String Attractor: from data compression to Combinatorics on words

Giuseppe Romana - Università degli Studi di Palermo One World Combinatorics on Words Seminar - 17/10/2022

String Attractor

Definition [Kempa and Prezza, STOC 2018]

A string attractor Γ of a word $w \in \Sigma^n$ is a set of γ positions such that every distinct factor of w has at least an occurrence *crossing* a position in Γ .

2

String Attractor: example

- $\mathbf{w} = \mathbf{\underline{a}} \, \mathbf{d} \, \mathbf{c} \, \mathbf{\underline{b}} \, \mathbf{a} \, \mathbf{\underline{a}} \, \mathbf{d} \, \mathbf{\underline{c}} \, \mathbf{b} \, \mathbf{a} \, \mathbf{\underline{d}} \, \mathbf{\underline{c}}$
- $\succ \Gamma = \{1, 4, 6, 8, 11\}$
- Note: $\Gamma^* = \{4, 6, 8, 11\}$ is a string attractor too

List of all factors with occurrences not crossing a position in Γ

- d
 d
 dc
 ba
- b
- ► $|\Gamma^*|$ is minimum, since any string attractor must have size $\gamma^* \ge |\Sigma|$
- We denote by γ^* the size of a string attractor of **minimum size**
- Computing the size γ^* for a word w is an NP-complete problem [Kempa and Prezza, STOC 2018]

String Attractor and Data Compression

String attractors can be considered as unifying frameworks for different compression schemes based on repetitions [Kempa and Prezza, STOC 2018]

 \circ *r*: BWT runs

- g: SLP size
- **b**: macro scheme size
- c: collage system size
- e: CDAWG size

4

String Attractor and repetitiveness

Dictionary-based compressors exploit repetitions to compress and index data

- Efficient on highly repetitive datasets (DNA sequences, astronomical observations, ...)
- Relationships among compression schemes and repetitiveness measures of current interest [Navarro, ACM Comput. Surv. 2021]
- In recent works ([Kociumaka et al., LATIN 2020], [Kociumaka et al., LATIN 2022], ...), it has been investigated the δ -measure of a finite word w

$$\delta(w) = \max_{1 \le k \le |w|} \frac{\left|F(w) \cap \Sigma^k\right|}{k}$$

where F(w) denotes the set of all distinct factors in the word w

String Attractor: some lower bounds

- □ **Proposition** [Kempa and Prezza, STOC 2018]
- Let Γ be a string attractor for a word w of size γ . Then

In [Kempa and Prezza, STOC 2018] it is also defined another lower bound of γ* related to the length *l* of the longest repeated factor:

$$\gamma^*(w) \ge \frac{|w| - l}{l+1}$$

6

String Attractors and Finite Words: Combinatorial properties

A combinatorial view on String Attractor

Mantaci, Restivo, R, Rosone, Sciortino Theoret. Comput. Sci. 2021

String Attractor on reverse of a word

Proposition

• Let w^R be the reverse of the finite word w. Then, $\gamma^*(w) = \gamma^*(w^R)$.

String Attractor on concatenation: upper-bound

Proposition

Let u and v be two finite words and $\gamma^*(u)$ and $\gamma^*(v)$ the sizes of their respective smallest string attractor. Then, $\gamma^*(uv) \le \gamma^*(u) + \gamma^*(v) + 1$.

 $\gamma^*(uv) \leq |\Gamma_{uv}| = |\Gamma^*(u) \cup \{|u|+1\} \cup \{p+|u| \text{ for every } p \in \Gamma^*(v)\}|$

9

String attractor on powers ≥2

Proposition

Let *w* be a word over the alphabet Σ. Then, for every $n \ge 2$:

$$1. \quad \gamma^*(w^n) \le \gamma^*(w) + 1$$

$$2. \quad \gamma^*(w^n) = \gamma^*(w^2)$$

Monotonicity of γ^*

- Problem: In [Kociumaka et al., LATIN 2020] the authors posed the question whether or not the measure γ* of the smallest string attractor for a word w is monotonic
- ▶ In other terms, is $\gamma^*(w) \le \gamma^*(wu)$ for all words *w* and *u*?
- Answer: The measure γ^* is not monotone

 $w = a\underline{b}b\underline{b}a\underline{a}\underline{a}b$ $w \cdot b = abb\underline{b}a\underline{a}\underline{a}b$

 $\gamma^*(w) = 3$

11

 $\gamma^*(\boldsymbol{w}\cdot\boldsymbol{b})=2$

Is $\gamma^*(w^n) \geq \gamma^*(w)$?

- Question: does monotonicity of γ^* holds from w to w^n ?
- Answer: Monotonicity does not hold for power of a word

Proposition

For each t > 0, there exists an alphabet Σ_t and a word $w_t \in \Sigma_t^*$ such that $\gamma^*(w_t) - \gamma^*(w_t^n) > t$, for each $n \ge 2$

String attractors of conjugate words

A similar result can be deduced for the minimum string attractors of two conjugate words

Corollary

For each t > 0, there exists an alphabet Σ_t and a word $w_t = uv \in \Sigma_t^*$ such that $\gamma^*(uv) - \gamma^*(vu) > t$

String Attractor and Infinite Words

String Attractor and Infinite Words

Restivo, **R**, Sciortino LATIN 2022 (to appear)

Characteristic Sturmian Words

Let $q_0, q_1, ..., q_n, ...$ be any sequence of natural integers such that $q_0 \ge 0$ and $q_i > 0$ (i = 1, ..., n, ...), called **directive sequence**.

The sequence $\{s_n\}_{n\geq 0}$ can be defined inductively as follows:

$$s_0 = b$$

$$\blacktriangleright s_1 = a$$

- ▶ $s_{i+1} = (s_i)^{q_{i-1}} \cdot s_{i-1}$, for any $i \ge 1$
- All words s_n obtained from any directive sequence of integers are called standard Sturmian words.

• The infinite word $\lim_{i\to\infty} s_i$ is called **characteristic Sturmian word**.

Example: Fibonacci word

Given the directive sequence 1,1,1,1,... consider the corresponding standard Sturmian words

String Attractor for standard Sturmian words

Theorem

- For each standard Sturmian word s with $|s| \ge 2$, let η be the length of the longest palindromic proper prefix of s[1, |s| 2].
- Then, the set $\Gamma_1 = \{\eta + 1, \eta + 2\}$ or the set $\Gamma_2 = \{|s| \eta 3, |w| \eta 2\}$ is a smallest string attractor for s.

17

String Attractor profile function

The notion of string attractor is not immediately extendible to infinite words

- On the other hand, standard Sturmian words can be seen as sequences of prefixes of characteristic Sturmian words
- Definition [Schaeffer & Shallit, arXiv 2021]
- Given an infinite word x, the string attractor profile function s_x is defined as follows

$$s_x(n) = \gamma^*(x[0..n-1])$$

Factor complexity & Appearance function

- Let x be an infinite word
- Factor complexity function p_x : for each length m, it counts the number of distinct factors of length m that occur in x

 $p_x(m) = |F(x) \cap \Sigma^m|$

Appearance function A_x : for each length m, it returns the length of the shortest prefix of x which contains all factors of x of length m

Recurrence of a word

Let x be an infinite word

X

x is called recurrent if every factor of x occurs infinitely often

x is called uniformly recurrent if there exists a function R_x(m) (the recurrence function) such that every factor of x of length R_x(m) contains at least an occurrence of each factor of x of length m

• Moreover, if $R_x(m)$ is linear, x is called **linearly recurrent**

Relationship between s_x and p_x

Theorem

- Let x be an infinite word.
- For all m > 0, one has $p_x(m) \le m \cdot s_x(A_x(m))$

Corollary

- If there exists k such that $s_x(n) < k$ for each n > 0, then $p_x(n) \le n \cdot k$
 - In other words, if s_x is bounded by a constant, then x has at most linear factor complexity

String Attractors for uniformly recurrent words

- □ **Theorem** [Schaeffer and Shallit, arXiv 2021]
- Let x be an infinite word.
- If x is linearly recurrent, then, $s_x(n) = O(1)$.

 $\begin{cases} p_x(m) = O(m) \\ R_x(m) = O(m) \end{cases}$

- However, not all infinite words with a constant bound on the function s_x are linearly recurrent
 - Every Sturmian word is uniformly recurrent, but not all are linearly recurrent
- Open question: Let x be a uniformly recurrent word such that p_x is linear. Is $s_x(n)$ bounded by a constant value?

String attractor profile function for infinite words

				1	
<i>x</i> infinite word		Construction	Recurrent	$p_x(n)$	$s_x(n)$
<i>S</i> Ch. Sturmian	abaababaabaababaababa \cdots	- dir. seq. $d_0, d_1, d_2,$ - $s_0 = b$, $s_1 = a$ - $s_{i+1} = s_i^{d_{i-1}} s_{i-1}$	Uniformly	$\Theta(n)$	2 [Restivo et al., LATIN 2022]
<i>pd</i> Period-doubling	1011101010111011101110 …	$\rho : \begin{cases} 1 \mapsto 10 \\ 0 \mapsto 11 \end{cases}$	Linearly	$\Theta(n)$	2 [Schaeffer and Shallit, arXiv 2021]
t Thue-Morse	011010011001011010010110	$\tau : \begin{cases} 1 \mapsto 10 \\ 0 \mapsto 01 \end{cases}$	Linearly	$\Theta(n)$	4 [Kutsukake et al., SPIRE 2020] [Schaeffer and Shallit, arXiv 2021]
<i>Z</i> (5,3)-Toeplitz	1212112211122211211212 …	12???	Uniformly	$\Theta\left(n^{\frac{\log 5}{\log 5 - \log 3}}\right)$	unbounded [Restivo et al., LATIN 2022]
C Powers of 2	11010001000000100000000 …	- $c[i] = 1$ if $i = 2^k$ - $c[i] = 0$ otherwise	No	$\Theta(n)$	$\Theta(\log n)$ [Kociumaka et al., LATIN 2020] [Schaeffer and Shallit, arXiv 2021]

On ultimately periodic and ω -power free words

- Proposition
- Let x be an infinite word.
- ▶ If x is ultimately periodic, then $s_x(n) = \Theta(1)$.
 - $s_x(n) = \gamma^*(x[0, n-1]) = \gamma^*(uv^{\ell}) \le \gamma^*(u) + \gamma^*(v^{\ell}) + 1 \le \gamma^*(u) + \gamma^*(v) + 2$

Proposition

Let x be an infinite word.

и

For each $u \in F(x)$ there exists k such that $u^k \notin F(x)$

24

▶ If $s_x(n) = \Theta(1)$, then either x is ultimately periodic or ω -power free.

New String Attractor-based complexities

Words with $s_x = \Theta(1)$: examples

 $s_{(ab)}\omega(n) = s_f(n) = s_{pd}(n)$, for all n > 0

Span and Leftmost string attractor

- Instead of just focusing on s_x , we have considered some structural properties of string attractors
- Let G be the set of all suitable string attractors for a given finite word w

Span span(w) = $\min_{\Gamma \in \mathcal{G}} \{\max(\Gamma) - \min(\Gamma)\}$ $1 \ge 3 \le 6 \ 7$ w = abccabc **Leftmost string attractor** $\lim(w) = \min_{\Gamma \in \mathcal{G}} \{\max(\Gamma)\}$

lm(w) = 4

/

27

Span Complexity and Leftmost Complexity

- Analogously, we define the span and the leftmost complexity for infinite words
- Span complexity

Leftmost complexity

 $\operatorname{span}_{x}(n) = \operatorname{span}(x[0, n-1])$

 $lm_x(n) = lm(x[0, n-1])$

Proposition

Let x be an infinite word. Then $s_x(n) - 1 \le \operatorname{span}_x(n) \le \operatorname{lm}_x(n)$.

Characterization of ultimately periodic words

Proposition

- Let x be an infinite word.
- ▶ x is ultimately periodic if and only if there exists k > 0 such that $lm_x(n) \le k$, for infinitely many n > 0.

$$x \qquad \Rightarrow p_x(n) \le k = \Theta(1)$$

Span Complexity bounded by a constant

Proposition

- Let x be an infinite word.
- If there exists k > 0 such that $span_x(n) \le k$ for infinitely many n, then x is recurrent or ultimately periodic.
 - ▶ x ultimately periodic ⇒ exists k such that $lm_x(n) \le k$ for each n (recall span_x(n) $\le lm_x(n)$)
 - On the other hand, x aperiodic \Rightarrow for each k > 0 there exists n_0 such that $\lim_{x}(n) > k$, for all $n > n_0$.

Let us suppose x is not recurrent, i.e. exists $u \in F(x)$ that occurs only once

Relation between Span complexity and Factor complexity

Actually, if the span complexity of an infinite word x is bounded by a constant k, a stronger result can be deduced

Lemma

- Let w be a finite word.
- ▶ Then, for all $0 < n \le |w|$, it holds that $|F(w) \cap \Sigma^n| \le n + \operatorname{span}(w)$

Span complexity: a new characterization for Sturmian words (1)

It is known that an infinite word is Sturmian iff $p_x(m) = m + 1$ for all m

Theorem

- Let x be an infinite aperiodic word.
- For the theorem Theor

□ (⇐)

- x aperiodic $\Rightarrow p_x(m) \ge m + 1$
- ▶ span_x(n) = 1 for infinitely many $n > 0 \Rightarrow p_x(m) \le m + 1$
- For Thus, $p_x(m) = m + 1$ and x is Sturmian

Span complexity: a new characterization for Sturmian words (2)

$\Box \quad (\Rightarrow)$

S

S

- By using combinatorial arguments, we can prove that exists n_0 such that, for every characteristic Sturmian word s', $span_{s'}(n) = 1$ for every $n \ge n_0$
- Every Sturmian word, like every other aperiodic AND recurrent word, has an infinite number of right special factors as prefixes
- Further, for every right special factor u of a Sturmian word there exists a characteristic Sturmian word s' that has u^R as prefix [Lothaire - Algebraic Combinatorics on words, 2002]

 $u \in F(x)$ is a right special factor if exist $a \neq b \in \Sigma$ such that $ua, ub \in F(x)$

Morphisms and string attractor-based measures

Proposition

- Let $\varphi: \Sigma \mapsto \Sigma'$ be a morphism. Then there exists K > 0 which depends only from φ such that, for every $w \in \Sigma^*$:
- ► $\gamma^*(\varphi(w)) \le 2\gamma^*(w) + K$ ► $\operatorname{span}(\varphi(w)) \le K \cdot \operatorname{span}(w)$ ► $\operatorname{lm}(\varphi(w)) \le K \cdot \operatorname{lm}(w)$

Quasi-Sturmian words

► $x \in \Sigma^{\omega}$ is Quasi-Sturmian if there exist n_0 , k such that $p_x(n) = n + k$, for $n > n_0$

□ **Proposition** [Cassaigne, DLT 1997]

- An infinite word $x \in \Sigma^{\omega}$ is quasi-Sturmian if and only if $x = u \cdot \varphi(s)$, where
 - ► $u \in \Sigma^*$ is a finite word
 - ► $s \in \{a, b\}^{\omega}$ is a Sturmian word
 - ▶ φ : $\{a, b\}^* \mapsto \Sigma^*$ is a morphism such that $\varphi(ab) \neq \varphi(ba)$

Characterization of Quasi-Sturmian words via span complexity

Theorem

An infinite aperiodic word $x \in \Sigma^{\omega}$ is Quasi-Sturmian if and only if there exist a suffix y of x and an integer k > 0 such that $\operatorname{span}_{v}(n) \le k$ for infinitely many n.

- For every Sturmian s it holds that $span_s(n) = 1$ for infinitely many n
- Further, there exists k > 0 such that $\operatorname{span}(\varphi(w)) \le k \cdot \operatorname{span}(w)$ for every $w \in \Sigma^*$
- ▶ Thus, $\operatorname{span}_{\varphi(s)}(n) \leq k \cdot \operatorname{span}_{s}(n) = k$ for infinitely many n

Conclusions and open problems

Notion of string attractor in between data compression and combinatorics

- An NP-complete problem is solvable for infinite families of words by using combinatorial arguments
- Chacterization of words via string attractor based complexities
- Open question: Are there other structural properties of string attractors that can be used to characterize infinite words?
- Open question: In general, for every finite word w, is there a set of string attractors that allow to uniquely recover w?

Thanks for your attention!