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A major theme in combinatorics on words is the relationship

between local periodicity and global periodicity of an infinite

word.

The local periodicity at a postion i of an infinite word can be

measured in terms of repetitions

1. starting at position i,

2. ending at position i,

3. centred at position i.

We will consider 2) and 3).



First, what types of repetitions do we consider?

▶ a square is a non-empty repetition xx

▶ a cube is a non-empty repetition xxx

▶ in general, an α-power (or word with exponent α) is a

word whose length divided by its minimal period is α



▶ Let’s first consider repetitions ending at positions i.

▶ Let ϕ ≈ 1.618 be the golden ratio.

▶ Shallit conjectured that any infinite word with the

property that every sufficiently large position ends with a

word of exponent ≥ ϕ2 ≈ 2.618 is necessarily ultimately

periodic.

▶ This was confirmed by Mignosi, Restivo, and Salemi.



Theorem (Mignosi, Restivo, Salemi 1993)

An infinite word w is ultimately periodic if and only if there is

a repetition of exponent ≥ ϕ2 ending at all sufficiently large

positions.



▶ Mignosi, Restivo, and Salemi showed that the constant ϕ2

cannot be replaced with any smaller number.

▶ The Fibonacci word

010010100100101001010010 · · · ,

generated by iterating the substitution 0 → 01, 1 → 0,

witnesses this optimality.

▶ For simiplicity, lets consider cubes, rather than ϕ2 powers.

▶ This theorem implies that there are infinitely many

positions of the Fibonacci word that do not end in a cube.

▶ Can we characterize these positions?



▶ Let cubesf be the infinite word whose n-th term is1 if a cube ends at position n of f ,

0 otherwise.

▶ For any n ≥ 0, let (n)F denote the canonical

representation of n in the Fibonacci (Zeckendorf)

numeration system.

▶ This is the numeration system where the place values are

the Fibonacci numbers 1, 2, 3, 5, 8, 13, . . ., the digit set is

{0, 1}, and we forbid consecutive 1’s.



Theorem

There are arbitrarily long runs of 1’s in cubesf . More

precisely, the runs of 1’s in cubesf are characterized by the

following: If (i)F has the form

(i)F ∈ (10)+0(0 + 10)(00)∗0w,

where w ∈ 0(10)∗(ϵ+ 1) then cubesf contains a run of 1’s of

length

▶ F2n+2 − 1, if |w| = 2n for some n ≥ 0,

▶ F2n+3 − 1, if |w| = 2n+ 1 for some n ≥ 0,

beginning at position i.



Theorem

The runs of 0’s in cubesf have lengths 1, 2, 3, 7, 8, and 13.

The only run of length 13 occurs at the beginning of cubesf .

For each of the other lengths (1, 2, 3, 7, and 8), there are

infinitely many runs of that length in cubesf .



We can obtain this result purely by computer using a program

called Walnut (developed by Jeffrey Shallit’s student Hamoon

Mousavi). Suppose we are given

▶ A finite automaton reading input n in base-k (or

Fibonacci, etc.) and outputing the n-th term of a

sequence s; and,

▶ A formula φ in first-order logic involving variables,

constants, quantifiers, logical operations, ordering,

addition and subtraction of natural numbers, and indexing

into s.



▶ We can also multiply by a constant (this is just repeated

addition), but we can’t multiply two variables.

▶ If φ has no free variables, Walnut will output either that

φ is either TRUE or FALSE.

▶ If φ has free variables, Walnut will produce an automaton

that accepts the base-k (or Fibonacci, etc.)

representations of the values of the free variables that

satisfy φ.



The formula

∃i∃n, (n > 1)∧(j = i+3n−1)∧(∀k, k < 2n ⇒ fi+k = fi+k+n)

is satisfied whenever j is the ending position of a cube in f .



Translated to Walnut, the command

eval fib_end_cubes

"?msd_fib Ei En n > 1 & j = i+3*n-1 &

(Ak k < 2*n => F[i+k] = F[i+k+n])":

produces an automaton that accepts the Zeckendorf

representations of the positions at which a cube ends in f .
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Figure: Automaton for ending positions of cubes in f



The command

eval fib_end_cubes_run "?msd_fib n>=1 & (At t<n =>

$fib_end_cubes(i+t)) & ~$fib_end_cubes(i+n) &

(i=0|~$fib_end_cubes(i-1))":

produces an automaton that accepts the Zeckendorf

representations of pairs (i, ℓ) such that there is a run of 1’s in

cubesf of length ℓ starting at position i.
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Figure: Automaton for runs of 1’s in cubesf



▶ Now we examine the structure of this automaton:

▶ For an accepted pair (i, ℓ), we have

(i)F = (10)+0(0 + 10)(00)∗0w, where w ∈ 0(10)∗(ϵ+ 1).

▶ If |w| = 2n, then (ℓ)F = (10)n and so ℓ = F2n+2 − 1.

▶ If |w| = 2n+1, then (ℓ)F = (10)n1 and so ℓ = F2n+3− 1.



We do the same for runs of 0’s in cubesf :
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Figure: Automaton for runs of 0’s in cubesf



We can project this automaton onto the second component of

its input:

eval fib_no_cubes_run_length "?msd_fib Ei

$fib_no_cubes_run(i,n)":

which produces
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Figure: Automaton for lengths of runs of 0’s in cubesf



▶ We see that the only possible run lengths are

ℓ ∈ {1, 2, 3, 7, 8, 13}.

▶ The command

eval tmp "?msd_fib Ai Ej j>i &

$fib_no_cubes_run(j,1)":

evaluates to TRUE, indicating that there are infinitely

many runs of 0’s of length 1.

▶ This is also the case for run lengths 2, 3, 7, and 8.

▶ For length 13 however, we get a result of FALSE.



The positions of the runs of length 7 and 8 have a simple

structure:

Theorem

▶ The runs of 0’s in cubesf of length 8 begin at positions i

where (i)F ∈ (10)+0001.

▶ The runs of 0’s in cubesf of length 7 begin at positions i

where (i)F ∈ (10)+01001.



Theorem

The density of 0’s in cubesf is zero.

The following automaton gives the positions in f where no

cube ends.
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Figure: Automaton for positions in f where no cube ends



▶ It suffices to show that only polynomially many strings of

length n are accepted.

▶ This can be seen directly from the structure of the

automaton.

▶ This automaton does not have two cycles that can both

mutually reach each other.

▶ Hence, the number of accepted strings of length n is

polynomially bounded.



▶ What about other Sturmian words?

▶ Let cα be the characteristic Sturmian word with slope α.

▶ Let cubesw be the binary word whose n-th term is 1 if

cubesw has a cube ending at position n, and 0 otherwise.

▶ Let max no cubes(w) denote the largest ℓ such that

cubesw contains infinitely many runs of 0’s of length ℓ.



▶ We have see that max no cubes(f) = 8.

▶ Is it possible to determine max no cubes(cα) from the

continued fraction expansion of α?

▶ What is the least (resp. greatest) possible value of

max no cubes(cα) over all α? Is it 3 (resp. 8)?



Now let’s consider repetitions centred at position i. The

analogue of the theorem of Mignosi, Restivo, and Salemi is the

following:

Theorem (Duval, Mignosi, Restivo 2001)

An infinite word w is ultimately periodic if and only if there is

a square centred at all sufficiently large positions.



Again, the Fibonacci word is optimal: Duval, Mignosi, and

Restivo showed that the Fibonacci word has a square centred

at every position j, except when j = Fn − 2.



▶ In the second Lothaire book, Mignosi and Restivo (2002)

use the following periodicity function to study repetitions

centred at position i.

▶ Let w = w0w1w2 · · · be an infinite word.

▶ The periodicity function pw(i) is the length of the shortest

prefix u of wiwi+1wi+2 · · · such that either u is a suffix of

w0 · · ·wi−1 (i.e., uu is a square centred at position i) or

w0 · · ·wi−1 is a suffix of u, if such a word u exists.

▶ If no such u exists, then pw(i) = ∞.

▶ If w is recurrent, then pw(i) < ∞ for all i.



▶ Since the values of pw(i) can fluctuate wildly, it is not

that suitable as a complexity function.

▶ Mignosi and Restivo (2013) therefore defined the periodic

complexity function hw(i) as the average of the

periodicity function:

▶ Let

Pw(i) =
i−1∑
j=0

pw(j)

be the summatory function of pw(i) and let

hw(i) = (1/i)Pw(i)

for i ≥ 1.



Mignosi and Restivo studied the periodicity function and the

periodic complexity function for both the Thue–Morse word

t = 0110100110010110 · · ·

and the Fibonacci word

f = 0100101001001010 · · · .

They proved that ht(n) = Θ(n) and hf (n) = Θ(log n)



The Thue–Morse word t = t0t1t2 · · · is defined by

ti =


0 if the number of 1’s in the binary

representation of i is even,

1 otherwise.

Here are some initial values of pt(i).

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

pt(i) 1 3 1 6 2 12 1 12 1 24 1 24 2 24 1 24



We can get a automaton that computes the binary

representation of pt(i) with the following Walnut commands

(see Jeff Shallit’s forthcoming book):

def tmEq "?msd_2 Ak (k<n) => T[i+k]=T[j+k]":

def tmRepWd "?msd_2 (i>=n & $tmEq(i,i-n,n)) |

(n>i & $tmEq(0,n,i))":

def tmLocPer "?msd_2 (n>0) & $tmRepWd(i,n) &

Am (m>0 & m<n) => ~$tmRepWd(i,m)":



This produces the automaton

0

[0,0] 1
[1,0]

2

[0,1]

[1,0] 3[0,0]

4[0,1]

5

[1,1]
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Figure: Automaton for the pair (i, pt(i))



By examining this automaton, one obtains the following:

Proposition

We have

▶ pt(i) ∈ {1, 2} if i is even; and,

▶ pt(i) = 3 · 2t if i is odd and 2t ≤ i < 2t+1.



We can then bound the summatory function of pt(i).

Proposition

For n ≥ 1, we have

3

8
(n− 1)2 +

n

2
≤ Pt(n) ≤

3

4
n2 + n+ 1.



We split the sum Pt(n) =
∑n−1

i=0 p(i) into even and odd

indexed terms. For the even terms, we have

n

2
≤

n−1∑
i=0
i even

p(i) ≤ n+ 1.



For the odd terms, we have

n−1∑
i=0
i odd

p(i) ≤
n−1∑
i=0
i odd

3i ≤ 3(n/2)2 =
3

4
n2.

and

n−1∑
i=0
i odd

p(i) ≥
n−1∑
i=0
i odd

3i/2 ≥ (3/2)[(n− 1)/2]2 =
3

8
(n− 1)2.

Hence,

3

8
(n− 1)2 +

n

2
≤ Pt(n) ≤

3

4
n2 + n+ 1.



Dividing by n gives:

Theorem

For n ≥ 1, we have

3n/8− 1/4 ≤ ht(n) ≤ 3n/4 + 2.

In particular, we have ht(n) = Θ(n).



▶ In this case, we were fortunate that the automaton in for

pt(i) was rather simple.

▶ For more complicated sequences, this may not be the

case, so next we explore other methods for analyzing the

asymptotics of Pt(i).

▶ To apply these methods, we first need a linear

representation for pt(i).



A linear representation for pt(i) is:

▶ an integer row vector v,

▶ an integer column vector w, and

▶ a pair of integer matrices M0 and M1, such that

pt(i) = vMiℓ−1
Miℓ−2

· · ·Mi0w,

where iℓ−1iℓ−2 · · · i0 is the binary representation of i.



Walnut can produce a linear representation for pt(i) with the

command

eval tmLocPer_enum i "?msd_2 En $tmLocPer(i,n) &

m<n & ~$tmLocPer(i,m)":



The output of this command is a Maple worksheet containing

the following values for v, w, M0 and M1.

v = [1, 0, 1, 0, 0, 0],

M0 =



1 0 1 0 0 0

0 0 0 0 1 1

0 0 0 0 0 0

0 0 0 0 0 2

0 1 0 1 0 0

0 0 0 0 0 2


, M1 =



0 1 0 1 0 0

0 1 0 1 0 0

0 0 0 1 0 0

0 0 0 2 0 0

0 1 0 1 0 0

0 0 0 2 0 0


,

w = [1, 1, 0, 1, 1, 0]T .



Next we determine the asymptotic behaviour of Ppd(n) and

hpd(n), where

pd = 0100010101000100010001010100 · · ·

is the period-doubling word, i.e., the fixed point of the

morphism 0 → 01, 1 → 00.



Here are some initial values of ppd(i):

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ppd(i) 1 2 4 1 1 8 2 2 2 2 16 1 1 4 4 1

Our goal is to show that hpd(n) = Θ(log n) (i.e., its periodic

complexity is rather more like that of the Fibonacci word than

the Thue–Morse word).



We begin by using Walnut to compute the following linear

representation for ppd(i):

v = [1, 0, 0, 0, 0, 0],

M0 =



1 0 0 0 0 0

0 0 0 1 0 1

0 0 0 0 0 2

0 0 0 0 1 0

0 0 0 1 0 1

0 0 0 0 0 0


, M1 =



0 1 1 0 0 0

0 0 0 0 1 0

0 0 0 0 0 0

0 1 1 0 0 0

0 1 1 0 0 0

0 0 2 0 0 0


,

w = [1, 1, 1, 1, 1, 1]T .



Theorem

For n ≥ 1, we have

Ppd(n) ≥ (1/3 log2 n− 1/18)n+ 4/9,

Ppd(n) ≤ (4/3 log2 n+ 22/9)n+ 5/9,

and

1/3 log2 n− 1/18 ≤ hpd(n) ≤ 4/3 log2 n+ 3.



Let M = M0 +M1. For ℓ ≥ 0, we have

Ppd(2
ℓ) =

∑
i<2ℓ

p(i)

=
∑

i0,...,iℓ−1∈{0,1}

vMiℓ−1
· · ·Mi0w

= v(M0 +M1)
ℓw

= vM ℓw.



To obtain a formula for vM ℓw, we first compute the minimal

polynomial of M :

mM(x) = (x− 2)2(x+ 2)(x− 1)(x+ 1).

It follows then that

vM ℓw = (A+Bℓ)2ℓ + C(−2)ℓ +D + E(−1)ℓ, (1)

for some constants A, . . . , E.



We compute Ppd(2
ℓ) for ℓ = 0, . . . , 4, which gives the values

1, 3, 8, 21, 52.

We then substitute these values into (1) to obtain a system of

linear equations in the variables A, . . . , E, with solution

A = 5/9, B = 2/3, C = 0, D = 1/2, E = −1/18.

Thus, we have

Ppd(2
ℓ) = (5/9 + (2/3)ℓ)2ℓ + 1/2− 1/18(−1)ℓ,

and so

(5/9 + (2/3)ℓ)2ℓ + 4/9 ≤ Ppd(2
ℓ) ≤ (5/9 + (2/3)ℓ)2ℓ + 5/9.



Now write 2ℓ ≤ n < 2ℓ+1, so that ℓ ≤ log2 n < ℓ+ 1. We find

(1/3 log2 n−1/18)n+4/9 ≤ Ppd(n) ≤ (4/3 log2 n+22/9)n+5/9,

and

1/3 log2 n− 1/18 ≤ hpd(n) ≤ 4/3 log2 n+ 3.



We can determine the asymptotic growth of hx(n) for other

automatic sequences x by first using Walnut to compute a

linear representation for px(i), and then applying techniques of

Dumas or Heuberger–Krenn.



Let

rs = r0r1r2 · · · = 0001001000011101 · · ·

be the Rudin–Shapiro sequence, defined by

ri =


0 if the number of 11’s in the binary

representation of i is even,

1 otherwise.

The linear representation for prs(i) computed by Walnut gives

31× 31 matrices M0 and M1.



The asymptotic techniques of Dumas or Heuberger–Krenn

then give:

Theorem

We have

Prs(n) = n2Φ40({log2 n}) +O(n log2 n),

and

hrs(n) = nΦ40({log2 n}) +O(log2 n),

for some 1-periodic continuous function Φ40.



Walnut can be downloaded here:

https://cs.uwaterloo.ca/~shallit/walnut.html

https://cs.uwaterloo.ca/~shallit/walnut.html


The End


