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Input: (13)2 = 1101, we read left to right.
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Then t(13) = 1.
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Thue–Morse sequence T

T can also be generated by the following morphism f :
{

0 7→ 01
1 7→ 10.

This morphism is uniform: images have same length.
We apply recursively the corresponding morphism

0
f (0) = 01
f (01) = f (0) f (1) = 01 10
f (0110) = 0110 1001
...
f ω(0) = 0110100110010110 . . .

Thus t(n) is the n-th value of f ω(0).
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Automatic sequence: generated by an automaton or equivalently as a
projection of a fixed point of a uniform morphism.

a/0 b/0 c/1 d/1

0
1 1 0

0

110

Figure: Automaton of the Golay–Rudin–Shapiro sequence R = (r(n))n

For (13)2 = 1101, we have r(13) = 1.

R = (r(n))n = 000100100011101 . . .

Or with the morphism f :
{

a 7→ ab, b 7→ ac,
c 7→ db, d 7→ dc.

and π :
{

a, b 7→ 0,
c, d 7→ 1.

Thus
{

f ω(a) = abacabdbabacdcac . . .
π(f ω(a)) = 000100100011101 . . . .
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Generalization

Let w be a word in base 2, ew (n) counts the number of occurences of w
in the expansion of n in base 2.
Then S = (sn)n = (eω(n) (mod 2))n is an automatic sequence.
Particular word: wk = 1 · · · 1 = 1k .

k = 1 → Thue–Morse.
t(n) counts the number of 1 in (n)2 mod 2.
13 = (1101)2, t(13) = 1.
k = 2 → Golay–Rudin–Shapiro.
r(n) counts the number of 11 in (n)2 mod 2.
13 = (1101)2, r(13) = 1.

For a general k, these sequences are called pattern sequences.
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Morphic sequences

Morphic sequences are generated by morphisms that are not necessarily
uniform.
Example 1: Fibonacci word

f :
{

0 7→ 01
1 7→ 0 , thus we have f ω(0) = 0100101001001 · · ·

We have |f n(0)| = Fn the n-th Fibonacci number.
Non–automatic sequence: the frequencies of its letters are not rational.

Example 2: The characteristic sequence of squares is a morphic sequence
with

f :

 a 7→ abcc,
b 7→ bcc,
c 7→ c.

and π :
{

a, b 7→ 1,
c 7→ 0.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
π(f ω(a)) 1 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1

Non–automatic sequence (Ritchie, 1963).
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Remark

Notice that it is not trivial in general to determine whether a morphic
sequence is automatic or not.

f :

 0 7→ 12
1 7→ 102
2 7→ 0

, f ω(1) = 102120102012 . . .

is automatic (Berstel, 1978), with image reduction modulo 3 of

g :
{

0 7→ 12, 1 7→ 13
2 7→ 20, 3 7→ 21 ,

gω(1) =132120132012 . . .

↓ (mod 3)
102120102012 . . .
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Subword complexity
Let w = a0a1a2 . . . be an infinite word on an alphabet Σ. A finite word
u = b0b1 . . . bk−1 ∈ Σk is a subword of w if there exists i such that

ai = b0, ai+1 = b1, . . . , ai+k−1 = bk−1.

Subword complexity
Let S = (sn)n be a sequence Σ and w = s0s1 . . ..
For k ≥ 0, we define pS by

pS(k) = #{u ∈ Σk : u is a subword of w}.

where w = s0s1 . . ..

pS(k) ≤ Card(Σ)k for all k.
S = 01010101 . . ., pS(k) = 2 for all k.
If there exists k such as pS(k) ≤ k, S is periodic.
If pS(k) = k + 1 for all k, S is said to be sturmian.
Example: Fibonacci word.
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Normal sequence

A sequence is said to be normal if for every word b0 . . . bk−1 ∈ Σk :

lim
N→+∞

1
N #{i < N, si = b0, . . . , si+k−1 = bk−1} = 1

Card(Σ)k ,

i.e. every word appears in the sequence and each word of a fixed length
appears with the same frequency.
Almost every sequence is normal (Borel, 1909) but relatively few
constructions are known.
Example: The Champernowne sequence (1933)

S = 0 1 10 11 100 . . .

is a normal sequence on {0, 1}.
It is conjectured that π is a normal number but still not known.
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Feedback shift register (FSR)

Binary FSR with n states
Mapping F : Fn

2 → Fn
2, n ≥ 2 on the form

F : (x0, x1, . . . , xn−1) 7→ (x1, x2, . . . , xn−1, f (x0, x1, . . . , xn−1)),

where f ∈ F2[X0, . . . , Xn−1].

The binary sequence S = (si)i≥0, with n given terms, and the remaining
terms obtained with the relationship recurrence

si+n = f (si , . . . , si+n−1), i ≥ 0.

is called the output sequence of the FSR.
An output sequence generated by a short FSR is considered weak for
cryptographic applications since it is too predictable.
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Maximum order complexity

Maximum order complexity at rank N
M(S, N) is the smallest integer M such that

si+M = f (si , . . . , si+M−1),

with f (X1, . . . , XM) ∈ Fp[X1, . . . , XM ] and 0 ≤ i ≤ N − M − 1.

M(S, N): length of the shortest FSR that generates the first N elements
of S.
The maximum order complexity is used as an indicator of the
unpredictability of the sequence.
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Example 1/2

Let S = 01011 . . .. We have M(S, 2) = 1 since the two first letters are
not identical.
In order that M(S, 3) = 1, we have to find a polynomial f (x) such that{

s2 = f (s1),
s1 = f (s0). =⇒

{
0 = f (1),
1 = f (0).

Thus the polynomial f (x) = −x + 1 is convenient.
In order that M(S, 4) = 1, we have to find a polynomial f (x) such that s3 = f (s2),

s2 = f (s1),
s1 = f (s0).

=⇒

 1 = f (0),
0 = f (1),
1 = f (0).

Thus the same polynomial as before is convenient.
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Example 2/2
S = 01011 . . ..
In order that M(S, 5) = 1, we have to find a polynomial f (x) such that{

1 = f (1), 1 = f (0)
0 = f (1), 1 = f (0) =⇒ not possible.

We have to increase the number of variables.
In order that M(S, 5) = 2, we have to find a polynomial f (x , y) such that s4 = f (s3, s2)

s3 = f (s2, s1)
s2 = f (s1, s0)

=⇒

 1 = f (1, 0)
1 = f (0, 1)
0 = f (1, 0)

=⇒ again not possible.

In order that M(S, 5) = 3, we have to find a polynomial f (x , y , z) such
that {

s4 = f (s3, s2, s1)
s3 = f (s2, s1, s0) =⇒

{
1 = f (1, 0, 1)
1 = f (0, 1, 0)

Thus f (x , y , z) = x + y is convenient.
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Special factor and maximum order complexity

A finite word u is to be a special factor of a word w if there exists at least
two different letters α and β such that uα and uβ are subwords of w .

Theorem: Jansen (1989)
Let S = (sn)n be a sequence on Σ. Let k be the length of the largest
special factor of the word s0s1 . . . sN−1. Then M(S, N) = k + 1.

For example for w = 01011 we notice that 01 is the longest special
factor of w . Therefore M(w , 5) = 2 + 1 = 3.
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Expansion complexity

Let G(x) be the generating series of S : G(x) =
∑
n≥0

snxn.

Expansion complexity at rank N
E (S, N) is the least total degree of h(x , y) ∈ Fp[X , Y ] such that

h(x , G(x)) ≡ 0 mod xN .

Christol’s theorem (1979)
S is p-automatic ⇔ The generating series of S is algebraic over Fp.

⇔ E (S, N) is bounded.

No relationship between M(S, N) and E (S, N).
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Pseudorandom sequence

A sequence S is said pseudo-random if S has similar complexities as a
truly random sequence and can be easily generated.

Expected order for a truly random binary sequence
Maximum order complexity: M(S, N) ≃ log N.
Subword complexity: pS(N) ≃ 2N .
Expansion complexity: E (S, N) ≃

√
N.
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Classical Thue–Morse

Vinogradov’s notation: f ≪ g means |f | ≤ C |g |, for some C ≥ 0 and for
N large enough.

Measures for the Thue–Morse sequence
For N ≥ 4, we have

M(T , N) ≫ N : Sun-Winterhof (2019),
pT (N) ≪ N : Brlek, de Luca-Varricchio (1989)

automatic, Allouche-Shallit (2003),
E (T , N) ≤ 5.

These measures are very similar for pattern sequences.
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What happens along squares ?

Let us denote T2 = (t(n2))n≥0.

0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 . . .

Theorem: Drmota, Mauduit and Rivat (2019)

T2 is a normal sequence.

T2 is no longer automatic =⇒ E (T2, N) → +∞.

Theorem: Sun and Winterhof (2019)

M(T2, N) ≫ N1/2.

Thus the Thue–Morse sequence along squares is a better candidate for a
pseudorandom sequence.
Again, same phenomenon appears for pattern sequences.
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The 32 × 32 first terms of Thue–Morse

Figure: Classical Figure: Along squares
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Generalization to other polynomial subsequences

Let P ∈ Z[X ], P(N) ⊂ N of degree d ≥ 2. Let us denote
TP = (t(P(n)))n. Then

The subword complexity TP is exponential: pTP (N) ≥ cN with
c = 21/2d−2 , Moshe (2007).
TP is not automatic E (TP , N) → +∞.

Theorem: P. (2020)
Let P ∈ Z[X ], P(N) ⊂ N of degree d monic. Let TP = (t(P(n)))n and
Pk,P = (pk(P(n)))n , then we have for N ≥ N0(k, P),

M(Tp, N) ≫ N1/d ,

M(Pk,P , N) ≫ N1/d .

Build a special factor of length N1/d , up to a constant, in the first N
terms.
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Sum of digits function

t(n) ≡ s2(n) (mod 2), s2(n) is the sum of digits function in base 2.
For a, b ≥ 0, b < 2r we have s2(a2r + b) = s2(a) + s2(b).

(a)2 0 · · · 0 = a2r

+ (b)2 = b
(a)2 (b)2 = a2r + b.

The sum is said to be non-interfering since there is no interaction
between the digits of a and b.
Then for all ℓ ≥ 0 and n < 2ℓ:

s2(n + 2ℓ) = s2(n + 2ℓ+1) and
{

s2(2ℓ + 2ℓ) = s2(2ℓ+1) = 1
s2(2ℓ + 2ℓ+1) = 0 (mod 2)

=⇒ special factor of lenght 2ℓ, for all ℓ ≥ 0.
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Sketch of proof

Let P ∈ N[X ], we have for all ℓ, r > 0 and 0 ≤ n < cP2ℓ, for some
cP > 0,

t(P(n + 2dℓ)) = t(P(n + 2dℓ+r )).

Exact same proof as before.

Then we seek for all n such as n > cP2ℓ, “close” of 2ℓ, such as

t(P(n + 2dℓ)) ≡ t(P(n + 2dℓ+r )) + 1 (mod 2).

Hardest part in general, precise control of the carry propagation is needed.
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Numeration system based on the Fibonnaci sequence:
Fn = 0, 1, 1, 2, 3, 5, 8, 13, 21, . . ..

Zeckendorf base
F = (Fn)n Fibonacci sequence, F0 = 0 et F1 = 1. Each integer n can be
represented uniquely by

n =
∑
i≥0

εi(n)Fi+2, with εi+1(n)εi(n) = 0.

εi+1(n)εi(n) = 0 hypothesis is to ensure the unicity.
n Binary Zeckendorf
0 0 0 8 1000 10000
1 1 1 9 1001 10001
2 10 10 10 1010 10010
3 11 100 11 1011 10100
4 100 101 12 1100 10101
5 101 1000 13 1101 100000
6 110 1001 14 1110 100001
7 111 1010 15 1111 100010
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Analogus of the Thue–Morse sequence: the sum of digits function

sZ (n) =
∑
i≥0

εi(n).

SZ = (sZ (n) (mod 2))n≥0 is a morphic sequence (Bruyère) with

f :
{

a 7→ ab, b 7→ c
c 7→ cd , d 7→ a and π :

{
a 7→ 0, b 7→ 1
c 7→ 1, d 7→ 0.

SZ = π ◦ f (a) = 011101001000110001011 . . .
SZ is not an automatic sequence, Drmota-Müllner-Spiegelhofer (2018).
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Carry propagation

Transversality:
1 0 0 1 0 = 10

+ 1 = 1
1 0 1 0 0 = 11.

due to Fn+2 = Fn+1 + Fn.

Right carry propagation:

1 0 0 0 = 5
+ 1 0 0 1 = 6

1 0 0 1 1
1 0 1 0 0 = 11.

due to 2Fn = Fn+1 + Fn−2.
Carry propagation works very differently than the base 2.
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Determinism of SZ

Figure: The 53 × 53 first terms of SZ



30/41

Determinism of SZ

Figure: The 54 × 54 first terms of SZ
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Determinism of SZ

Figure: The 55 × 55 first terms of SZ

55 = F10.
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Maximum order complexity of SZ

Let φ = 1+
√

5
2 be the golden ratio.

Theorem: Jamet, P., Stoll (2021)
There exists N0 > 0 such as that for all N > N0

M(SZ , N) ≥ 1
φ + φ3 N + 1.

Theorem: Shallit (2022)
lim infN→+∞

M(SZ ,N)
N = 1

φ+φ3 ,
lim supN→+∞

M(SZ ,N)
N = 1

1+φ2 .

Thanks to Walnut, unfortunately not possible to go on polynomial
subsequences.
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Randomness of SZ along squares

Figure: The 55 × 55 first terms of SZ along squares
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Polynomial subsequences

Different result from the Thue–Morse sequence. Factor 2d instead of d
due to the right carry propagation.

Theorem: Jamet, P., Stoll (2021)
Let P ∈ Z[X ], P(N) ⊂ N monic of degree d .
SZ ,P = (sZ (P(n)) (mod 2))n, then

M(SZ ,P , N) ≫ N1/2d .

(n + 2ℓ)2 = n2 + 2ℓ+1n + 22ℓ =⇒ good expression in base 2.
(n + Fℓ)2 = n2 + 2nFℓ + F 2

ℓ =⇒ expression in Zeckendorf base ?
Only perfect powers that are Fibonacci numbers are 1, 8 = 23 and
144 = 122.

Lucas numbers: L = (Ln)n, and
{

L0 = 2, L1 = 1
Ln+2 = Ln+1 + Ln, n ≥ 0.

Ln = Fn+1 + Fn−1 and Ld
n is “simple” in Zeckendorf base.
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DAWG

We can find the special factors of a word by building its DAWG (Direct
Acyclic Word Graph).
Let w = a1 . . . an ∈ Σn.
For a subword y of w , we define the set Ew (y) = {i : y = ai−|y |+1 . . . ai},
the set of ending positions of y .
Two subwords y and z are said suffix-equivalents if Ew (y) = Ew (z).
The DAWG (Direct Acyclic Word Graph) of a word is the smallest graph
that recognizes every subword of a word (Blumer et al.).
The edges are subwords and the vertices are letters. Two subwords are in
the same edge if they are suffix-equivalents.
We can find easily the special factor of a word by building its DAWG and
looking for the deepest edge with at least two outgoing arrows.
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Example

w = 01011.
Sub(w) = {0, 1, 01, 10, 11, 010, 101, 011, 0101, 1011, 01011}.

ε

0 1
0 1

01
1

10, 010

0
0

101, 0101
1

11, 011, 1011, 01011
1

1
1
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Example
w = 01011.
Sub(w) = {0, 1, 01, 10, 11, 010, 101, 011, 0101, 1011, 01011}.

ε

0 1
0 1

01
1

10, 010

0
0

101, 0101
0

11, 011, 1011, 01011
1
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1

Thus the longest factor special is the deepest node with at least two
outgoing arrows, here this is 01.
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Figure: Maximum order complexity at rank N of the Thue–Morse sequence
along squares.
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Figure: Maximum order complexity at rank N of the Thue–Morse sequence
along cubes.
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Figure: Maximum order complexity at rank N of Zeckendorf along squares.
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Conjectures

The maximum order complexity of the Thue–Morse sequence along
polynomial subsequences of degree d satisfies

M(TP , N) ≍ N1/d .

The maximum order complexity of the Zeckendorf sequence along
polynomial subsequences of degree d satisfies

M(SZ ,P , N) ≍ N1/2d .



40/41

Open problem

Figure: The 64 × 64 first terms of Thue–Morse along primes.

Problem: Show a bound of the maximum order complexity for this
subsequence. Estimations gives log(N).
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Thank you for your attention !

Contact:
Pierre Popoli

pierre.popoli@univ-lorraine.fr
Institut Élie Cartan de Lorraine

Université de Lorraine
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