Synchronizing Times for k-sets in Automata

Natalie Behague

University of Victoria

Joint work with Robert Johnson, QMUL

Natalie Behague Synchronizing Times for *k*-sets in Automata

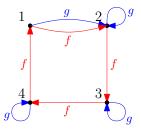
< 🗇 🕨

A E
 A
 A
 E
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

3

What Are Synchronizing Automata?

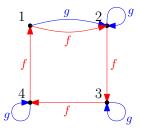
An automaton is a set of states [*n*] and a set of mappings from the set of states to itself.



æ

What Are Synchronizing Automata?

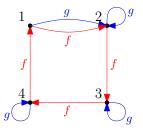
An automaton is a set of states [n] and a set of mappings from the set of states to itself.



A word is a sequence of mappings. A reset word sends every state to the same state. e.g. gffgfffg for this automaton

What Are Synchronizing Automata?

An automaton is a set of states [n] and a set of mappings from the set of states to itself.



A word is a sequence of mappings. A reset word sends every state to the same state. e.g. gffgfffg for this automaton

A synchronizing automaton is one that has a reset word.

Černý's Conjecture

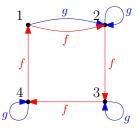
A synchronizing automaton has a reset word of length $\leq (n-1)^2$.

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣 ■ の Q ()

Černý's Conjecture

A synchronizing automaton has a reset word of length $\leq (n-1)^2$.

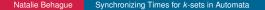
If true would be best possible.



프 🖌 🛪 프 🛌

ъ

By considering pairs can find reset word of length $\leq (n-1)\binom{n}{2}$.



◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

By considering pairs can find reset word of length $\leq (n-1)\binom{n}{2}$.

Theorem [Frankl–Pin 83]

S a set of *k* states of a sync. automaton. Exists word *w* of length $\leq \binom{n-k+2}{2}$ such that |w(S)| < k.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

By considering pairs can find reset word of length $\leq (n-1)\binom{n}{2}$.

Theorem [Frankl–Pin 83]

S a set of *k* states of a sync. automaton. Exists word *w* of length $\leq \binom{n-k+2}{2}$ such that |w(S)| < k.

Corollary

Exists a reset word of length $\leq (n^3 - n)/6$.

Natalie Behague Synchronizing Times for *k*-sets in Automata

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

By considering pairs can find reset word of length $\leq (n-1)\binom{n}{2}$.

Theorem [Frankl–Pin 83]

S a set of *k* states of a sync. automaton. Exists word *w* of length $\leq \binom{n-k+2}{2}$ such that |w(S)| < k.

Corollary

Exists a reset word of length $\leq (n^3 - n)/6$.

Best known: $\leq 0.1654n^3 + o(n^3)$ [Shitov 19].

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

Conjecture holds if:

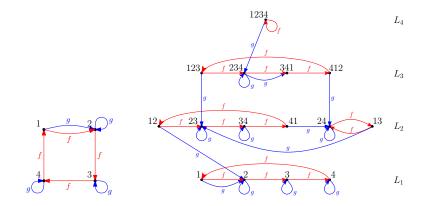
- automaton is orientable [Eppstein 90]
- the underlying digraph is Eulerian [Kari 03]
- one transition function is a cyclic permutation of all the states [Dubuc 98]

...

・ 同 ト ・ ヨ ト ・ ヨ ト …

= 990

The Power Automaton



 $\exists \rightarrow$

 The *k*-set rendezvous time rdv(k, n) is the length of the shortest path from layer L_k to layer L_1 .

・ 同 ト ・ ヨ ト ・ ヨ ト …

The *k*-set rendezvous time rdv(k, n) is the length of the shortest path from layer L_k to layer L_1 .

Lower bounds

Standard example gives $rdv(k, n) \ge (k - 2)n + 1$.

Gonze and Jungers found example giving $rdv(3, n) \ge n + 3$.

イロト イ理ト イヨト ・ ヨト

The *k*-set rendezvous time rdv(k, n) is the length of the shortest path from layer L_k to layer L_1 .

Lower bounds

Standard example gives $rdv(k, n) \ge (k - 2)n + 1$. Gonze and Jungers found example giving $rdv(3, n) \ge n + 3$.

Upper bounds

Applying Frankl–Pin directly gives

$$\operatorname{rdv}(k,n) \leq 1 + \sum_{i=2}^{k-1} \binom{n-i+2}{2} = (k-2)\frac{n^2}{2} + O(n).$$

Gonze and Jungers showed $rdv(3, n) \le 0.1545n^2$.

ヘロト ヘアト ヘビト ヘビト

Theorem 1 [B., Johnson '22]

For fixed k and n sufficiently large

$$\operatorname{rdv}(k,n) < \left\lfloor \frac{k-1}{2} \right\rfloor \frac{n^2}{2}$$

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - 釣�?

Theorem 1 [B., Johnson '22]

For fixed k and n sufficiently large

$$\operatorname{rdv}(k,n) < \left\lfloor \frac{k-1}{2} \right\rfloor \frac{n^2}{2}$$

Theorem 2 [B., Johnson '22]

$$\begin{aligned} \mathsf{rdv}(3,n) &\leq \frac{3-\sqrt{5}}{4}n^2 + \frac{3}{2}n &\cong 0.191n^2 + O(n) \\ & \mathsf{rdv}(4,n) &\leq 0.459n^2 + O(n) \\ & \mathsf{rdv}(5,n) &\leq 0.798n^2 + O(n) \end{aligned}$$

イロト 不得 とくほと くほとう

E DQC

Thm: For fixed *k* and *n* large, $\operatorname{rdv}(k, n) < \lfloor \frac{k-1}{2} \rfloor \frac{n^2}{2}$

Natalie Behague Synchronizing Times for k-sets in Automata

▲ロ▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ● ●

Thm: For fixed *k* and *n* large, $\operatorname{rdv}(k, n) < \lfloor \frac{k-1}{2} \rfloor \frac{n^2}{2}$

Example: k=6 L_n to L_{n-3} : at most 1 + 3 + 6 steps L_3 to L_1 : at most $\binom{n-1}{2} + \binom{n}{2}$ steps

Natalie Behague Synchronizing Times for *k*-sets in Automata

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

Thm: For fixed *k* and *n* large, $\operatorname{rdv}(k, n) < \lfloor \frac{k-1}{2} \rfloor \frac{n^2}{2}$

Example: k=6 L_n to L_{n-3} : at most 1 + 3 + 6 steps L_3 to L_1 : at most $\binom{n-1}{2} + \binom{n}{2}$ steps

In general,

$$\sum_{i=1}^{\lfloor \frac{k}{2} \rfloor} \binom{i+1}{2} + \sum_{i=1}^{\lceil \frac{k}{2} \rceil - 1} \binom{n-i+1}{2}.$$

Natalie BehagueSynchronizing Times for k-sets in Automata

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

Theorem:
$$rdv(3, n) \le \frac{3-\sqrt{5}}{4}n^2 + \frac{3}{2}n$$

Natalie Behague Synchronizing Times for *k*-sets in Automata

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Theorem:
$$rdv(3, n) \le \frac{3-\sqrt{5}}{4}n^2 + \frac{3}{2}n$$

Rank of word w = number of points in image w([n]). Let r be min rank over words length $\leq n$.

イロト イ理ト イヨト ・ ヨト

Theorem:
$$rdv(3, n) \le \frac{3-\sqrt{5}}{4}n^2 + \frac{3}{2}n$$

Rank of word w = number of points in image w([n]). Let r be min rank over words length $\leq n$.

Claim 1

Exists word sending some triple to a singleton of length $\leq n + \binom{r+2}{2}$

Claim 2

Exists word sending some triple to a singleton of length $\leq n + \frac{(n-r)n}{2}$

ヘロト ヘアト ヘビト ヘビト

Claim 1

Exists word sending some triple to a singleton of length $\leq n + \binom{r+2}{2}$ where $r = \min_{w \text{ length } \leq n} rank(w)$

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣 ■ の Q ()

Claim 1

Exists word sending some triple to a singleton of length $\leq n + \binom{r+2}{2}$ where $r = \min_{w \text{ length } \leq n} rank(w)$

Fix word *w* length $\leq n$ that has rank *r*.

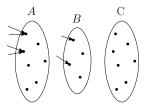
・ 同 ト ・ ヨ ト ・ ヨ ト

3

Claim 1

Exists word sending some triple to a singleton of length $\leq n + \binom{r+2}{2}$ where $r = \min_{w \text{ length } \leq n} rank(w)$

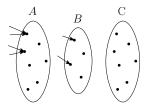
Fix word w length $\leq n$ that has rank r. Let A be set of points with two pre-images under w.



Claim 1

Exists word sending some triple to a singleton of length $\leq n + \binom{r+2}{2}$ where $r = \min_{w \text{ length } \leq n} rank(w)$

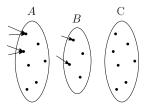
Fix word w length $\leq n$ that has rank r. Let A be set of points with two pre-images under w.



n = 2|A| + |B| = |A| + |B| + |C|

Exists word sending some triple to a singleton of length $\leq n + \binom{r+2}{2}$ where $r = \min_{w \text{ length } \leq n} rank(w)$

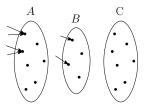
Fix word w length $\leq n$ that has rank r. Let A be set of points with two pre-images under w.



n = 2|A| + |B| = |A| + |B| + |C|, so |A| = n - r.

Exists word sending some triple to a singleton of length $\leq n + \binom{r+2}{2}$ where $r = \min_{w \text{ length } \leq n} rank(w)$

Fix word w length $\leq n$ that has rank r. Let A be set of points with two pre-images under w.



n = 2|A| + |B| = |A| + |B| + |C|, so |A| = n - r. Apply Frankl-Pin to A.

Claim 2

Exists word sending some triple to a singleton of length $\leq n + \frac{(n-r)n}{2}$ where $r = \min_{w \text{ length } \leq n} rank(w)$

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - 釣�?

Exists word sending some triple to a singleton of length $\leq n + \frac{(n-r)n}{2}$ where $r = \min_{w \text{ length } \leq n} rank(w)$

Assume strongly connected.

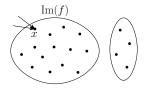
A good pair can be reached from a triple in $\leq n$ steps.

▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨ のへで

Exists word sending some triple to a singleton of length $\leq n + \frac{(n-r)n}{2}$ where $r = \min_{w \text{ length } \leq n} rank(w)$

Assume strongly connected.

A good pair can be reached from a triple in $\leq n$ steps.

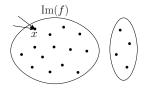


< 回 > < 回 > < 回 > -

Exists word sending some triple to a singleton of length $\leq n + \frac{(n-r)n}{2}$ where $r = \min_{w \text{ length } \leq n} rank(w)$

Assume strongly connected.

A good pair can be reached from a triple in $\leq n$ steps.



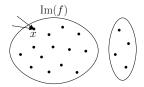
There are $\geq \frac{(r-1)n}{2}$ good pairs.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Exists word sending some triple to a singleton of length $\leq n + \frac{(n-r)n}{2}$ where $r = \min_{w \text{ length } \leq n} rank(w)$

Assume strongly connected.

A good pair can be reached from a triple in $\leq n$ steps.



There are $\geq \frac{(r-1)n}{2}$ good pairs. So there are $\leq \frac{(n-r)n}{2}$ bad pairs.

・ロン ・四 と ・ ヨ と ・

Exists word sending some triple to a singleton of length

$$\leq \min\left\{n+\binom{r+2}{2},n+\frac{(n-r)n}{2}\right\}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Exists word sending some triple to a singleton of length

$$\leq \min\left\{n+\binom{r+2}{2},n+\frac{(n-r)n}{2}
ight\}$$

Worst case is when these are equal

・ 同 ト ・ ヨ ト ・ ヨ ト …

э.

Exists word sending some triple to a singleton of length

$$\leq \min\left\{n+\binom{r+2}{2},n+\frac{(n-r)n}{2}
ight\}$$

Worst case is when these are equal which is when $r \approx \frac{-1+\sqrt{5}}{2}n$.

< 回 > < 回 > < 回 > -

æ

Exists word sending some triple to a singleton of length

$$\leq \min\left\{n+\binom{r+2}{2},n+\frac{(n-r)n}{2}
ight\}$$

Worst case is when these are equal which is when $r \approx \frac{-1+\sqrt{5}}{2}n$. Doing the calculations we get

$$\mathsf{rdv}(3,n) \leq \frac{3-\sqrt{5}}{4}n^2 + \frac{3}{2}n$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

・ 同 ト ・ ヨ ト ・ ヨ ト

E na@

Conjecture

There exists some constant *c* such that $rdv(3, n) \leq cn$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Conjecture

There exists some constant *c* such that $rdv(3, n) \leq cn$.

What about the worst triple?

Question

Is there some constant c < 1 such that for any triple there is a word from that triple to a singleton of length $\leq cn^2 + O(n)$?

ヘロト ヘアト ヘビト ヘビト

Conjecture

There exists some constant *c* such that $rdv(3, n) \leq cn$.

What about the worst triple?

Question

Is there some constant c < 1 such that for any triple there is a word from that triple to a singleton of length $\leq cn^2 + O(n)$?

A 'yes' would give an improvement on the Frankl–Pin bound for Černý's conjecture.

・ 同 ト ・ ヨ ト ・ ヨ ト

Non-synchronizing Automata

Theorem 3 [B., Johnson 20+]

If $k \ge 3$ and *n* suff. large there exists a (non-sync.) automaton where the shortest path from L_k to L_1 is of length $\ge \frac{4}{3} \left(\frac{n}{4k}\right)^{k-1}$.

Natalie Behague Synchronizing Times for *k*-sets in Automata

同 とく ヨ とく ヨ とう

Non-synchronizing Automata

Theorem 3 [B., Johnson 20+]

If $k \ge 3$ and *n* suff. large there exists a (non-sync.) automaton where the shortest path from L_k to L_1 is of length $\ge \frac{4}{3} \left(\frac{n}{4k}\right)^{k-1}$.

 $O(n^{k-1})$ is best possible.

・ 同 ト ・ ヨ ト ・ ヨ ト

Non-synchronizing Automata

Theorem 3 [B., Johnson 20+]

If $k \ge 3$ and *n* suff. large there exists a (non-sync.) automaton where the shortest path from L_k to L_1 is of length $\ge \frac{4}{3} \left(\frac{n}{4k}\right)^{k-1}$.

 $O(n^{k-1})$ is best possible.

Construction for k = 3

