansions do not contain 7 is not GP.

Theorem (K.)

Fix $k \in \mathbb{N}$. If $E \subset \mathbb{N}$, d(E) = 0 and $E = E/k := \{n \in \mathbb{N} : kn \in E\}$ then E is not GP.

Example: $\{k^n : n \ge 0\}$ is not GP.

< □ ▶ < @ ▶ < 클 ▶ < 클 ▶ 클 → 의 ↔ 24 / 24

• The squares $S = \{n^2 : n \in \mathbb{N}\}$ are not a GP set. (Proof: S/4 = S.)

- The squares $S = \left\{ n^2 \, : \, n \in \mathbb{N} \right\}$ are not a GP set. (Proof: S/4 = S.)
- The primes are not a GP set. (Proof: use Gowers uniformity of μ .)

- The squares $S = \{n^2 : n \in \mathbb{N}\}$ are not a GP set. (Proof: S/4 = S.)
- The primes are not a GP set. (Proof: use Gowers uniformity of μ .)
- Let q ≥ 3. Then (φ(n) mod q)[∞]_{n=0} is not bracket word. (Here, φ(n) = #(ℤ/nℤ)[×] is the totient function.) Proof: The set E = {n : φ(n) ≠ 0 mod q} has d(E) = 0 and E/p = E for any p ∈ P with p > q, q ∤ p − 1.

- The squares $S = \{n^2 : n \in \mathbb{N}\}$ are not a GP set. (Proof: S/4 = S.)
- The primes are not a GP set. (Proof: use Gowers uniformity of μ .)
- Let q ≥ 3. Then (φ(n) mod q)[∞]_{n=0} is not bracket word. (Here, φ(n) = #(ℤ/nℤ)[×] is the totient function.) Proof: The set E = {n : φ(n) ≠ 0 mod q} has d(E) = 0 and E/p = E for any p ∈ P with p > q, q ∤ p − 1.
- Recall that a word a = (a_n)[∞]_{n=0} is k-automatic if a_n can be computed by a finite automaton, taking base-k expansion of n as input.

Theorem (Byszewski, K.)

If \mathbf{a} is k-automatic and not eventually periodic, then \mathbf{a} is not a bracket word.

THANK YOU FOR YOUR ATTENTION!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let $\beta > 1$, $\alpha, \bar{\alpha}$ be the roots of $X^3 - X^2 - X - 1$. Then the set $\{\lfloor \beta^i \rceil : i \ge 0\}$ is GP. (NB $\lfloor \beta^{i+3} \rceil = \lfloor \beta^{i+2} \rceil + \lfloor \beta^{i+1} \rceil + \lfloor \beta^i \rceil; \lfloor x \rceil = \lfloor x + \frac{1}{2} \rfloor$.)

◆□> ◆□> ◆目> ◆目> ◆日> ● ●

Let
$$\beta > 1$$
, $\alpha, \bar{\alpha}$ be the roots of $X^3 - X^2 - X - 1$. Then the set $\left\{ \lfloor \beta^i \rceil : i \ge 0 \right\}$ is GP. (NB $\lfloor \beta^{i+3} \rceil = \lfloor \beta^{i+2} \rceil + \lfloor \beta^{i+1} \rceil + \lfloor \beta^i \rceil; \lfloor x \rceil = \lfloor x + \frac{1}{2} \rfloor.$)

Sketch of proof: Note that $|\alpha| < 1$. If we guess that $n = \lfloor \beta^i \rfloor$ then

$$\begin{split} n &= \beta^{i} + \alpha^{i} + \bar{\alpha}^{i} = \operatorname{Tr}(\beta^{i}) \\ \lfloor \beta n \rceil &= \beta^{i+1} + \alpha^{i+1} + \bar{\alpha}^{i+1} \\ \lfloor \beta^{2} n \rceil &= \beta^{i+2} + \alpha^{i+2} + \bar{\alpha}^{i+2}. \end{split}$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 …の�?

Let $\beta > 1$, $\alpha, \bar{\alpha}$ be the roots of $X^3 - X^2 - X - 1$. Then the set $\left\{ \lfloor \beta^i \rceil \, : \, i \ge 0 \right\}$ is GP. (NB $\lfloor \beta^{i+3} \rceil = \lfloor \beta^{i+2} \rceil + \lfloor \beta^{i+1} \rceil + \lfloor \beta^i \rceil; \, \lfloor x \rceil = \lfloor x + \frac{1}{2} \rfloor.$)

Sketch of proof: Note that $|\alpha| < 1$. If we guess that $n = \lfloor \beta^i \rfloor$ then

$$\begin{split} n &= g + h + \bar{h} \\ \lfloor \beta n \rceil &= \beta g + \alpha h + \bar{\alpha} \bar{h} \\ \lfloor \beta^2 n \rceil &= \beta^2 g + \alpha^2 h + \bar{\alpha}^2 \bar{h}. \end{split}$$

with $g = \beta^i$, $h = \alpha^i$. This defines GP sequences $g(n) \in \mathbb{Q}(\beta)$, $h(n) \in \mathbb{Q}(\alpha)$ for all n. New goal: $n = \lfloor \beta^i \rfloor \iff g(n) = \beta^i$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Let $\beta > 1, \alpha, \bar{\alpha}$ be the roots of $X^3 - X^2 - X - 1$. Then the set $\left\{ \lfloor \beta^i \rceil : i \ge 0 \right\}$ is GP. (NB $\lfloor \beta^{i+3} \rceil = \lfloor \beta^{i+2} \rceil + \lfloor \beta^{i+1} \rceil + \lfloor \beta^i \rceil; \lfloor x \rceil = \lfloor x + \frac{1}{2} \rfloor.$)

Sketch of proof: Note that $|\alpha| < 1$. If we guess that $n = \lfloor \beta^i \rfloor$ then

$$\begin{split} n &= g + h + h \\ \lfloor \beta n \rceil &= \beta g + \alpha h + \bar{\alpha} \bar{h} \\ \lfloor \beta^2 n \rceil &= \beta^2 g + \alpha^2 h + \bar{\alpha}^2 \bar{h} \end{split}$$

with $g = \beta^i$, $h = \alpha^i$. This defines GP sequences $g(n) \in \mathbb{Q}(\beta)$, $h(n) \in \mathbb{Q}(\alpha)$ for all n. New goal: $n = \lfloor \beta^i \rfloor \iff g(n) = \beta^i$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□

Key fact: The group of units of $\mathbb{Q}(\beta)$ has rank 1, β is a generator.

Let
$$\beta > 1$$
, $\alpha, \bar{\alpha}$ be the roots of $X^3 - X^2 - X - 1$. Then the set $\{\lfloor \beta^i \rceil : i \ge 0\}$ is GP. (NB $\lfloor \beta^{i+3} \rceil = \lfloor \beta^{i+2} \rceil + \lfloor \beta^{i+1} \rceil + \lfloor \beta^i \rceil; \lfloor x \rceil = \lfloor x + \frac{1}{2} \rfloor.)$

Sketch of proof: Note that $|\alpha| < 1$. If we guess that $n = \lfloor \beta^i \rfloor$ then

$$n = g + h + \bar{h}$$
$$\lfloor \beta n \rceil = \beta g + \alpha h + \bar{\alpha} \bar{h}$$
$$\lfloor \beta^2 n \rceil = \beta^2 g + \alpha^2 h + \bar{\alpha}^2 \bar{h}.$$

with $g = \beta^i$, $h = \alpha^i$. This defines GP sequences $g(n) \in \mathbb{Q}(\beta)$, $h(n) \in \mathbb{Q}(\alpha)$ for all n. New goal: $n = \lfloor \beta^i \rfloor \iff g(n) = \beta^i$.

Key fact: The group of units of $\mathbb{Q}(\beta)$ has rank 1, β is a generator.

$$g(n) = \beta^i \iff g(n)$$
 is a unit in $\mathbb{Q}(\beta)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Let
$$\beta > 1$$
, $\alpha, \bar{\alpha}$ be the roots of $X^3 - X^2 - X - 1$. Then the set $\{\lfloor \beta^i \rceil : i \ge 0\}$ is GP. (NB $\lfloor \beta^{i+3} \rceil = \lfloor \beta^{i+2} \rceil + \lfloor \beta^{i+1} \rceil + \lfloor \beta^i \rceil; \lfloor x \rceil = \lfloor x + \frac{1}{2} \rfloor$.)

Sketch of proof: Note that $|\alpha| < 1$. If we guess that $n = \lfloor \beta^i \rfloor$ then

$$n = g + h + \bar{h}$$
$$\lfloor \beta n \rceil = \beta g + \alpha h + \bar{\alpha} \bar{h}$$
$$\lfloor \beta^2 n \rceil = \beta^2 g + \alpha^2 h + \bar{\alpha}^2 \bar{h}$$

with $g = \beta^i$, $h = \alpha^i$. This defines GP sequences $g(n) \in \mathbb{Q}(\beta)$, $h(n) \in \mathbb{Q}(\alpha)$ for all n. New goal: $n = \lfloor \beta^i \rfloor \iff g(n) = \beta^i$.

Key fact: The group of units of $\mathbb{Q}(\beta)$ has rank 1, β is a generator.

$$g(n) = \beta^i \iff \begin{cases} g(n) \text{ is an algebraic integer} \\ \mathcal{N}(g(n)) = 1 \iff g(n)h(n)\bar{h}(n) = 1. \end{cases}$$