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String Attractor

O Definition [Kempa and Prezza, STOC 2018]

» Astring attractor I' of a word w € £™ is a set of y positions such that every
distinct factor of w has at least an occurrence crossing a position in I.
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String Attractor: example

List of all factors with occurrences

123456 78 910 1112
> w=£cgag_dgbagc not crossing a position in I
.  dc
> T = {1,4,6,8,11} ) . ba

°
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» Note:T™ = {4,6,8,11} is a string attractor too

» || is minimum, since any string attractor must have size y* > |X|

» We denote by y* the size of a string attractor of minimum size

» Computing the size y* for a word w is an NP-complete problem
[Kempa and Prezza, STOC 2018]




String Attractor and
Data Compression

» String attractors can be considered as unifying frameworks for different
compression schemes based on repetitions [Kempa and Prezza, STOC 2018]
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String Attractor and repetitiveness

Dictionary-based compressors exploit repetitions to compress and index data
» Efficient on highly repetitive datasets (DNA sequences, astronomical observations, ...)

» Relationships among compression schemes and repetitiveness measures of current interest
[Navarro, ACM Comput. Surv. 2021]

In recent works ([Kociumaka et al., LATIN 2020], [Kociumaka et al., LATIN 2022], ...
it has been investigated the §-measure of a finite word w

)

S — |[F(w) n k|
(w) = 1<k k

where F(w) denotes the set of all distinct factors in the word w



String Attractor:
some lower bounds

O Proposition [Kempa and Prezza, STOC 2018]

» Let T be a string attractor for a word w of size y. Then

o(w) =y(w)
Note: any position in a
. string covers at most k
J El r distinct factors of length k
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» In[Kempa and Prezza, STOC 2018] it is also defined another lower bound of y*
related to the length I of the longest repeated factor:




String Attractors and Finite Words:
Combinatorial properties

A combinatorial view on String Attractor
Mantaci, Restivo, R, Rosone, Sciortino
Theoret. Comput. Sci. 2021




String Attractor on reverse of a word

a Proposition
» Let wR be the reverse of the finite word w. Then, y*(w) = y*(w?).
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String Attractor on concatenation:
upper-bound

Q Proposition

» Let u and v be two finite words and y*(u) and y*(v) the sizes of their respective
smallest string attractor. Then, y*(uv) < y*(u) + y*(v) + 1.

Y (uv) < Tyl = [T7(w) U{lul + 13U {p + |u| for every p € T"(v)}




String attractor on powers >2

Q Proposition

» Let w be a word over the alphabet X. Then, for every n > 2:
. y'wh) <y*(w) +1
2y wh) =y (w?)




Monotonicity of y~*

» Problem: In [Kociumaka et al., LATIN 2020] the authors posed the question
whether or not the measure y* of the smallest string attractor for a word w is
monotonic

» In other terms, is y*(w) < y*(wu) for all words w and u?
» Answer: The measure y* is not monotone

123456738 123456738

w = abbbaaab w-b = abbbaaabb
y*(w) =3 v*(w-b) =2




Is y*(w™) = y*(w)?

» Question: does monotonicity of y* holds from w to w™?
» Answer: Monotonicity does not hold for power of a word

Q Proposition

» For each t > 0, there exists an alphabet X; and a word w; € X} such that
v wy) —y (W) > t, for eachn > 2




String attractors of conjugate words

» Asimilar result can be deduced for the minimum string attractors of two
conjugate words

Q Corollary

» For each t > 0, there exists an alphabet X; and a word w; = uv € X{ such that
yrww) —y*(vu) > t
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String Attractor and Infinite Words

String Attractor and Infinite Words
Restivo, R, Sciortino
LATIN 2022 (to appear)




Characteristic Sturmian Words

» Letqy, qq,..-,94,, ... be any sequence of natural integers such that g, = 0 and
q;>0({ =1,.., n,..), called directive sequence.

» The sequence {s, },>0 can be defined inductively as follows:
> So = b
> S1=a

» S;41 = (s;)%-1.5;,_4, foranyi>1

» All words s,, obtained from any directive sequence of integers are called
standard Sturmian words.

» The infinite word lim s; is called characteristic Sturmian word.

i—>o0




Example: Fibonacci word

» Given the directive sequence 1,1,1,1,... consider the corresponding standard
Sturmian words

> So=0b |
> si=a
» s, = ab
» s3 = aba
» s, = abaab
» sg = abaababa
> ~0,618034
a ba ab a ba ab ]




String Attractor for
standard Sturmian words

QO Theorem

» For each standard Sturmian word s with |s| = 2, let n be the length of the
longest palindromic proper prefix of s[1, |s| — 2].

» Then, thesetli; ={n+1, n+2}orthesetl, ={|s|—n—3, |w|—n—2}isa
smallest string attractor for s.

n=3 | s, =abaababa
n=6 | ss=abaababaabacb

n =11 | s¢ = abaababaabaababaabab




String Attractor profile function

» The notion of string attractor is not immediately extendible to infinite words

» On the other hand, standard Sturmian words can be seen as sequences of
prefixes of characteristic Sturmian words

Definition [Schaeffer & Shallit, arXiv 2021]

» Given an infinite word x, the string attractor profile function s, is defined as
follows

sx(m) = y*(x[0..n —1])




Factor complexity &
Appearance function

» Let x be an infinite word

» Factor complexity function p,: for each length m, it counts the number of
distinct factors of length m that occur in x

px(m) = |F(x) N Z™

» Appearance function A,: for each length m, it returns the length of the
shortest prefix of x which contains all factors of x of length m

m
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Recurrence of a word

» Let x be an infinite word

» x is called recurrent if every factor of x occurs infinitely often

» x is called uniformly recurrent if there exists a function R, (m) (the
recurrence function) such that every factor of x of length R, (m) contains at
least an occurrence of each factor of x of length m

R, (m) R, (m)

» Moreover, if R, (m) is linear, x is called linearly recurrent




Relationship between s, and p,

O Theorem

Let x be an infinite word.

For all m > 0, one has p,(m) < m - s,(4,(m))

Ay(m)

Q Corollary

» If there exists k such that s, (n) < k for each n > 0, then p,(n) <n-k

» In other words, if s, is bounded by a constant, then x has at most linear
factor complexity




String Attractors for
uniformly recurrent words

Q
>
>

Theorem [Schaeffer and Shallit, arXiv 2021]
Let x be an infinite word.
If x is linearly recurrent, then, s,(n) = 0(1).

_ px(m) = 0(m)
' R,(m) =0(m)

However, not all infinite words with a constant bound on the function s, are
linearly recurrent

» Every Sturmian word is uniformly recurrent, but not all are linearly recurrent

Open question: Let x be a uniformly recurrent word such that p, is linear.
Is s,,(n) bounded by a constant value?



String attractor profile function

for infinite words

X Construction | Recurrent p,(n) Sx(n)
infinite word
: = dil’. Seq. do,dl, dz,
S - abaababaabaababaababa ---| ~So=D; S1=a Uniformly O(n) 2 [Restivo et al., LATIN 2022]
Ch. Sturmian - Si41 = S; TlSioq
pd 11011101010111011101110 -~ {1~ 10 Linearly 0(n) 2 [schaeffer and Shalii, arxiv 2021]
Period-doubling: 0~ 11
. Kutsukake et al., SPIRE 2020
ghue_ ope | 011010011001011010010110- | 7 {(1) ” (1)(1’ Linearly O(n) 4 ke cta e
Z . log 5 .
(5.3)Toeplity | 1212112211122211211212 12?7727 Uniformly 0 (nm) unbounded [restivoetal, LATIN2022]
c -clil = 1if i = 2% [Kociumaka et al., LATIN 2020]
Powers of 2 110100010000000100000000 - | . c[;] = 0 otherwise No O(n) O(logn)

[Schaeffer and Shallit, arXiv 2021]



On ultimately periodic and
w-power free words

Q Proposition
» Let x be an infinite word.
» If x is ultimately periodic, then s, (n) = 0(1).
> s, () =y x[0n—1D) =y (w’) <y +y' (@) + 1<y W +y*(w) + 2

\
Proposition For each u € F(x) there

P exists k such that uX ¢ F
Let x be an infinite word. u* € F(x) \

» If s,(n) = O(1), then either x is ultimately periodic or w-power free.

____________________________
""""""""""""""""""""""""""




New String Attractor-based
complexities




Words with s, = 0(1): examples

(ab)® = ababababababababababababababababababababababababababab ':%

f= a@@ailllabaia_babaaba:umabaababaabaiababaababaabaababaabai...

pd = 19112;195101110111011101010111015(1101110101011101110111

Sap)? (M) = sg(n) = spa(n), foralln >0




Span and Leftmost string attractor

» Instead of just focusing on s,, we have considered some structural properties
of string attractors

» Let G be the set of all suitable string attractors for a given finite word w

QO Span O Leftmost string attractor
span(w) = min{max(I") — min(I")} Im(w) = min{max(T')}
reg reg
1234567 ___--—"" Span(W)=6_4‘=2

-

w = abccabc




Span Complexity and
Leftmost Complexity

» Analogously, we define the span and the leftmost complexity for infinite words

O Span complexity O Leftmost complexity

span,(n) = span(x[0,n — 1)) Im, (n) = Im(x[0,n — 1])

Q Proposition

» Let x be an infinite word. Then s,(n) — 1 < span,(n) < Im, (n).

Im, (n) n
: I
I
X ——————— —,o_l—----
| 28
Y
£ > span,(n) |




Characterization of
ultimately periodic words

Q Proposition

» Let x be an infinite word.

» x is ultimately periodic if and only if there exists k > 0 such that Im, (n) < k,
for infinitely many n > 0.

If = py(n) <k =0(1)




Span Complexity bounded by a constant

Proposition
Let x be an infinite word.

» If there exists k > 0 such that span, (n) < k for infinitely many n, then x is recurrent or
ultimately periodic.

» x ultimately periodic = exists k such that Im, (n) < k for each n (recall span,(n) < Im,(n))

» On the other hand, x aperiodic = for each k > 0 there exists n, such that Im,(n) > k,
for all n > n,.

Let us suppose x is not recurrent, i.e. exists u € F(x) that occurs only once

i Im,(n) -------- -




Relation between Span complexity and
Factor complexity

» Actually, if the span complexity of an infinite word x is bounded by a constant
k, a stronger result can be deduced

O Lemma
» Let w be a finite word.

» Then, forall 0 < n < |w|, it holds that |F(w) N Z"| < n + span(w)

v

At most n + k distinct factors




Span complexity:
a new characterization for Sturmian words (1)

» It is known that an infinite word is Sturmian iff p,(m) =m+ 1 for all m

O Theorem
Let x be an infinite aperiodic word.

» Then, x is Sturmian if and only if span, (n) = 1 for infinitely many n > 0.

(<)
x aperiodic = p,(m) >m+1

span,(n) = 1 for infinitely many n > 0 = p,(m) <m+1

vV v Vv [

Thus, p,(m) = m + 1 and x is Sturmian




Span complexity:
a new characterization for Sturmian words (2)

=)

» By using combinatorial arguments, we can prove that exists n, such that, for
every characteristic Sturmian word s’, span.(n) = 1 for every n > n,

u € F(x) is a right
» Every Sturmian word, like every other aperiodic AND recurrent word, has an special factor if

infinite number of right special factors as prefixes exist a # b € X such
that ua, ub € F(x)

» Further, for every right special factor u of a Sturmian word there exists a
characteristic Sturmian word s’ that has u® as prefix [Lothaire - Algebraic
Combinatorics on words, 2002]




Morphisms and
string attractor-based measures

» Proposition
» Let ¢:X — X' be a morphism. Then there exists K > 0 which depends only from ¢ such

that, for every w € X*:
> span(cp(w)) < K - span(w) » Im(p(w)) < K- Im(w)

2 y*(go(w)) <2y"(w)+K
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Quasi-Sturmian words

» x € X% is Quasi-Sturmian if there exist ng, k such that p,(n) =n + k, forn > n,

O Proposition [Cassaigne, DLT 1997]

» An infinite word x € ¢ is quasi-Sturmian if and only if x = u - ¢(s), where
» u € X”is a finite word
» s € {a,b}* is a Sturmian word

» @:{a, b} » X" is a morphism such that ¢(ab) # ¢(ba)




Characterization of Quasi-Sturmian
words via span complexity

» Theorem

» An infinite aperiodic word x € X% is Quasi-Sturmian if and only if there exist a
suffix y of x and an integer k > 0 such that span, (n) < k for infinitely many n.

qs

@(s)

» For every Sturmian s it holds that span,(n) = 1 for infinitely many n
» Further, there exists k > 0 such that span(cp(w)) < k - span(w) for every w € X*

» Thus, span,)(n) < k - spang(n) = k for infinitely many n .



Conclusions and open problems

» Notion of string attractor in between data compression and combinatorics

» An NP-complete problem is solvable for infinite families of words by using combinatorial
arguments

» Chacterization of words via string attractor based complexities

» Open question: Are there other structural properties of string attractors that can
be used to characterize infinite words?

» Open question: In general, for every finite word w, is there a set of string
attractors that allow to uniquely recover w?

Thanks for your attention!




