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String Attractor

❑ Definition [Kempa and Prezza, STOC 2018]

 A string attractor Γ of a word 𝑤 ∈ Σ𝑛 is a set of 𝛾 positions such that every 

distinct factor of 𝑤 has at least an occurrence crossing a position in Γ.

𝑤

𝑢 𝑢

Γ
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String Attractor: example

 w = a d c b a a d c b a d c

 Γ = {1, 4, 6, 8, 11}

 Note: Γ∗ = {4, 6, 8, 11} is a string attractor too

 Γ∗ is minimum, since any string attractor must have size 𝛾∗ ≥ Σ

 We denote by 𝛾∗ the size of a string attractor of minimum size

 Computing the size 𝛾∗ for a word 𝑤 is an NP-complete problem
[Kempa and Prezza, STOC 2018]

List of all factors with occurrences
not crossing a position in Γ

• d
• c
• a
• b

• dc
• ba

1   2  3  4   5   6   7  8   9 10  11 12
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String Attractor and 

Data Compression

 String attractors can be considered as unifying frameworks for different

compression schemes based on repetitions [Kempa and Prezza, STOC 2018]

𝑐

𝑔

𝑧

𝛾

𝑏

𝑟

𝑂(𝑟)

𝑂(𝑐)

𝑂(𝑔) 𝑂 𝑏
𝑂(𝑧)

o 𝒛: LZ77-parse size

o 𝒓: BWT runs

o 𝒈: SLP size

o 𝒃: macro scheme size

o 𝒄: collage system size

o 𝒆: CDAWG size

𝑂 𝛾 log
𝑛

𝛾

𝑂 𝛾 log
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𝛾𝑂 𝛾 log2
𝑛

𝛾

𝑒

𝑂(𝑒)
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String Attractor and repetitiveness

 Dictionary-based compressors exploit repetitions to compress and index data

 Efficient on highly repetitive datasets (DNA sequences, astronomical observations, ...)

 Relationships among compression schemes and repetitiveness measures of current interest 

[Navarro, ACM Comput. Surv. 2021]

 In recent works ([Kociumaka et al., LATIN 2020], [Kociumaka et al., LATIN 2022], …), 

it has been investigated the 𝜹-measure of a finite word 𝑤

where 𝐹 𝑤 denotes the set of all distinct factors in the word 𝑤

5

𝛿(𝑤) = max
1≤𝑘≤ 𝑤

𝐹 𝑤 ∩ Σ𝑘

𝑘



String Attractor:

some lower bounds

❑ Proposition [Kempa and Prezza, STOC 2018]

 Let Γ be a string attractor for a word 𝑤 of size 𝛾. Then

 In [Kempa and Prezza, STOC 2018] it is also defined another lower bound of 𝛾∗

related to the length 𝒍 of the longest repeated factor:

𝛿(𝑤) ≤ 𝛾(𝑤)

𝛾∗(𝑤) ≥
𝑤 − 𝑙

𝑙 + 1
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𝑘

𝑗 ∈ Γ

Note: any position in a 

string covers at most 𝑘
distinct factors of length 𝑘

𝑘



String Attractors and Finite Words: 

Combinatorial properties

A combinatorial view on String Attractor

Mantaci, Restivo, R, Rosone, Sciortino

Theoret. Comput. Sci. 2021



String Attractor on reverse of a word

❑ Proposition

 Let 𝑤𝑅 be the reverse of the finite word 𝑤. Then, 𝛾∗ 𝑤 = 𝛾∗ 𝑤𝑅 . 

𝑤

𝑤𝑅

𝑢𝑅 𝑢𝑅

𝑢 𝑢
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String Attractor on concatenation: 

upper-bound

❑ Proposition

 Let 𝑢 and 𝑣 be two finite words and 𝛾∗ 𝑢 and 𝛾∗ 𝑣 the sizes of their respective
smallest string attractor. Then, 𝛾∗ 𝑢𝑣 ≤ 𝛾∗ 𝑢 + 𝛾∗ 𝑣 + 1.

𝑢 𝑣

𝑢𝑣

𝛾∗ 𝑢𝑣 ≤ Γ𝑢𝑣| = |Γ∗ 𝑢 ∪ 𝑢 + 1 ∪ 𝑝 + 𝑢 for every 𝑝 ∈ Γ∗ 𝑣
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String attractor on powers ≥2

❑ Proposition

 Let 𝑤 be a word over the alphabet Σ. Then, for every 𝑛 ≥ 2:

1. 𝛾∗ 𝑤𝑛 ≤ 𝛾∗ 𝑤 + 1

2. 𝛾∗ 𝑤𝑛 = 𝛾∗ 𝑤2
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𝑢𝑢
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Monotonicity of 𝛾∗

 Problem: In [Kociumaka et al., LATIN 2020] the authors posed the question

whether or not the measure 𝛾∗ of the smallest string attractor for a word 𝑤 is

monotonic

 In other terms, is 𝛾∗ 𝑤 ≤ 𝛾∗ 𝑤𝑢 for all words 𝑤 and 𝑢?

 Answer: The measure 𝛾∗ is not monotone

abbbaaab
1  2  3  4  5  6 7  8

𝒘 = abbbaaabb
1  2  3  4  5  6 7  8

𝒘·b = 

𝛾∗ 𝑤 = 3 𝛾∗ 𝑤 ⋅ 𝒃 = 2
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Is 𝛾∗ 𝑤𝑛 ≥ 𝛾∗ 𝑤 ?

 Question: does monotonicity of 𝛾∗ holds from 𝑤 to 𝑤𝑛?

 Answer: Monotonicity does not hold for power of a word 

❑ Proposition

 For each 𝑡 > 0, there exists an alphabet Σ𝑡 and a word wt ∈ Σ𝑡
∗ such that

𝛾∗ 𝑤𝑡 − 𝛾∗ 𝑤𝑡
𝑛 > 𝑡, for each 𝑛 ≥ 2

𝑤

𝑤2
12



String attractors of conjugate words

 A similar result can be deduced for the minimum string attractors of two

conjugate words

❑ Corollary

 For each 𝑡 > 0, there exists an alphabet Σ𝑡 and a word 𝑤𝑡 = 𝑢𝑣 ∈ Σ𝑡
∗ such that

𝛾∗ 𝑢𝑣 − 𝛾∗(𝑣𝑢) > 𝑡

𝑢𝑣

𝑣𝑢
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String Attractor and Infinite Words

String Attractor and Infinite Words

Restivo, R, Sciortino

LATIN 2022 (to appear)



Characteristic Sturmian Words

 Let 𝑞0, 𝑞1, … , 𝑞𝑛, … be any sequence of natural integers such that 𝑞0 ≥ 0 and 

𝑞𝑖 > 0 (𝑖 = 1,… , 𝑛, … ), called directive sequence. 

 The sequence 𝑠𝑛 𝑛≥0 can be defined inductively as follows:

 𝑠0 = 𝑏

 𝑠1 = 𝑎

 𝑠𝑖+1 = 𝑠𝑖
𝑞𝑖−1 ⋅ 𝑠𝑖−1, for any 𝑖 ≥ 1

 All words 𝑠𝑛 obtained from any directive sequence of integers are called

standard Sturmian words.

 The infinite word lim
𝑖→∞

𝑠𝑖 is called characteristic Sturmian word. 15



Example: Fibonacci word

 Given the directive sequence 1,1,1,1,… consider the corresponding standard 

Sturmian words

 𝑠0 = 𝑏

 𝑠1 = 𝑎

 𝑠2 = 𝑎𝑏

 𝑠3 = 𝑎𝑏𝑎

 𝑠4 = 𝑎𝑏𝑎𝑎𝑏

 𝑠5 = 𝑎𝑏𝑎𝑎𝑏𝑎𝑏𝑎

 …
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String Attractor for 

standard Sturmian words

❑ Theorem

 For each standard Sturmian word 𝑠 with |𝑠| ≥ 2, let 𝜂 be the length of the 

longest palindromic proper prefix of 𝑠 1, 𝑠 − 2 .

 Then, the set Γ1 = {𝜂 + 1, 𝜂 + 2} or the set Γ2 = { 𝑠 − 𝜂 − 3, |𝑤| − 𝜂 − 2} is a 

smallest string attractor for 𝑠.

…
𝑠3 = 𝑎𝒃𝒂𝑎𝑏
𝑠4 = 𝑎𝑏𝑎𝒂𝒃𝑎𝑏𝑎
𝑠5 = 𝑎𝑏𝑎𝑎𝑏𝑎𝒃𝒂𝑎𝑏𝑎𝑎𝑏
𝑠6 = 𝑎𝑏𝑎𝑎𝑏𝑎𝑏𝑎𝑎𝑏𝑎𝒂𝒃𝑎𝑏𝑎𝑎𝑏𝑎𝑏𝑎
… 17

…
𝜂 = 1
𝜂 = 3
𝜂 = 6
𝜂 = 11

…



String Attractor profile function

 The notion of string attractor is not immediately extendible to infinite words

 On the other hand, standard Sturmian words can be seen as sequences of 

prefixes of characteristic Sturmian words

❑ Definition [Schaeffer & Shallit, arXiv 2021]

 Given an infinite word 𝑥, the string attractor profile function 𝑠𝑥 is defined as

follows

𝑠𝑥 𝑛 = 𝛾∗ 𝑥 0. . 𝑛 − 1

𝑥
?
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Factor complexity &

Appearance function

 Let 𝑥 be an infinite word

 Factor complexity function 𝒑𝒙: for each length 𝑚, it counts the number of 

distinct factors of length 𝑚 that occur in 𝑥

 Appearance function 𝑨𝒙: for each length 𝑚, it returns the length of the 

shortest prefix of 𝑥 which contains all factors of 𝑥 of length 𝑚

𝑝𝑥 𝑚 = 𝐹 𝑥 ∩ Σ𝑚

𝑥

𝐴𝑥 𝑚

𝑚
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Recurrence of a word

 Let 𝑥 be an infinite word

 𝑥 is called recurrent if every factor of 𝑥 occurs infinitely often

 𝑥 is called uniformly recurrent if there exists a function 𝑅𝑥 𝑚 (the 

recurrence function) such that every factor of 𝑥 of length 𝑅𝑥 𝑚 contains at 

least an occurrence of each factor of 𝑥 of length 𝑚

 Moreover, if 𝑅𝑥 𝑚 is linear, 𝑥 is called linearly recurrent

𝑥

𝑥

𝑅𝑥 𝑚 𝑅𝑥 𝑚

𝑚
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Relationship between 𝑠𝑥 and 𝑝𝑥

❑ Theorem

 Let 𝑥 be an infinite word.

 For all 𝑚 > 0, one has 𝑝𝑥 𝑚 ≤ 𝑚 ⋅ 𝑠𝑥 𝐴𝑥 𝑚

❑ Corollary

 If there exists 𝑘 such that 𝑠𝑥 𝑛 < 𝑘 for each 𝑛 > 0, then 𝑝𝑥 𝑛 ≤ 𝑛 ⋅ 𝑘

 In other words, if 𝑠𝑥 is bounded by a constant, then 𝑥 has at most linear 

factor complexity

𝑥

𝐴𝑥 𝑚
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String Attractors for

uniformly recurrent words

❑ Theorem [Schaeffer and Shallit, arXiv 2021]

 Let 𝑥 be an infinite word.

 If 𝑥 is linearly recurrent, then, 𝑠𝑥 𝑛 = 𝑂 1 .

 However, not all infinite words with a constant bound on the function 𝑠𝑥 are 
linearly recurrent

 Every Sturmian word is uniformly recurrent, but not all are linearly recurrent

 Open question: Let 𝑥 be a uniformly recurrent word such that 𝑝𝑥 is linear.
Is 𝑠𝑥(𝑛) bounded by a constant value?

ቊ
𝑝𝑥 𝑚 = 𝑂 𝑚

𝑅𝑥 𝑚 = 𝑂 𝑚
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String attractor profile function

for infinite words

𝑝𝑑
Period-doubling

𝑡
Thue-Morse

𝑐
Powers of 2

𝑧
(5,3)-Toeplitz 

𝑠
Ch. Sturmian

Construction

𝜌: ቊ
1 ↦ 10
0 ↦ 11

- dir. seq. 𝑑0, 𝑑1, 𝑑2, …
- 𝑠0 = 𝑏, 𝑠1 = 𝑎

- 𝑠𝑖+1 = 𝑠𝑖
𝑑𝑖−1𝑠𝑖−1

𝜏: ቊ
1 ↦ 10
0 ↦ 01

- 𝑐 𝑖 = 1 if 𝑖 = 2𝑘

- 𝑐 𝑖 = 0 otherwise

Recurrent 𝑝𝑥 𝑛𝑥
infinite word

12? ? ?

𝑎𝑏𝑎𝑎𝑏𝑎𝑏𝑎𝑎𝑏𝑎𝑎𝑏𝑎𝑏𝑎𝑎𝑏𝑎𝑏𝑎⋯

1011101010111011101110⋯

011010011001011010010110⋯

110100010000000100000000⋯

1212112211122211211212⋯

Uniformly

Linearly

Linearly

No

Uniformly

Θ 𝑛

Θ 𝑛

Θ 𝑛

Θ 𝑛
log 5

log 5−log 3

Θ(𝑛)

𝑠𝑥 𝑛

2

2

4

Θ log 𝑛

unbounded

[Restivo et al., LATIN 2022]

[Restivo et al., LATIN 2022]

[Schaeffer and Shallit, arXiv 2021]

[Kutsukake et al., SPIRE 2020]

[Schaeffer and Shallit, arXiv 2021]

[Kociumaka et al., LATIN 2020]

[Schaeffer and Shallit, arXiv 2021]



On ultimately periodic and 

𝜔-power free words

❑ Proposition

 Let 𝑥 be an infinite word.

 If 𝑥 is ultimately periodic, then 𝑠𝑥 𝑛 = Θ 1 .

 𝑠𝑥 𝑛 = 𝛾∗ 𝑥 0, 𝑛 − 1 = 𝛾∗ 𝑢𝑣ℓ ≤ 𝛾∗ 𝑢 + 𝛾∗ 𝑣ℓ + 1 ≤ 𝛾∗ 𝑢 + 𝛾∗ 𝑣 + 2

❑ Proposition

 Let 𝑥 be an infinite word.

 If 𝑠𝑥 𝑛 = Θ(1), then either 𝑥 is ultimately periodic or 𝜔-power free.

For each 𝑢 ∈ 𝐹 𝑥 there 

exists 𝑘 such that 𝑢𝑘 ∉ 𝐹(𝑥)

𝑥

𝑢
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New String Attractor-based

complexities



Words with 𝑠𝑥 = Θ 1 : examples

𝑎𝑏𝑎𝑏𝑎𝑏𝑎𝑏𝑎𝑏𝑎𝑏𝑎𝑏𝑎𝑏𝑎𝑏𝑎𝑏𝑎𝑏𝑎𝑏𝑎𝑏𝑎𝑏𝑎𝑏𝑎𝑏𝑎𝑏𝑎𝑏𝑎𝑏𝑎𝑏𝑎𝑏𝑎𝑏𝑎𝑏𝑎𝑏𝑎𝑏𝑎𝑏𝑎𝑏 …

𝑎𝑏𝑎𝑎𝑏𝑎𝑏𝑎𝑎𝑏𝑎𝑎𝑏𝑎𝑏𝑎𝑎𝑏𝑎𝑏𝑎𝑎𝑏𝑎𝑎𝑏𝑎𝑏𝑎𝑎𝑏𝑎𝑎𝑏𝑎𝑏𝑎𝑎𝑏𝑎𝑏𝑎𝑎𝑏𝑎𝑎𝑏𝑎𝑏𝑎𝑎𝑏𝑎 …

10111010101110111011101010111010101110101011101110111…

𝑎𝑏 𝜔 =

𝑓 =

𝑝𝑑 =

26

𝑠 𝑎𝑏 𝜔 𝑛 = 𝑠𝑓 𝑛 = 𝑠𝑝𝑑 𝑛 , for all 𝑛 > 0



Span and Leftmost string attractor

 Instead of just focusing on 𝑠𝑥, we have considered some structural properties

of string attractors

 Let 𝒢 be the set of all suitable string attractors for a given finite word 𝑤

𝑤 = 𝑎𝑏𝑐𝑐𝑎𝑏𝑐

❑ Span

span 𝑤 = min
Γ∈𝒢

max Γ −min Γ

❑ Leftmost string attractor

lm 𝑤 = min
Γ∈𝒢

max Γ

span 𝑤 = 6 − 4 = 2

lm 𝑤 = 4

1  2  3  4  5  6  7
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Span Complexity and

Leftmost Complexity

 Analogously, we define the span and the leftmost complexity for infinite words

❑ Proposition

 Let 𝑥 be an infinite word. Then 𝑠𝑥 𝑛 − 1 ≤ span𝑥 𝑛 ≤ lm𝑥 𝑛 .

❑ Span complexity

span𝑥 𝑛 = span(𝑥 0, 𝑛 − 1 )

❑ Leftmost complexity

lm𝑥 𝑛 = lm 𝑥[0, 𝑛 − 1]

𝑥

lm𝑥 𝑛 𝑛

ℓ ≥ span𝑥 𝑛
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Characterization of

ultimately periodic words 

❑ Proposition

 Let 𝑥 be an infinite word.

 𝑥 is ultimately periodic if and only if there exists 𝑘 > 0 such that lm𝑥 𝑛 ≤ 𝑘, 

for infinitely many 𝑛 > 0.

𝑥

𝑘 ⇒ 𝑝𝑥 𝑛 ≤ 𝑘 = Θ(1)
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Span Complexity bounded by a constant

❑ Proposition

 Let 𝑥 be an infinite word.

 If there exists 𝑘 > 0 such that span𝑥 𝑛 ≤ 𝑘 for infinitely many 𝑛, then 𝑥 is recurrent or 

ultimately periodic.

 𝑥 ultimately periodic ⇒ exists 𝑘 such that lm𝑥 𝑛 ≤ 𝑘 for each 𝑛 (recall span𝑥 𝑛 ≤ lm𝑥 𝑛 ) 

 On the other hand,  𝑥 aperiodic ⇒ for each 𝑘 > 0 there exists 𝑛0 such that lm𝑥 𝑛 > 𝑘,

for all 𝑛 > 𝑛0.

Let us suppose 𝑥 is not recurrent, i.e. exists 𝑢 ∈ 𝐹(𝑥) that occurs only once

𝑥
𝑢 lm𝑥 𝑛
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Relation between Span complexity and

Factor complexity

 Actually, if the span complexity of an infinite word 𝑥 is bounded by a constant 

𝑘, a stronger result can be deduced

❑ Lemma

 Let 𝑤 be a finite word.

 Then, for all 0 < 𝑛 ≤ 𝑤 , it holds that 𝐹 𝑤 ∩ Σ𝑛 ≤ 𝑛 + span(𝑤)

𝑥

𝑘

At most 𝑛 + 𝑘 distinct factors
31



Span complexity:

a new characterization for Sturmian words (1)

 It is known that an infinite word is Sturmian iff 𝑝𝑥 𝑚 = 𝑚 + 1 for all 𝑚

❑ Theorem

 Let 𝑥 be an infinite aperiodic word.

 Then, 𝑥 is Sturmian if and only if span𝑥 𝑛 = 1 for infinitely many 𝑛 > 0.

❑ (⇐)

 𝑥 aperiodic ⇒ 𝑝𝑥 𝑚 ≥ 𝑚 + 1

 span𝑥 𝑛 = 1 for infinitely many 𝑛 > 0 ⇒ 𝑝𝑥 𝑚 ≤ 𝑚 + 1

 Thus, 𝑝𝑥 𝑚 = 𝑚 + 1 and 𝑥 is Sturmian

32



Span complexity:

a new characterization for Sturmian words (2)

❑ (⇒)

 By using combinatorial arguments, we can prove that exists 𝑛0 such that, for 

every characteristic Sturmian word 𝑠′, 𝑠𝑝𝑎𝑛𝑠′ 𝑛 = 1 for every 𝑛 ≥ 𝑛0

 Every Sturmian word, like every other aperiodic AND recurrent word, has an 

infinite number of right special factors as prefixes

 Further, for every right special factor 𝑢 of a Sturmian word there exists a 

characteristic Sturmian word 𝑠′ that has 𝑢𝑅 as prefix [Lothaire – Algebraic 

Combinatorics on words, 2002]

𝑢 ∈ 𝐹(𝑥) is a right 

special factor if 

exist 𝑎 ≠ 𝑏 ∈ Σ such 

that 𝑢𝑎, 𝑢𝑏 ∈ 𝐹(𝑥)

𝑠

𝑠′
33



Morphisms and

string attractor-based measures

 Proposition

 Let 𝜑: Σ ↦ Σ′ be a morphism. Then there exists 𝐾 > 0 which depends only from 𝜑 such 

that, for every 𝑤 ∈ Σ∗:

 𝛾∗ 𝜑 𝑤 ≤ 2𝛾∗ 𝑤 + 𝐾  span 𝜑 𝑤 ≤ 𝐾 ⋅ span 𝑤  lm 𝜑 𝑤 ≤ 𝐾 ⋅ lm 𝑤

𝑤

𝜑 𝑤
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Quasi-Sturmian words

 𝑥 ∈ Σ𝜔 is Quasi-Sturmian if there exist 𝑛0, 𝑘 such that 𝑝𝑥 𝑛 = 𝑛 + 𝑘, for 𝑛 > 𝑛0

❑ Proposition [Cassaigne, DLT 1997]

 An infinite word 𝑥 ∈ Σ𝜔 is quasi-Sturmian if and only if 𝑥 = 𝑢 ⋅ 𝜑(𝑠), where

 𝑢 ∈ Σ∗ is a finite word

 𝑠 ∈ 𝑎, 𝑏 𝜔 is a Sturmian word

 𝜑: 𝑎, 𝑏 ∗ ↦ Σ∗ is a morphism such that 𝜑 𝑎𝑏 ≠ 𝜑(𝑏𝑎)

𝑞𝑠

𝑠

𝑢 𝜑(𝑠)
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Characterization of Quasi-Sturmian

words via span complexity

 Theorem

 An infinite aperiodic word 𝑥 ∈ Σ𝜔 is Quasi-Sturmian if and only if there exist a 

suffix 𝑦 of 𝑥 and an integer 𝑘 > 0 such that span𝑦 𝑛 ≤ 𝑘 for infinitely many 𝑛.

 For every Sturmian 𝑠 it holds that span𝑠 𝑛 = 1 for infinitely many 𝑛

 Further, there exists 𝑘 > 0 such that span 𝜑 𝑤 ≤ 𝑘 ⋅ span 𝑤 for every 𝑤 ∈ Σ∗

 Thus, span𝜑 𝑠 𝑛 ≤ 𝑘 ⋅ span𝑠 𝑛 = 𝑘 for infinitely many 𝑛

𝑞𝑠

𝑢 𝜑(𝑠)
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Conclusions and open problems

 Notion of string attractor in between data compression and combinatorics 

 An NP-complete problem is solvable for infinite families of words by using combinatorial 

arguments

 Chacterization of words via string attractor based complexities

 Open question: Are there other structural properties of string attractors that can 

be used to characterize infinite words? 

 Open question: In general, for every finite word 𝑤, is there a set of string 

attractors that allow to uniquely recover 𝑤?

Thanks for your attention! 37


