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What Are Synchronizing Automata?

An automaton is a set of states [n] and a set of mappings from
the set of states to itself.
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A word is a sequence of mappings.
A reset word sends every state to the same state.

e.g. gfffgfffg for this automaton

A synchronizing automaton is one that has a reset word.
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Černý’s Conjecture

Černý’s Conjecture
A synchronizing automaton has a reset word of length
≤ (n − 1)2.

If true would be best possible.

1

4

2

3

g

f

f

f

f

g

gg

Natalie Behague Synchronizing Times for k -sets in Automata
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Upper Bounds on Reset Word Length

Černý’s Conjecture: a synchronizing automaton has reset word of
length ≤ (n − 1)2.

By considering pairs can find reset word of length ≤ (n − 1)
(n

2

)
.

Theorem [Frankl–Pin 83]
S a set of k states of a sync. automaton.
Exists word w of length ≤

(n−k+2
2

)
such that |w(S)| < k .

Corollary

Exists a reset word of length ≤ (n3 − n)/6.

Best known: ≤ 0.1654n3 + o
(
n3) [Shitov 19].
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Černý’s Conjecture: a synchronizing automaton has reset word of
length ≤ (n − 1)2.

Conjecture holds if:
automaton is orientable [Eppstein 90]
the underlying digraph is Eulerian [Kari 03]
one transition function is a cyclic permutation of all the
states [Dubuc 98]
...
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The Power Automaton
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k -set Rendezvous Time

The k -set rendezvous time rdv(k ,n) is the length of the
shortest path from layer Lk to layer L1.

Lower bounds
Standard example gives rdv(k ,n) ≥ (k − 2)n + 1.
Gonze and Jungers found example giving rdv(3,n) ≥ n + 3.

Upper bounds
Applying Frankl–Pin directly gives

rdv(k ,n) ≤ 1 +
k−1∑
i=2

(
n − i + 2

2

)
= (k − 2)

n2

2
+ O(n).

Gonze and Jungers showed rdv(3,n) ≤ 0.1545n2.
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Our Results

Theorem 1 [B., Johnson ’22]
For fixed k and n sufficiently large

rdv(k ,n) <
⌊

k − 1
2

⌋
n2

2

Theorem 2 [B., Johnson ’22]

rdv(3,n) ≤ 3 −
√

5
4

n2 +
3
2

n ≊ 0.191n2 + O(n)

rdv(4,n) ≤ 0.459n2 + O(n)

rdv(5,n) ≤ 0.798n2 + O(n)
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Proof of Theorem 1

Thm: For fixed k and n large, rdv(k ,n) <
⌊ k−1

2

⌋ n2

2

Example: k=6
Ln to Ln−3: at most 1 + 3 + 6 steps
L3 to L1: at most

(n−1
2

)
+
(n

2

)
steps

In general,

⌊ k
2⌋∑

i=1

(
i + 1

2

)
+

⌈ k
2⌉−1∑
i=1

(
n − i + 1

2

)
.
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Proof of rdv(3,n) Upper Bound

Theorem: rdv(3,n) ≤ 3−
√

5
4 n2 + 3

2n

Rank of word w = number of points in image w([n]).
Let r be min rank over words length ≤ n.

Claim 1

Exists word sending some triple to a singleton
of length ≤ n +

(r+2
2

)
Claim 2

Exists word sending some triple to a singleton
of length ≤ n + (n−r)n

2
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Proof of rdv(3,n) Upper Bound

Claim 1
Exists word sending some triple to a singleton of length
≤ n +

(r+2
2

)
where r = minw length ≤n rank(w)

Fix word w length ≤ n that has rank r .
Let A be set of points with two pre-images under w .

A
B

C

n = 2|A|+ |B| = |A|+ |B|+ |C| , so |A| = n − r .
Apply Frankl-Pin to A.
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Proof of rdv(3,n) Upper Bound

Claim 2
Exists word sending some triple to a singleton of length
≤ n + (n−r)n

2 where r = minw length ≤n rank(w)

Assume strongly connected.
A good pair can be reached from a triple in ≤ n steps.

Im(f )

x

There are ≥ (r−1)n
2 good pairs. So there are ≤ (n−r)n

2 bad pairs.

Natalie Behague Synchronizing Times for k -sets in Automata



Proof of rdv(3,n) Upper Bound

Claim 2
Exists word sending some triple to a singleton of length
≤ n + (n−r)n

2 where r = minw length ≤n rank(w)

Assume strongly connected.
A good pair can be reached from a triple in ≤ n steps.

Im(f )

x

There are ≥ (r−1)n
2 good pairs. So there are ≤ (n−r)n

2 bad pairs.

Natalie Behague Synchronizing Times for k -sets in Automata



Proof of rdv(3,n) Upper Bound

Claim 2
Exists word sending some triple to a singleton of length
≤ n + (n−r)n

2 where r = minw length ≤n rank(w)

Assume strongly connected.
A good pair can be reached from a triple in ≤ n steps.

Im(f )

x

There are ≥ (r−1)n
2 good pairs. So there are ≤ (n−r)n

2 bad pairs.

Natalie Behague Synchronizing Times for k -sets in Automata



Proof of rdv(3,n) Upper Bound

Claim 2
Exists word sending some triple to a singleton of length
≤ n + (n−r)n

2 where r = minw length ≤n rank(w)

Assume strongly connected.
A good pair can be reached from a triple in ≤ n steps.

Im(f )

x

There are ≥ (r−1)n
2 good pairs.

So there are ≤ (n−r)n
2 bad pairs.

Natalie Behague Synchronizing Times for k -sets in Automata



Proof of rdv(3,n) Upper Bound

Claim 2
Exists word sending some triple to a singleton of length
≤ n + (n−r)n

2 where r = minw length ≤n rank(w)

Assume strongly connected.
A good pair can be reached from a triple in ≤ n steps.

Im(f )

x

There are ≥ (r−1)n
2 good pairs. So there are ≤ (n−r)n

2 bad pairs.

Natalie Behague Synchronizing Times for k -sets in Automata



Proof of rdv(3,n) Upper Bound

Put two claims together.

Exists word sending some triple to a singleton
of length

≤ min

{
n +

(
r + 2

2

)
,n +

(n − r)n
2

}

Worst case is when these are equal which is when r ≈ −1+
√

5
2 n.

Doing the calculations we get

rdv(3,n) ≤ 3 −
√

5
4

n2 +
3
2

n
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Open Questions

Can these methods be generalised to rdv(k ,n) for k > 5?

Conjecture

There exists some constant c such that rdv(3,n) ≤ cn.

What about the worst triple?

Question
Is there some constant c < 1 such that for any triple there is a
word from that triple to a singleton of length ≤ cn2 + O(n)?

A ‘yes’ would give an improvement on the Frankl–Pin bound for
Černý’s conjecture.
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Černý’s conjecture.

Natalie Behague Synchronizing Times for k -sets in Automata



Non-synchronizing Automata

Theorem 3 [B., Johnson 20+]
If k ≥ 3 and n suff. large there exists a (non-sync.) automaton
where the shortest path from Lk to L1 is of length ≥ 4

3

( n
4k

)k−1.

O(nk−1) is best possible.

Construction for k = 3

A

X

a1 a2 a3 a4 a5

x2
x3

x4

x5

x6

x1

x7

x16
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