Pattern complexity of 2D substitutive shifts

Etienne Moutot

CNRS, Institut de Mathématiques de Marseille

One World Combinatorics on Words Seminar 21/02/2022

Shift spaces and pattern complexity

Shifts Spaces - Configurations

Finite alphabet: $A = \{ \square \square \square \square \}$

Configuration: $c \in \mathcal{A}^{\mathbb{Z}^2}$

Finite alphabet:
$$A = \{ \square \square \square \square \}$$

Set of forbidden patterns: $F = \{ \square \}$

$$X_F = \{c \in \mathcal{A}^{\mathbb{Z}^2} \mid \forall m \in F, m \text{ does not appear in } c\}$$

Finite alphabet:
$$\mathcal{A}=\left\{ \blacksquare \ \blacksquare \ \blacksquare \ \blacksquare \right\}$$
 Set of forbidden patterns: $F=\left\{ \blacksquare \ \blacksquare \right\}$

$$X_F = \{c \in \mathcal{A}^{\mathbb{Z}^2} \mid \forall m \in F, m \text{ does not appear in } c\}$$

Finite alphabet:
$$\mathcal{A} = \left\{ \blacksquare \ \blacksquare \ \blacksquare \right\}$$
 Set of forbidden patterns: $F = \left\{ \blacksquare \ \blacksquare \ \blacksquare \right\}$

$$X_F = \{c \in \mathcal{A}^{\mathbb{Z}^2} \mid \forall m \in F, m \text{ does not appear in } c\}$$

$$X_F = \{c \in \mathcal{A}^{\mathbb{Z}^2} \mid \forall m \in F, m \text{ does not appear in } c\}$$

Finite alphabet:
$$A = \{ \square \square \square \square \}$$

Set of forbidden patterns: $F = \{ \square \square \square \square \square \square \}$

(sub)Shift

 $X_F = \{c \in \mathcal{A}^{\mathbb{Z}^2} \mid \forall m \in F, m \text{ does not appear in } c\}$

Finite alphabet:
$$A = \{ \blacksquare \blacksquare \blacksquare \blacksquare \}$$

(sub)Shift of Finite Type (SFT):

$$X_F = \{c \in \mathcal{A}^{\mathbb{Z}^2} \mid \forall m \in F, m \text{ does not appear in } c\}$$

 $c \in \mathcal{A}^{\mathbb{Z}^2}$ is:

■ 1-periodic / periodic: $\exists \mathbf{u}, \forall \mathbf{v}, c_{\mathbf{v}-\mathbf{u}} = c_{\mathbf{v}}$

 $c \in \mathcal{A}^{\mathbb{Z}^2}$ is:

- 1-periodic / periodic: $\exists \mathbf{u}, \forall \mathbf{v}, \ c_{\mathbf{v}-\mathbf{u}} = c_{\mathbf{v}}$
- **2-periodic**: c is 1-periodic along $\mathbf{u}_1, \mathbf{u}_2$ not colinear

 $c \in \mathcal{A}^{\mathbb{Z}^2}$ is:

- 1-periodic / periodic: $\exists \mathbf{u}, \forall \mathbf{v}, \ c_{\mathbf{v}-\mathbf{u}} = c_{\mathbf{v}}$
- **2-periodic**: c is 1-periodic along $\mathbf{u}_1, \mathbf{u}_2$ not colinear

 $X \neq \emptyset$ is **a**periodic: *X* contains no 1-periodic configuration

 $c \in \mathcal{A}^{\mathbb{Z}^2}$ is:

- 1-periodic / periodic: $\exists \mathbf{u}, \forall \mathbf{v}, \ c_{\mathbf{v}-\mathbf{u}} = c_{\mathbf{v}}$
- **2-periodic**: c is 1-periodic along $\mathbf{u}_1, \mathbf{u}_2$ not colinear

 $X \neq \emptyset$ is **a**periodic: X contains no 1-periodic configuration

Property

In dimension 2, X SFT:

X contains a 1-periodic configuration

 \Leftrightarrow

X contains a 2-periodic configuration

 $A \text{ finite alphabet} \\ c \in A^{\mathbb{Z}^2} \text{ a configuration}$

 $P_c(m, n) = \text{number of } m \times n \text{ patterns in } c$

A finite alphabet $c \in A^{\mathbb{Z}^2}$ a configuration

 $P_c(m, n) = \text{number of } m \times n \text{ patterns in } c$

A finite alphabet $c \in A^{\mathbb{Z}^2}$ a configuration

 $P_c(m, n) = \text{number of } m \times n \text{ patterns in } c$

A finite alphabet $c \in A^{\mathbb{Z}^2}$ a configuration

$$P_c(m, n) = \text{ number of } m \times n \text{ patterns in } c$$

Theorem (Morse & Hedlund, 1938)

$$\forall w \in \mathcal{A}^{\mathbb{Z}},$$

$$\exists n > 0, \ P_w(n) \leq n \ \Rightarrow \ w \ \text{periodic}$$

A finite alphabet $c \in A^{\mathbb{Z}^2}$ a configuration

$$P_c(m, n) = \text{ number of } m \times n \text{ patterns in } c$$

$$\forall c \in \mathcal{A}^{\mathbb{Z}^2},$$

$$\exists m, n > 0, \ P_c(m,n) \leq mn \ \Rightarrow \ c \ \text{periodic}$$

Aperiodic shift complexity

Theorem (Kari, M., 2020)

If $\exists c \in X, m, n \in \mathbb{N}$ s.t. $P_c(m, n) \leq mn$, then $\exists d \in X$ which is *periodic*.

Corollary

Let X be an aperiodic subshift. Then $\forall m,n\in\mathbb{N},\,c\in X,$

$$P_c(m,n) \ge mn + 1$$

Aperiodic shift complexity

Theorem (Kari, M., 2020)

If $\exists c \in X, m, n \in \mathbb{N}$ s.t. $P_c(m, n) \leq mn$, then $\exists d \in X$ which is *periodic*.

Corollary

Let X be an aperiodic subshift. Then $\forall m, n \in \mathbb{N}, c \in X$,

$$P_c(m,n) \ge mn + 1$$

Can we do **better**?

Cassaigne 1999: Characterization of configurations with complexity mn + 1 for all m, n (their orbit closure is *not* aperiodic)

- **Cassaigne** 1999: Characterization of configurations with complexity mn + 1 for all m, n (their orbit closure is *not* aperiodic)
- **Berthé & Vuillon** 2000: 2D projection of a discrete plane: possible to have complexity P(m, n) = mn + n

- **Cassaigne** 1999: Characterization of configurations with complexity mn + 1 for all m, n (their orbit closure is *not* aperiodic)
- **Berthé & Vuillon** 2000: 2D projection of a discrete plane: possible to have complexity P(m, n) = mn + n

- **Cassaigne** 1999: Characterization of configurations with complexity mn + 1 for all m, n (their orbit closure is *not* aperiodic)
- **Berthé & Vuillon** 2000: 2D projection of a discrete plane: possible to have complexity P(m, n) = mn + n

What about aperiodic **tilings** (SFTs)?

- **Cassaigne** 1999: Characterization of configurations with complexity mn + 1 for all m, n (their orbit closure is *not* aperiodic)
- **Berthé & Vuillon** 2000: 2D projection of a discrete plane: possible to have complexity P(m, n) = mn + n

What about aperiodic **tilings** (SFTs)?

■ **Jeandel, Rao** 2015/2021: You need 11 Wang tiles to have aperiodicity (m = n = 1 for Wang tiles)

- → Build aperiodic shifts with complexity as small as possible
- ightarrow Lower bound on the complexity of aperiodic shifts

Substitutive shifts

$$\sigma: \mathcal{A} \to \mathcal{A}^*$$

$$w \in \mathcal{A}^*: \sigma(w) = \sigma(w_0)\sigma(w_1)\sigma(w_2)\cdots$$

The **substitutive shift** associated with σ :

$$X^{\sigma} = \{ w \in \mathcal{A}^{\mathbb{Z}} \mid \forall p \sqsubset c, \exists a \in \mathcal{A}, \exists k \in \mathbb{N}, p \sqsubseteq \sigma^{k}(a) \}$$

$$\sigma: 0 \mapsto 01, \quad 1 \mapsto 0$$

$$p = 1010$$

$$\sigma: \mathcal{A} \to \mathcal{A}^*$$

$$w \in \mathcal{A}^*: \sigma(w) = \sigma(w_0)\sigma(w_1)\sigma(w_2)\cdots$$

The **substitutive shift** associated with σ :

$$X^{\sigma} = \{ w \in \mathcal{A}^{\mathbb{Z}} \mid \forall p \sqsubset c, \exists a \in \mathcal{A}, \exists k \in \mathbb{N}, p \sqsubseteq \sigma^{k}(a) \}$$

$$\sigma: 0 \mapsto 01, \quad 1 \mapsto 0$$

0100101001001

$$\sigma: \mathcal{A} \to \mathcal{A}^*$$

$$w \in \mathcal{A}^*: \sigma(w) = \sigma(w_0)\sigma(w_1)\sigma(w_2)\cdots$$

The **substitutive shift** associated with σ :

$$X^{\sigma} = \{ w \in \mathcal{A}^{\mathbb{Z}} \mid \forall p \sqsubset c, \exists a \in \mathcal{A}, \exists k \in \mathbb{N}, p \sqsubseteq \sigma^{k}(a) \}$$

$$\sigma: 0 \mapsto 01, \quad 1 \mapsto 0$$

0100101001001

$$=\sigma^5(0)$$

1D substitutions: complexity

Well understood!

```
Theorem (Pansiot 1984)

Let \sigma be a substitution, w \in X^{\sigma}. Then P_w(n) = \Theta(c(n))

with c(n) = \begin{cases} 1 \\ n \\ n\log\log n \\ n\log n \\ n^2 \end{cases} depending only on \sigma.
```

 $\sigma: \mathcal{A} \to \mathcal{A}^{[0,M)}$ (uniform square case)

The **substitutive shift** associated with σ :

$$X^{\sigma} = \{ c \in \mathcal{A}^{\mathbb{Z}^2} \mid \forall p \sqsubset c, \exists a \in \mathcal{A}, \exists k \in \mathbb{N}, p \sqsubseteq \sigma^k(a) \}$$

Substitutive shift (2D)

Substitutive shift (2D)

2D substitutions: complexity

Theorem (Folklore / Robinson 2004)

Let σ be a uniform square substitution, primitive and invertible, $c \in X^{\sigma}.$ Then

$$P_c(n,n) = O(n^2)$$

 \rightarrow If X^{σ} is aperiodic, $P_c(n,n) = \Theta(n^2)$ for all $c \in X^{\sigma}$

2D substitutions: complexity

Theorem (Folklore / Robinson 2004)

Let σ be a uniform square substitution, primitive and invertible, $c \in X^{\sigma}.$ Then

$$P_c(n,n) = O(n^2)$$

$$\rightarrow$$
 If X^{σ} is aperiodic, $P_c(n,n) = \Theta(n^2)$ for all $c \in X^{\sigma}$

But what is the constant?

Our lower bound

Theorem (M., Petit-Jean 2021)

Let σ be a uniform square substitution, primitive, recognizable and marked, $c \in X^{\sigma}$. Then for n large enough,

$$P_c(n,n) \ge Cn^2$$

with C > 1 depending only on σ .

Strictly higher than mn + 1!

Our lower bound

Theorem (M., Petit-Jean 2021)

Let σ be a uniform square substitution, primitive, **recognizable and marked**, $c \in X^{\sigma}$. Then for n large enough,

$$P_c(n,n) \ge Cn^2$$

with C > 1 depending only on σ .

Strictly higher than mn + 1!

Marked substitutions

 σ marked:

 \rightarrow when a single position determines the antecedent

Recognizable substitutions

 σ recognizable:

 $n \geq \rho \Rightarrow p \in \mathcal{L}_c(n,n)$ have a unique "position of de-substitution"

Recognizable substitutions

 σ recognizable:

 $n \geq \rho \Rightarrow p \in \mathcal{L}_c(n,n)$ have a unique "position of de-substitution"

Theorem (Solomiak 1998 / many others in 1D)

 X^{σ} is aperiodic $\Leftrightarrow \sigma$ is recognizable

Theorem (M., Petit-Jean 2021)

Let σ be a uniform square substitution, primitive, recognizable and marked, $c \in X^{\sigma}$. Then for n large enough,

$$P_c(n,n) \ge Cn^2$$

with C > 1 depending only on σ .

Proof idea: de-substitute as much as possible and count

$$\sigma \rightarrow \sigma^k$$
 k maximal to have squares (n,n) recognizable

$$P_c(n,n) \geq \sum_i \sum_j P_{\sigma(c)} \left(\left\lceil \frac{n-i}{M^k} \right\rceil, \left\lceil \frac{n-j}{M^k} \right\rceil \right)$$

$$\begin{split} P_c(n,n) &\geq \sum_i \sum_j P_{\sigma(c)} \left(\left\lceil \frac{n-i}{M^k} \right\rceil, \left\lceil \frac{n-j}{M^k} \right\rceil \right) \\ &\geq \sum_i \sum_j \left\lceil \frac{n-i}{M^k} \right\rceil \left\lceil \frac{n-j}{M^k} \right\rceil + 1 \qquad \text{as } X^{\sigma} \text{ is aperiodic } ! \end{split}$$

$$\begin{split} P_c(n,n) &\geq \sum_i \sum_j P_{\sigma(c)} \left(\left\lceil \frac{n-i}{M^k} \right\rceil, \left\lceil \frac{n-j}{M^k} \right\rceil \right) \\ &\geq \sum_i \sum_j \left\lceil \frac{n-i}{M^k} \right\rceil \left\lceil \frac{n-j}{M^k} \right\rceil + 1 & \text{as } X^{\sigma} \text{ is aperiodic !} \\ &\geq \dots & \text{using maximality of } k \\ &\geq C n^2 \end{split}$$

with
$$C = 1 + \frac{1}{(\rho+1)^2}$$

_

Generalization?

Theorem (M., Petit-Jean 2021)

Let σ be a uniform square substitution, primitive, **recognizable** and marked, $c \in X^{\sigma}$. Then for n large enough,

$$P_c(n,n) \ge Cn^2$$

with C > 1 depending only on σ .

Not recognizable / not aperiodic: Not true

Generalization?

Theorem (M., Petit-Jean 2021)

Let σ be a uniform square substitution, primitive, recognizable and **marked**, $c \in X^{\sigma}$. Then for n large enough,

$$P_c(n,n) \ge Cn^2$$

with C > 1 depending only on σ .

Not marked: Seems true...

- $-n^{2}$
- marked (100)
- non marked (100)

Non-marked

Non-uniform case?

Nice counter-example (thanks to Sebastien Labbé): cartesian product of two 1D Fibonacci $(0 \mapsto 01, 1 \mapsto 0)$

$$a \mapsto \begin{pmatrix} c & d \\ a & b \end{pmatrix}$$
$$b \mapsto \begin{pmatrix} c \\ a \end{pmatrix}$$
$$c \mapsto \begin{pmatrix} a & b \end{pmatrix}$$
$$d \mapsto \begin{pmatrix} a \end{pmatrix}$$

$$P_c(n,n) = (n+1)^2$$
 (experimentally)

One upper bound

Build aperiodic shifts with complexity as small as possible

For SFTs:

Theorem (Kari, M., 2021)

 $f\colon \mathbb{N} \to \mathbb{N} \notin O(1)$. There exists n and P made of at most $n^2+f(n)n$ binary square patterns of size $n\times n$ such that $X_{\overline{P}}$ is aperiodic

One upper bound

Theorem (Kari, M., 2021)

T a set of Wang tiles. There exists N, k s.t. $\forall n \geq N, m \geq 2$, and P made of at most mn + k(n+m) binary patterns of size $m \times n$ such that

- T tiles the plane $\Leftrightarrow X_{\overline{P}} \neq \emptyset$
- T tiles the plane aperiodically $\Leftrightarrow X_{\overline{P}}$ aperiodic

 \rightarrow re-encode the tileset into an SFT of "pretty low" complexity

What's next?

- Get the lower bound for all primitive aperiodic substitutions!
- Get a lower bound for general SFTs?
- Improve the upper bound for some particular SFTs?

Thank you!