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Summary

e Automatic and morphic sequences



Thue—Morse sequence T
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Figure: Automaton of the Thue—Morse sequence 7 = (t(n)),

Input: (13)2 = 1101, we read left to right.
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Thue—Morse sequence T

0 0
)
1
Figure: Automaton of the Thue—Morse sequence 7 = (t(n)),

Input: (13)2 = 1101, we read left to right.

Then t(13) = 1.



Thue—Morse sequence T

0— 01

T can also be generated by the following morphism f : { 110,

This morphism is uniform: images have same length.
We apply recursively the corresponding morphism
0
f(0) =01
f(01) = f(0) f(1) =01 10
f(0110) = 0110 1001

f*(0) = 0110100110010110...

Thus t(n) is the n-th value of f¢(0).



Automatic sequence: generated by an automaton or equivalently as a
projection of a fixed point of a uniform morphism.
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Figure: Automaton of the Golay—Rudin—-Shapiro sequence R = (r(n))a

For (13)2 = 1101, we have r(13) = 1.
R = (r(n)), = 000100100011101 . ..

' . [ av— ab, b+ ac, .} a b0,
Or with the morphism f'{ ¢ — db,d — dc. a”d”'{ c,d— 1.

Th f*(a) = abacabdbabacdcac . ..
YS9 #(F¥(a)) = 000100100011101 .. ..



Generalization

Let w be a word in base 2, e, (n) counts the number of occurences of w
in the expansion of n in base 2.

Then S = (sp)n = (e,(n) (mod 2)), is an automatic sequence.
Particular word: wy = 1---1 = 1k,
@ k=1 — Thue-Morse.
t(n) counts the number of 1 in (n), mod 2.
13 = (1101),, £(13) = 1.
@ k =2 — Golay—Rudin-Shapiro.
r(n) counts the number of 11 in (n)2 mod 2.
13 = (1101)y, r(13) = 1.
For a general k, these sequences are called pattern sequences.



Morphic sequences

Morphic sequences are generated by morphisms that are not necessarily

uniform.

Example 1: Fibonacci word

£ 0— 01
"1 1—~0

, thus we have f¥(0) = 0100101001001 - - -

We have |f"(0)| = F, the n-th Fibonacci number.
Non—automatic sequence: the frequencies of its letters are not rational.

Example 2: The characteristic sequence of squares is a morphic sequence

with
a — abcc,
f: b — bcc,
cHc.
n \0123456789

a,b—1,
c— 0.

and 7r:{

10 11 12 13 14 15 16

m(f°(a)) | 1100100001

o 0 o o0 0 o0 1

Non—automatic sequence (Ritchie, 1963).



Remark

Notice that it is not trivial in general to determine whether a morphic
sequence is automatic or not.

012
f: 1+—102 , f¥(1) =102120102012...
2—0

is automatic (Berstel, 1978), with image reduction modulo 3 of

[ 012,113
"1 220,321 "

gw(l) =132120132012...
4 (mod 3)
102120102012. ..
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Subword complexity

Let w = agaiay ... be an infinite word on an alphabet . A finite word
u=bgby...bx_1 € £ is a subword of w if there exists i such that

a;=bo, ajy1=">b1, ..., diyk—1 = bx_1.

Subword complexity

Let S = (s,)n be a sequence ¥ and w = 553 . . ..
For kK > 0, we define ps by

ps(k) = #{u € =¥ : uis a subword of w}.

where w = sps7 . . ..

e ps(k) < Card(X)X for all k.
e §=01010101..., ps(k) = 2 for all k.
o If there exists k such as ps(k) < k, S is periodic.

o If ps(k) = k+1 for all k, S is said to be sturmian.
Example: Fibonacci word.



Normal sequence

A sequence is said to be normal if for every word by ... b1 € Tk

1
li —#Li < N,si=bg,...,Si4k—1=bi_1} = ————
N—I)Too N#{I < 5 Si b07 y Si+k—1 bk 1} Card(z)k )

i.e. every word appears in the sequence and each word of a fixed length

appears with the same frequency.

Almost every sequence is normal (Borel, 1909) but relatively few
constructions are known.

Example: The Champernowne sequence (1933)
S=011011100 ...

is a normal sequence on {0,1}.

It is conjectured that 7 is a normal number but still not known.



Feedback shift register (FSR)

Binary FSR with n states

Mapping § : F5 — F5, n > 2 on the form
8 : (XO7X17 ct 7Xn—1) — (X17X27 ct 7Xn—17 f(XO7X17 ct 7Xl1—1))7

where f € FQ[X(), o ,X,,_l].

The binary sequence S = (s;);>0, with n given terms, and the remaining
terms obtained with the relationship recurrence

Si+n = f(S,',...,S,‘+n_1), i>0.

is called the output sequence of the FSR.

An output sequence generated by a short FSR is considered weak for
cryptographic applications since it is too predictable.



Maximum order complexity

Maximum order complexity at rank N

M(S, N) is the smallest integer M such that

sirm = f(si, ..., Sitm—1),

with F(Xy,..., Xp) € Fp[X1,..., Xyl and 0< i < N— M —1.

M(S, N): length of the shortest FSR that generates the first N elements
of .

The maximum order complexity is used as an indicator of the
unpredictability of the sequence.



Example 1/2

Let S =01011.... We have M(S,2) = 1 since the two first letters are
not identical.

In order that M(S,3) = 1, we have to find a polynomial f(x) such that

= f(s1), 0= £(1),
{ﬁi_f&ig — { 1:f§og.

Thus the polynomial f(x) = —x 4 1 is convenient.
In order that M(S,4) = 1, we have to find a polynomial 7(x) such that

53 = f(Sz), 1= f(O),
s =f(s1), = 0= f(1),
S1 = f(So). 1= f(O)

Thus the same polynomial as before is convenient.



Example 2/2

S =01011....
In order that M(S,5) = 1, we have to find a polynomial f(x) such that

{ 1=f(1),1=f(0)
0=f(1),1=£(0)

We have to increase the number of variables.
In order that M(S,5) = 2, we have to find a polynomial f(x,y) such that

= not possible.

S4 = f(53,52) 1= f(l,O)
s53=f(s2,5) = 1=17(0,1) == again not possible.
S = f(Sl, 50) 0= f(l, 0)

In order that M(S,5) = 3, we have to find a polynomial f(x,y, z) such
that

54:f(53752551) 1_f(a ) )
{ s3 = (52, 51, %) = { 1=1£(0,1,0)

Thus f(x,y,z) = x + y is convenient.



Special factor and maximum order complexity

A finite word v is to be a special factor of a word w if there exists at least
two different letters v and 8 such that ua and uf are subwords of w.

Theorem: Jansen (1989)

Let S = (s,)n be a sequence on X. Let k be the length of the largest
special factor of the word sps; ...sy—1. Then M(S,N) = k + 1.

For example for w = 01011 we notice that 01 is the longest special
factor of w. Therefore M(w,5) =2+ 1=3.



Expansion complexity

Let G(x) be the generating series of S : G(x) = >_ spx".
n>0

Expansion complexity at rank N

E(S, N) is the least total degree of h(x,y) € Fp[X, Y] such that

h(x,G(x)) =0 mod x".

Christol's theorem (1979)

S is p-automatic < The generating series of S is algebraic over IFp.
< E(S, N) is bounded.

No relationship between M(S, N) and E(S, N).
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Pseudorandom sequence

A sequence S is said pseudo-random if S has similar complexities as a
truly random sequence and can be easily generated.

Expected order for a truly random binary sequence

@ Maximum order complexity: M(S, N) ~ log N.
o Subword complexity: ps(N) ~ 2V,
o Expansion complexity: E(S,N) ~ v/N.




Classical Thue—Morse

Vinogradov's notation: f < g means |f| < C|g|, for some C > 0 and for
N large enough.

Measures for the Thue—Morse sequence

For N > 4, we have

M(T,N) > N : Sun-Winterhof (2019),
pr(N) < N : Brlek, de Luca-Varricchio (1989)

automatic, Allouche-Shallit (2003),
E(T,N) <5.

These measures are very similar for pattern sequences.



What happens along squares ?

Let us denote T2 = (£(n?))n>0-

01101001100101101001...

Theorem: Drmota, Mauduit and Rivat (2019)

T> is a normal sequence.

Tz is no longer automatic = E(72, N) — +oc.

Theorem: Sun and Winterhof (2019)

M(T3, N) > N*/2.

Thus the Thue—Morse sequence along squares is a better candidate for a
pseudorandom sequence.
Again, same phenomenon appears for pattern sequences.



The 32 x 32 first terms of Thue—Morse

Figure: Along squares

Figure: Classical



Generalization to other polynomial subsequences

Let P € Z[X], P(N) C N of degree d > 2. Let us denote
Te = (t(P(n)))s. Then
@ The subword complexity 7p is exponential: pr.(N) > cV with
c =2/2"" Moshe (2007).
e Tp is not automatic E(7p, N) — +cc.

Theorem: P. (2020)

Let P € Z[X], P(N) C N of degree d monic. Let Tp = (t(P(n))), and
Pr.p = (pc(P(n)))n , then we have for N > Ny(k, P),

M(Tp, N) > N/,
M(Pk,P, N) > N4,

Build a special factor of length N*/¢, up to a constant, in the first N
terms.



Sum of digits function

t(n) = s2(n) (mod 2), s2(n) is the sum of digits function in base 2.
For a,b >0, b < 2" we have 5;(a2" + b) = sx(a) + s2(b).
(3 0---0 =a2"

+ (b =0b
(3)2 (b)g =a2" + b.

The sum is said to be non-interfering since there is no interaction
between the digits of a and b.

Then for all £> 0 and n < 2%

520 +29) = 5(2*1) =1

0\ (+1
s(n+2%) = s(n+2"") and { (2 +21) =0 (mod 2)

— special factor of lenght 2¢, for all £ > 0.



Sketch of proof

Let P € N[X], we have for all £,r > 0 and 0 < n < cp2*, for some
cp >0,

t(P(n+2%)) = t(P(n + 29“)).

Exact same proof as before.

Then we seek for all n such as n > ¢cp2?, “close” of 2¢, such as
t(P(n+29%) = t(P(n+29+")) +1 (mod 2).

Hardest part in general, precise control of the carry propagation is needed.
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Numeration system based on the Fibonnaci sequence:
F,=0,1,1,2,3,5,8,13,21,....

Zeckendorf base

F = (F,)n Fibonacci sequence, Fp = 0 et F; = 1. Each integer n can be
represented uniquely by

n= ZE,’(FI)FH,Q, with g;41(n)e;(n) = 0.
i>0

eiy1(n)ei(n) = 0 hypothesis is to ensure the unicity.

n || Binary || Zeckendorf

0| o 0 8 1000 || 10000
11 1 9 1001 || 10001
2 | 10 10 10 || 1010 || 10010
3] 11 100 11 || 1011 || 10100
4 || 100 101 12 || 1100 || 10101
51 101 1000 13 || 1101 || 100000
6 | 110 1001 14 || 1110 || 100001
7 111 1010 15 || 1111 || 100010



Analogus of the Thue—Morse sequence: the sum of digits function

sz(n) = Ze;(n).

i>0

Sz = (sz(n) (mod 2)),>0 is a morphic sequence (Bruyére) with

f.{an—>ab,b»—>c and

) a—0,b—1
c—cd,d— a

c—1,d—0.

Sz =mof(a)=011101001000110001011 ...
Sz is not an automatic sequence, Drmota-Miillner-Spiegelhofer (2018).



Carry propagation

@ Transversality: +

due to Fn+2 = Fn+1 + Fn-

1 0 0 0 =5
@ Right carr ion: + 1 0 01 =6
g Yy propagation: 1 0 0 1 1
1 0 1 0 0 =11

due to 2F, = Fpy1 + Foo.

Carry propagation works very differently than the base 2.






Determinism of S,

e
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Determinism of S,

Figure: The 55 x 55 first terms of Sz

55 = Fo.



Maximum order complexity of Sz

Let o = % be the golden ratio.

Theorem: Jamet, P., Stoll (2021)

There exists Ng > 0 such as that for all N > N

N+1.

M(Sz, N) >
(Z ) +<,D3

Theorem: Shallit (2022)

M(Sz,N) _ 1
N

liminfy_ oo

Tl
- MSZ,N _ 1
limsupy oo — 1 = g

Thanks to Walnut, unfortunately not possible to go on polynomial
subsequences.



Randomness of Sz along squares

e Tt _ ""

TR

Figure: The 55 x 55 first terms of Sz along squares



Polynomial subsequences

Different result from the Thue—Morse sequence. Factor 2d instead of d
due to the right carry propagation.

Theorem: Jamet, P., Stoll (2021)

Let P € Z[X], P(N) C N monic of degree d.
Sz,p = (sz(P(n)) (mod 2)),, then

M(Sz’p, N) > /24

(n+2%2 = n? +21n 4 226 — good expression in base 2.
(n+ F;)?> = n*+2nF, + F} = expression in Zeckendorf base ?
Only perfect powers that are Fibonacci numbers are 1, 8 = 23 and
144 = 122,

. Ly=2,[;=1
Lucas numbers: £ = (L,),, and { Lo = Lya1+ Lpn > 0.

L, = Foi1+ Fo_1 and L9 is “simple” in Zeckendorf base.
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DAWG

We can find the special factors of a word by building its DAWG (Direct
Acyclic Word Graph).

Let w=ay...a,€ X"

For a subword y of w, we define the set E,(y) ={i:y = aj_|y|+1---ai},
the set of ending positions of y.

Two subwords y and z are said suffix-equivalents if E,,(y) = E.(z).

The DAWG (Direct Acyclic Word Graph) of a word is the smallest graph
that recognizes every subword of a word (Blumer et al.).

The edges are subwords and the vertices are letters. Two subwords are in
the same edge if they are suffix-equivalents.

We can find easily the special factor of a word by building its DAWG and
looking for the deepest edge with at least two outgoing arrows.



Example

w = 01011.
Sub(w) = {0,1,01,10,11,010,101,011,0101,1011,01011}.
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Example

w = 01011.
Sub(w) = {0,1,01,10,11,010,101,011,0101,1011,01011}.

|117 011, 1011, o1o11|




Example

w = 01011.
Sub(w) = {0,1,01,10,11,010,101,011,0101,1011,01011}.

|11,011, 1o11,o1o11|

Thus the longest factor special is the deepest node with at least two
outgoing arrows, here this is 01.
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Figure: Maximum order complexity at rank N of the Thue—Morse sequence
along squares.
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Figure: Maximum order complexity at rank N of the Thue—Morse sequence
along cubes.
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Figure: Maximum order complexity at rank N of Zeckendorf along squares.



Conjectures

@ The maximum order complexity of the Thue—Morse sequence along
polynomial subsequences of degree d satisfies

M(Tp, N) =< N4

@ The maximum order complexity of the Zeckendorf sequence along
polynomial subsequences of degree d satisfies

M(SZ,,D, N) = Nl/zd.



Open problem

Figure: The 64 x 64 first terms of Thue—Morse along primes.

Problem: Show a bound of the maximum order complexity for this

subsequence. Estimations gives log(N).



Thank you for your attention !

Contact:

Pierre Popoli
pierre.popoli@univ-lorraine.fr
Institut Elie Cartan de Lorraine
Université de Lorraine
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