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3 Difficult Questions

Let x , y ∈ {0, 1}n be a pair of distinct 0− 1 strings of length n.

Question 1

Is there a DFA with O(log n) states that accepts x but not y?

Question 2

Is there a string of length O(n1/3) that appears a different number of
times as a subsequence in x compared to y?

Question 3

If someone secretly chooses x or y and gives us O(n2) random
subsequences of length n/2, can we say with high probability whether the
secret string is x , or y?
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Outline of the Talk

We’ll go through each of these questions, explaining

1 what is known about them

2 what is not known about them, and

3 how they appear to relate to one another.

Partial spoiler: there’s much more work to be done; all three problems
currently have an exponential gap between the best known bounds!
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The Separating Words Problem

“Imagine a computing device with very limited powers. What is the
simplest computational problem you could ask it to solve? It is not the
addition of two numbers, nor sorting, nor string matching – it is telling

two inputs apart.” - Jeffrey Shallit

The Separating Words Problem

For distinct x , y ∈ {0, 1}n, what is the smallest size of a DFA that accepts
x but not y?

The answer is just a function of n. In other words, we care about the
“worst-case” pair x , y ∈ {0, 1}n.
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The Separating Words Problem

This DFA accepts, for example, the strings 00, 111, and 1010011.

This DFA rejects, for example, the strings 0, 10, and 11001.

Say a DFA separates x , y if it accepts one but not the other.

The above DFA separates 00 and 10.
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The Separating Words Problem

The Separating Words Problem

For distinct x , y ∈ {0, 1}n, what is the smallest size of a DFA that accepts
x but not y?

The problem was introduced in 1986 by Goralcik and Koubek.

One could ask a similar question for strings with possibly different length,
but this turns out to be too easy.

A trivial upper bound is n + 1: simply put n + 1 states “in a row” and
have the transitions be such that when x is the input, we “move forward”
every time.
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The Separating Words Problem

Trivial upper bound is n + 1.

Theorem (Goralcik and Koubek, 1986)

Any distinct x , y ∈ {0, 1}n can be separated by a DFA with o(n) states.

They also showed a lower bound.

Theorem (Goralcik and Koubek, 1986)

There exist x , y ∈ {0, 1}n for which no DFA with fewer than Ω(log n)
states can separate.

The example giving the log n lower bound is, for k := log n,

0k1k+lcm(1,2,...,k)

0k+lcm(1,2,...,k)1k .

.
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The Separating Words Problem

In 1989, Robson improved upon the upper bound.

Theorem (Robson, 1989)

Any distinct x , y ∈ {0, 1}n can be separated by a DFA with Õ(n2/5) states.

We remark that he begins his paper with a shorter proof of an Õ(n1/2)
upper bound.

We recently got a further improvement to the upper bound.

Theorem (C., 2020)

Any distinct x , y ∈ {0, 1}n can be separated by a DFA with Õ(n1/3) states.

Remember, the lower bound is still Ω(log n)!
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The k-deck Problem

The k-deck Problem

For distinct x , y ∈ {0, 1}n, what is the smallest length of a string w that
appears a different number of times as a subsequence of x and y?

Once again, the answer is just a function of n – we care about the
“worst-case” pair x , y ∈ {0, 1}n.

Example: For w = 01, x = 0110, and y = 1001, note that w appears
twice as a subsequence in each of x and y :

x = 0110 = 0110

y = 1001 = 1001.

However, w = 011 appears 1 time in x and 0 times in y :

x = 0111 y = 1001.
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The k-deck Problem

The trivial upper bound to the problem is, of course, n.

The example on the previous slide is actually an instance of the
Thue-Morse word and its complement.

01101001100101101001011001101001

10010110011010010110100110010110

These pairs, for n a power of 2, give a lower bound of Ω(log n) for the
k-deck problem.

There were a couple of proofs of a bn2c upper bound and some
multiplicative constant improvements of the Ω(log n) lower bound.
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The k-deck Problem

So the known bounds were basically c log n and Cn for certain constants
c ,C > 0.

Let’s for ease introduce the notation f (w ; x) for the number of times that
a string w appears as a subsequence in a string x .

Theorem (Scott, 1997) (Krasikov and Roddity, 1997)

For any distinct x , y ∈ {0, 1}n, there exists |w | = Õ(
√
n) such that

f (w ; x) 6= f (w ; y).

There was also a major improvement to the lower bound.

Theorem (Dudik and Schulman, 2003)

For arbitrarily large n there exist distinct x , y ∈ {0, 1}n such that for all
|w | ≤ exp

(
Ω(
√

log n)
)
, we have f (w ; x) = f (w ; y).
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The k-deck Problem

Theorem (Dudik and Schulman, 2003)

For arbitrarily large n there exist distinct x , y ∈ {0, 1}n such that for all
|w | ≤ exp

(
Ω(
√

log n)
)
, we have f (w ; x) = f (w ; y).

We briefly remark on their (random) construction.

First, note that the Thue-Morse sequence and its complement are
generated by “repeated substitutions”.

If x (k), y (k) are the Thue-Morse sequence and its complement of length
2k , then

x (k+1) = x (k) ◦ y (k)

y (k+1) = y (k) ◦ x (k).
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The k-deck Problem

If x (k), y (k) are the Thue-Morse sequence and its complement of length
2k , then

x (k+1) = x (k) ◦ y (k)

y (k+1) = y (k) ◦ x (k).

In other words, to obtain x (k+1) and y (k+1) from x (k) and y (k), we
substitute into the pattern

ab

ba

with a = x (k), b = y (k).

The Dudik-Schulman construction is by repeatedly substituting the
previous pair into a cleverly chosen random pattern that can (and does)
change as the construction goes on.
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The k-deck Problem

The k-deck Problem

For distinct x , y ∈ {0, 1}n, what is the smallest length of a string w that
appears a different number of times as a subsequence of x and y?

Those bounds are still the best to date: an upper bound of Õ(
√
n) and a

lower bound of exp
(
Ω(
√

log n)
)
.
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The Trace Reconstruction Problem

Take a string x ∈ {0, 1}n.

A trace of x is obtained by deleting each bit with probability 1/2 and
concatenating the result.

Example of x and a (random) trace:
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The Trace Reconstruction Problem

There’s an unknown string x ∈ {0, 1}n.

How many independently drawn traces of x do we need so that we can
determine x with probability at least 0.9?

We want the answer for the worst-case x .
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The Trace Reconstruction Problem

The optimal algorithm is quite obvious – choose the x ∈ {0, 1}n that most
likely generated the observed traces.

However, we’re not (yet?) able to analyze this algorithm. So we instead
come up with worse algorithms.

1st Batch of Bounds

Upper bound: exp (O(n))
Lower bound: Ω(n)

Proof: For upper bound, just wait until see the whole string. For lower
bound, consider the pair

00 . . . 001000 . . . 00

00 . . . 000100 . . . 00

The main question is whether polynomially many traces suffice.
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The Trace Reconstruction Problem

The trace reconstruction problem is essentially equivalent to its pairwise
version.

If the unknown string is (correctly) promised to be either a certain x or y
in {0, 1}n, then how many traces are needed to determine the truth (whp)?

As usual, we want the answer – a function of n – for the worst-case pair
x , y .
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The Trace Reconstruction Problem

The first bounds were Ω(n) and exp (O(n)).

In 2008, Holenstein, Mitzenmacher, Panigrahy, and Wieder established an

upper bound of exp
(
Õ(n1/2)

)
.

In 2016, De, O’donnell, Servedio, and Nazarov, Peres independently and
concurrently established an upper bound of exp

(
O(n1/3)

)
.

In 2018, Holden and Lyons improved the lower bound to Ω̃(n5/4).

In 2019, C. improved the lower bound to Ω̃(n3/2).

In 2020, C. improved the upper bound to exp
(
Õ(n1/5)

)
.

These are the best bounds to date. Much room to improve!
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Connections

The 3 problems we just discussed seem to be more related than one might
first expect.

The proofs of the

1 Õ(n1/2) bound for the separating words problem,

2 the Õ(n1/2) bound for the k-deck problem, and

3 the exp
(
Õ(n1/3)

)
bound for the trace reconstruction problem

are all essentially the same!

And the proofs of the Õ(n1/3), exp
(
Õ(n1/5)

)
bounds for the SW and TR

problems, respectively, are also essentially the same.

More opaquely, I personally find it interesting that hard pairs for the SW
and TR problems need to have common padding at the beginning, i.e., the
first index at which they disagree must be “large”.

Zachary Chase (Oxford) The separating words, k-deck, and trace reconstruction problemsJuly 11th, 2022 20 / 33



A Number Theory Problem

For a subset A ⊆ [n] := {1, . . . , n}, a prime p, and an integer i , define

Ai ,p := {a ∈ A : a ≡ i (mod p)}.

Problem

Let A,B ⊆ [n] be distinct. How small of a p can we find so that there is
some i with

|Ai ,p| 6= |Bi ,p|?

Taking the negation, we’re asking for the largest p so that there are two
distinct subsets of [n] with the same number of evens, the same number of
odds, the same number of things 0 mod 3, the same number of things 1
mod 3, the same number of things 2 mod 3, . . . , the same number of
things p − 1 mod p.
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A Number Theory Problem

The answer is Õ(n1/2).

Theorem

For any distinct A,B ⊆ [n], there is some p ≤ O(
√
n log n) and some i so

that
|Ai ,p| 6= |Bi ,p|.

Proof: Suppose false. Then

n∑
k=1

(1A(k)− 1B(k))zk

is a polynomial of degree at most n with roots at

z = e2πi
m
p

for all m ∈ {0, 1, . . . , p − 1} for all p ≤ O(
√
n log n). So the polynomial

must be identically 0, contradicting that A,B are distinct.
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A Number Theory Problem

There’s also a more obnoxious proof of the Õ(n1/2) bound that will
actually be useful for later.

Theorem

For any distinct A,B ⊆ [n], there is some non-negative integer
m = Õ(n1/2) such that ∑

a∈A
am 6=

∑
b∈B

bm.

It’s actually trivial to see that this implies the Õ(n1/2) bound for the
number theory problem, since

∑
a∈A

am ≡
p−1∑
i=0

|Ai ,p|im (mod p).

Zachary Chase (Oxford) The separating words, k-deck, and trace reconstruction problemsJuly 11th, 2022 23 / 33



A ‘Moments’ Problem

Theorem

For any distinct A,B ⊆ [n], there is some non-negative integer
m = Õ(n1/2) such that ∑

a∈A
am 6=

∑
b∈B

bm.

This problem is susceptible to complex analytic techniques.

Indeed, it is relatively easy to see that it is equivalent to the following.

Theorem

Let p(x) be a polynomial of degree n with coefficients in {−1, 0, 1}. Then,
(x − 1)C

√
n log n does not divide p(x).

If (x − 1)C
√
n log n did divide p(x), then p(x) will be extremely small

uniformly near x = 1, which can be ruled out with complex analytic
techniques.
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Connections

The punchline: these three problems – the number theoretic one, the
‘moments’ one, and the complex analytic one – all arise from (and
essentially are equivalent to) analyzing a type of “single-bit statistics” for
the given pair x , y .

For the separating words problem, we want a small prime p and some
integer i so that the number of 1s in x that are at indices congruent to i
mod p differs from that of y .

For the k-deck problem, we look at the counts of the number of
subsequences of x of length k that have a 1 in position j (for j ≤ k).

For the trace reconstruction problem, we look at the probability that a
trace of x will have a 1 in position j (for j ≤ n).
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Connections

For concreteness, running through the trace reconstruction argument with
very large deletion parameter (≈ 1− n−1/2) recovers the Õ(n1/2) bound
on the k-deck problem.

So given the above methods, it is natural to try looking at two indices
instead of one, say.

For SW, we can look at the number of pairs of 1s in x , the first of which is
at an index i1 mod p and the second at an index i2 mod p.

For k-deck, we can look at the number of subsequences of x of length k
with 1s at positions j1 and j2.

For TR, we can look at the probability that a trace of x has 1s at positions
j1 and j2.
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Connections

The just-mentioned idea of looking at two indices instead of one probably
does give improvements in reality, but we currently don’t know how to
prove that it does.

However, that idea was looking at two indices that are potentially far away
from one another. What if we look at contiguous indices?

It’s easy to see that just looking at two contiguous indices won’t be
enough to get an improvement, so we have to look at many.
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Contiguous Substring Appearances

So, for example, for SW, we’d be wanting to count the number of
occurrences of a given string w , of length around n1/3, as a contiguous
substring in x and beginning at an index that is congruent to i mod p.

It’s still relatively “cheap” to build a DFA with few states that counts such
occurrences.
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Contiguous Substring Appearances

If we take the string w to be aperiodic, then the occurrences of w in a
given string x are well-separated from one another.

This translates to an extra assumption we are given, and can take
advantage of, in the number-theoretic problem.

We say that A ⊆ [n] is d-separated if |a− a′| < d =⇒ a = a′.

Theorem (C., 2020)

Let A,B ⊆ [n] be distinct and each n1/3-separated. Then there is some

prime p = Õ(n1/3) and some i with

|Ai ,p| 6= |Bi ,p|.

Recall that without the n1/3-separated assumption, the best we could do is
p = Õ(n1/2).
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A New Number-Theoretic Problem

Theorem (C., 2020)

Let A,B ⊆ [n] be distinct and each n1/3-separated. Then there is some

prime p = Õ(n1/3) and some i with

|Ai ,p| 6= |Bi ,p|.

Unlike the original number theory problem, this one has no “proof from
the book” (e.g. no strict cutoff).

So we take advantage of that more “obnoxious” proof of the previous
number theory problem, by going to the “moments” problem, and then to
the “polynomial near 1” problem.

The complex analytic techniques could be adapted to give an improvement
under this “separated” assumption.
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Connections

Unfortunately, it seems no (contiguous) substring methods can help with
the k-deck problem.

Indeed, in that problem, padding is not needed and thus distinct strings
with the same, say, log2 n-deck can have a different number of occurrences
of 01, say, as a contiguous substring.

However, surprisingly (to me), substring methods can help with trace
reconstruction.

Indeed, there are complicated formulae that recover good estimates for
substring counts from few traces.
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Summary

The Separating Words Problem

For any distinct x , y ∈ {0, 1}n, there is a DFA on · states that accepts x
but not y .

· = Õ(n1/3) · = Ω(log n).

The k-deck Problem

For any distinct x , y ∈ {0, 1}n, there is a string w ∈ {0, 1}· that appears a
different number of times as a subsequence in x and y .

· = Õ(n1/2) · = exp
(
Ω(
√

log n)
)
.

The Trace Reconstruction Problem

For any distinct x , y ∈ {0, 1}n, · random subsequences of length n/2
suffice with high probability to distinguish between x and y .

· = exp
(
Õ(n1/5)

)
· = Ω(n3/2).
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The End

Thanks for listening!
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