k-recursive Sequences and their Asymptotic Analysis

Daniel Krenn

November 7, 2022

This presentation is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

(Un-)bordered Factors

(Un-)bordered

- word w bordered:
 - exists non-empty word $v \neq w$
 - v is prefix and suffix of w
- otherwise unbordered

Daniel Krenn k-Recursive Sequences

(Un-)bordered Factors

(Un-)bordered

- word w bordered:
 - exists non-empty word $v \neq w$
 - v is prefix and suffix of w
- otherwise unbordered

bordered factor	border	length		
00	0	2		
11	1	2		
010	0	3		
101	1	3		
1010	10	4		
0110100110	0110	10		

unbordered factor	length
ε	0
0	1
1	1
01	2
10	2
011	3
110	3
100	3
001	3

(Un-)bordered Factors

(Un-)bordered

- word w bordered:
 - exists non-empty word $v \neq w$
 - v is prefix and suffix of w
- otherwise unbordered

bordered factor	border	length
t[56] = 00	0	2
t[12] = 11	1	2
t[35] = 010	0	3
t[24] = 101	1	3
t[25] = 1010	10	4
t[09] = 0110100110	0110	10

unbordered factor	length
ε	0
t[00] = 0	1
t[11] = 1	1
t[01] = 01	2
t[23] = 10	2
t[02] = 011	3
t[13] = 110	3
t[46] = 100	3
t[57] = 001	3

Thue-Morse Sequence

t = 01101001100101101001011001101001...

Number of Unbordered Factors

Theorem (Goč-Henshall-Shallit 2013)

exists unbordered factor of length n

 \iff $(n)_2 \notin 1(01^*0)^*10^*1$

in Thue–Morse sequence

Number of Unbordered Factors

Unboardered Factors

Theorem (Goč–Henshall–Shallit 2013)

exists unbordered factor \iff $(n)_2 \notin 1(01^*0)^*10^*1$ of length n in Thue–Morse sequence

• number f(n) of unbordered factors of length nin the Thue-Morse sequence

	n	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ī	f(n)	1	2	2	4	2	4	6	0	4	4	4	4	12	0	4	4

Daniel Krenn k-Recursive Sequences

Unboardered Factors

Theorem (Goč–Henshall–Shallit 2013)

exists unbordered factor \iff $(n)_2 \notin 1(01^*0)^*10^*1$ of length n in Thue-Morse sequence

• number f(n) of unbordered factors of length nin the Thue-Morse sequence

n	l															
f(n)	1	2	2	4	2	4	6	0	4	4	4	4	12	0	4	4

Theorem (Goč-Mousavi-Shallit 2013)

- inequality $f(n) \le n$ holds for all $n \ge 4$
- f(n) = n infinitely often
- $\limsup_{n>1} \frac{f(n)}{n} = 1$

k-Recursive Sequences

Unboardered Factors

- number f(n) of unbordered factors of length n in Thue-Morse sequence
- recurrence relations

$$f(4n) = 2f(2n) \qquad (n \ge 2)$$

$$f(4n+1) = f(2n+1) \qquad (n \ge 0)$$

$$f(8n+2) = f(2n+1) + f(4n+3) \qquad (n > 1)$$

$$f(8n+2) = f(2n+1) + f(4n+3) \qquad (n \ge 1)$$

$$f(8n+3) = -f(2n+1) + f(4n+2) \qquad (n \ge 2)$$

$$f(8n+6) = -f(2n+1) + f(4n+2) + f(4n+3) \qquad (n \ge 2)$$

$$f(8n+7) = 2f(2n+1) + f(4n+3) \qquad (n \ge 3)$$

Theorem (Goč-Mousavi-Shallit 2013)

f(n) satisfies recurrence relations above

Unboardered Factors

000

- number f(n) of unbordered factors of length n in Thue-Morse sequence
- recurrence relations

$$f(8n) = 2f(4n)$$

$$f(8n+1) = f(4n+1)$$

$$f(8n+2) = f(4n+1) + f(4n+3)$$

$$f(8n+3) = -f(4n+1) + f(4n+2)$$

$$f(8n+4) = 2f(4n+2)$$

$$f(8n+5) = f(4n+3)$$

$$(001 + 3) = (401 + 3)$$

$$f(8n+6) = -f(4n+1) + f(4n+2) + f(4n+3)$$

$$f(8n+7) = 2f(4n+1) + f(4n+3)$$

$$(n \ge 1)$$

$$(n \ge 0)$$

$$(n \ge 1)$$

$$(n \ge 1)$$

$$(n \ge 0)$$

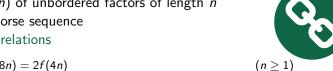
$$(n \geq 2)$$

$$(n \ge 3)$$

k-Recursive Sequences

Recurrence Relations

- number f(n) of unbordered factors of length n in Thue-Morse sequence
- recurrence relations



$$f(8n) = 2f(4n) \qquad (n \ge 1)$$

$$f(8n+1) = f(4n+1) \qquad (n \ge 0)$$

$$f(8n+2) = f(4n+1) + f(4n+3) \qquad (n \ge 1)$$

$$f(8n+3) = -f(4n+1) + f(4n+2) \qquad (n \ge 2)$$

$$f(8n+4) = 2f(4n+2) \qquad (n \ge 1)$$

$$f(8n+5) = f(4n+3) \qquad (n \ge 0)$$

$$f(8n+6) = -f(4n+1) + f(4n+2) + f(4n+3) \qquad (n \ge 2)$$

$$f(8n+7) = 2f(4n+1) + f(4n+3) \qquad (n \ge 3)$$

• f(n) is a 2-recursive sequence

• integer $k \ge 2$

k-recursive Sequence x(n)

there exist

• integers $M > m \ge 0$, $\ell \le u$, $n_0 \ge \max\{-\ell/k^m, 0\}$

• constants $c_{s,j} \in \mathbb{C}$

such that

$$x(k^{M}n+s) = \sum_{\ell \leq j \leq u} c_{s,j} x(k^{m}n+j)$$

holds for all $n > n_0$ and $0 < s < k^M$

• integer k > 2

k-recursive Sequence x(n)

there exist

- integers M > m > 0, $\ell < u$, $n_0 > \max\{-\ell/k^m, 0\}$
- constants $c_{s,i} \in \mathbb{C}$

such that

$$x(k^M n + s) = \sum_{\ell \le j \le u} c_{s,j} x(k^m n + j)$$

holds for all $n > n_0$ and $0 < s < k^M$

- h(n)...largest power of 2 less than or equal to n
 - h(2n) = 2h(n), h(2n+1) = 2h(n) for $n \ge 1$, h(1) = 1
 - k = 2. M = 1, m = 0, $\ell = 0$, u = 1, $n_0 = 1$

• integer k > 2

k-recursive Sequence x(n)

there exist

such that

• integers
$$M > m \ge 0$$
, $\ell \le u$, $n_0 > \max\{-\ell/k^m, 0\}$

$$x(k^{M}n+s) = \sum_{\ell \leq j \leq u} c_{s,j} x(k^{m}n+j)$$

• constants $c_{s,i} \in \mathbb{C}$

holds for all $n > n_0$ and $0 < s < k^M$

- h(n)...largest power of 2 less than or equal to n
 - h(2n) = 2h(n), h(2n+1) = 2h(n) for $n \ge 1$, h(1) = 1
 - k = 2, M = 1, m = 0, $\ell = 0$, u = 1, $n_0 = 1$
- binary sum of digits
 - s(2n) = s(n), s(2n+1) = s(n) + 1
 - no direct fit because of constant sequence
 - deal with inhomogeneities by increasing the exponents

k-Recursive Sequences

• integer k > 2

k-recursive Sequence x(n)

there exist

such that

• integers
$$M > m \ge 0$$
, $\ell \le u$, $n_0 \ge \max\{-\ell/k^m, 0\}$

• constants $c_{s,i} \in \mathbb{C}$

$$x(k^{M}n+s) = \sum_{0 \le i \le n} c_{s,j} x(k^{m}n+j)$$

holds for all $n > n_0$ and $0 < s < k^M$

- h(n)...largest power of 2 less than or equal to n
 - h(2n) = 2h(n), h(2n+1) = 2h(n) for n > 1, h(1) = 1
 - k = 2, M = 1, m = 0, $\ell = 0$, u = 1, $n_0 = 1$
- binary sum of digits
 - s(2n) = s(n), s(2n+1) = s(n) + 1
 - no direct fit because of constant sequence
 - deal with inhomogeneities by increasing the exponents
- number f(n) of unbordered factors of length nin Thue-Morse sequence

k-regular Sequences

explicitly:

- there exist sequences $f_1(n), \ldots f_s(n)$ such that
- for all $j \ge 0$, $0 \le r < k^j$
- there exist c_1, \ldots, c_s
- with

$$f(k^{j}n+r)=c_{1}f_{1}(n)+\cdots+c_{s}f_{s}(n)$$

k-regular Sequences

k-regular Sequence f(n)

k-kernel
$$\left\{ f(k^j n + r) \mid j \geq 0, \ 0 \leq r < k^j \right\}$$
 is contained in finitely generated module

explicitly:

- there exist sequences $f_1(n), \ldots f_s(n)$ such that
- for all i > 0, $0 < r < k^{j}$
- there exist c_1, \ldots, c_s
- with

$$f(k^{j}n+r)=c_{1}f_{1}(n)+\cdots+c_{s}f_{s}(n)$$

Daniel Krenn

k-linear Representation

binary sum of digits s(n):

recurrence relations

even numbers:
$$s(2n) = s(n)$$

odd numbers: $s(2n+1) = s(n) + 1$

k-linear Representation

binary sum of digits s(n):

recurrence relations

even numbers:
$$s(2n) = s(n)$$

odd numbers: $s(2n+1) = s(n) + 1$

vector-valued sequence

set
$$v(n) = (s(n), 1)^T$$
even
$$v(2n) = \begin{pmatrix} s(n) \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} v(n)$$
odd
$$v(2n+1) = \begin{pmatrix} s(n)+1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} v(n)$$

Recursive Sequences

k-linear Representation

binary sum of digits s(n):

recurrence relations

even numbers:
$$s(2n) = s(n)$$

odd numbers: $s(2n+1) = s(n) + 1$

vector-valued sequence

set
$$v(n) = (s(n), 1)^T$$
even
$$v(2n) = \begin{pmatrix} s(n) \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} v(n)$$
odd
$$v(2n+1) = \begin{pmatrix} s(n)+1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} v(n)$$

• iterate → product of matrices

k-linear Representation

binary sum of digits s(n):

recurrence relations

even numbers:
$$s(2n) = s(n)$$

odd numbers: $s(2n+1) = s(n) + 1$

vector-valued sequence

set
$$v(n) = (s(n), 1)^T$$
even
$$v(2n) = \begin{pmatrix} s(n) \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} v(n)$$
odd
$$v(2n+1) = \begin{pmatrix} s(n)+1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} v(n)$$

iterate → product of matrices

k-regular Sequence f(n)

- square matrices M_0, \ldots, M_{k-1}
- vectors u and w
- k-linear representation

$$f(n) = u^T M_{n_0} M_{n_1} \dots M_{n_{\ell-1}} w$$

with standard k -ary expansion

 $n = (n_{\ell-1} \dots n_1 n_0)_k$

Some k-regular Sequences

- h(n)...largest power of 2 less than or equal to n
 - $h(2^{j}n + r) = 2^{j}h(n)$ for $n \ge 1$, $j \ge 0$, $0 \le r < 2^{j}$
- binary sum of digits

Some k-regular Sequences

- h(n)...largest power of 2 less than or equal to n
 - $h(2^{j}n + r) = 2^{j}h(n)$ for $n \ge 1$, $j \ge 0$, $0 \le r < 2^{j}$
- binary sum of digits
- k-recursive sequences:

Theorem (Heuberger-K-Lipnik 2022)

k-recursive sequence x(n)

Then

- x(n) is k-regular sequence
- k-linear representation of x(n)
 - vector-valued sequence v(n) in block form
 - block matrices M_0, \ldots, M_{k-1}
 - computed by coefficients of k-recursive sequence
 - explicit formulæ for the rows available

Unboardered Factors: Coefficient Matrices

 number f(n) of unbordered factors of length n in Thue–Morse sequence

$$f(8n) = 2f(4n)$$

$$f(8n+1) = f(4n+1)$$

$$f(8n+2) = f(4n+1) + f(4n+3)$$

$$f(8n+3) = -f(4n+1) + f(4n+2)$$

$$f(8n+4) = 2f(4n+2)$$

$$f(8n+5) = f(4n+3)$$

$$f(8n+6) = -f(4n+1) + f(4n+2) + f(4n+3)$$

$$f(8n+7) = 2f(4n+1) + f(4n+3)$$

Unboardered Factors: Coefficient Matrices

- number f(n) of unbordered factors of length n in Thue–Morse sequence
- coefficient matrices B_0 , B_1 :

$$f(8n) = 2f(4n)$$

$$f(8n+1) = f(4n+1)$$

$$f(8n+2) = f(4n+1) + f(4n+3)$$

$$f(8n+3) = -f(4n+1) + f(4n+2)$$

$$f(8n+4) = 2f(4n+2)$$

$$f(8n+5) = f(4n+3)$$

$$f(8n+6) = -f(4n+1) + f(4n+2) + f(4n+3)$$

$$f(8n+7) = 2f(4n+1) + f(4n+3)$$

$$B_{0} = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & -1 & 1 & 0 \end{pmatrix}$$

$$B_{1} = \begin{pmatrix} 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & -1 & 1 & 1 \\ 0 & 2 & 0 & 1 \end{pmatrix}$$

Unboardered Factors: Linear Representation

- coefficient matrices B_0 , B_1
- 2-linear representation of f(n):

$$v = \begin{pmatrix} f \\ f \circ (n \mapsto 2n) \\ f \circ (n \mapsto 2n+1) \\ f \circ (n \mapsto 4n) \\ f \circ (n \mapsto 4n+1) \\ f \circ (n \mapsto 4n+2) \\ f \circ (n \mapsto 4n+3) \end{pmatrix}$$

$$M_0 = \begin{pmatrix} J_{00} & J_{01} \\ 0 & B_0 \end{pmatrix}$$

$$M_1 = \begin{pmatrix} J_{10} & J_{11} \\ 0 & B_1 \end{pmatrix}$$

• J_{r0} . J_{r1} entries 0. 1

k-Recursive Sequences

Unboardered Factors: Linear Representation

- coefficient matrices B_0 , B_1
- 2-linear representation of f(n):

$$v = \begin{pmatrix} f \\ f \circ (n \mapsto 2n) \\ f \circ (n \mapsto 2n+1) \\ f \circ (n \mapsto 4n) \\ f \circ (n \mapsto 4n+1) \\ f \circ (n \mapsto 4n+2) \\ f \circ (n \mapsto 4n+3) \end{pmatrix}$$

$$M_0 = \begin{pmatrix} J_{00} & J_{01} \\ 0 & B_0 \end{pmatrix}$$

$$M_1 = \begin{pmatrix} J_{10} & J_{11} \\ 0 & B_1 \end{pmatrix}$$

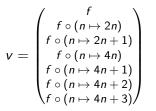
- J_{r0} , J_{r1} entries 0, 1
- initial value compensation \rightsquigarrow 2-linear representation of f(n):

$$\widetilde{M}_r = \begin{pmatrix} M_0 & W_0 \\ 0 & J_0 \end{pmatrix}$$
 and $\widetilde{M}_1 = \begin{pmatrix} M_1 & W_1 \\ 0 & J_1 \end{pmatrix}$

- J_r entries 0, 1
- W_r entries from initial values

Unboardered Factors: Linear Representation

- coefficient matrices B_0 , B_1
- 2-linear representation of f(n):



$$M_0 = \begin{pmatrix} J_{00} & J_{01} \\ 0 & B_0 \end{pmatrix}$$

$$M_1 = \begin{pmatrix} J_{10} & J_{11} \\ 0 & B_1 \end{pmatrix}$$

- J_{r0} . J_{r1} entries 0. 1
- initial value compensation \rightsquigarrow 2-linear representation of f(n):

$$\widetilde{M}_r = \begin{pmatrix} M_0 & W_0 \\ 0 & J_0 \end{pmatrix}$$
 and $\widetilde{M}_1 = \begin{pmatrix} M_1 & W_1 \\ 0 & J_1 \end{pmatrix}$

- J_r entries 0, 1
- W_r entries from initial values
- minimization algorithm: dimension 10 → dimension 8

Asymptotics of Partial Sums

• k-regular sequence f(n)

• partial sums $F(N) = \sum_{n < N} f(n)$

k-regular sequence f(n)

• partial sums $F(N) = \sum_{n \leq N} f(n)$

Asymptotics 0000

Theorem (Heuberger-K-Prodinger 2018, Heuberger-K 2020)

$$F(N) = \sum_{\substack{\lambda \in \sigma(M_0 + \dots + M_{k-1}) \\ |\lambda| > \rho}} N^{\log_k \lambda} \sum_{0 \le \ell < m(\lambda)} (\log_k N)^{\ell} \Phi_{\lambda \ell} (\{\log_k N\}) + O(N^{\log_k R} (\log N)^{\widehat{m}})$$

- 1-periodic (Hölder) continuous functions $\Phi_{\lambda\ell}$
- functional equation

$$\left(I - \frac{1}{k^{s}}(M_{0} + \dots + M_{k-1})\right) \mathcal{V}(s) = \sum_{n=1}^{k-1} \frac{v(n)}{n^{s}} + \frac{1}{k^{s}} \sum_{r=0}^{k-1} M_{r} \sum_{\ell \geq 1} {\binom{-s}{\ell}} {\binom{r}{k}}^{\ell} \mathcal{V}(s+\ell)$$

- meromorphic continuation on the half plane $\Re s > \log_k R$
- Fourier series $\Phi_{\lambda\ell}(u) = \sum_{h \in \mathbb{Z}} \varphi_{\lambda\ell h} \exp(2\ell\pi i u)$

$$\varphi_{\lambda\ell h} = \frac{(\log k)^{\ell}}{\ell!} \operatorname{Res}\left(\frac{\left(f(0) + \mathcal{F}(s)\right)\left(s - \log_k \lambda - \frac{2h\pi i}{\log k}\right)^{\ell}}{s}, s = \log_k \lambda + \frac{2h\pi i}{\log k}\right)$$

Binary Sum-of-Digits Function: Analysis

- eigenvalues etc.
 - $C = M_0 + M_1 = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$
 - C has eigenvalue $\lambda = 2$ with multiplicity 2
 - joint spectral radius 1
 - $||M_{r_1} \cdots M_{r_\ell}|| = O(R^{\ell})$ for any R > 1
- \rightsquigarrow analysis of summatory function:
 - $S(N) = N(\log_2 N) \Phi_{21}(\{\log_2 N\}) + N \Phi_{20}(\{\log_2 N\})$
 - 1-periodic continuous functions Φ_{21} and Φ_{20}
 - $\Phi_{21}(u) = \frac{1}{2}$ via functional equation
 - no error term

• recovering: Summatory Binary Sum-of-Digits (Delange 1975)

Asymptotics 00000

$$S(N) = \sum_{n < N} s(n) = \frac{1}{2} N \log_2 N + N \Phi_{20}(\{\log_2 N\})$$

• explicit Fourier coefficients of $\Phi_{20}(u)$

Joint Spectral Radius

- finite set S of $n \times n$ matrices
- ∥ · ∥ any matrix norm

Joint Spectral Radius

$$\rho(S) = \lim_{\ell \to \infty} \max\{\|F_1 \cdots F_\ell\|^{1/\ell} \mid F_i \in S\}$$

Joint Spectral Radius

- finite set S of $n \times n$ matrices
- || · || any matrix norm

Joint Spectral Radius

$$\rho(S) = \lim_{\ell \to \infty} \max\{\|F_1 \cdots F_\ell\|^{1/\ell} \mid F_i \in S\}$$

$$\bullet \text{ example } S = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \right\}$$

- $\rho(S) \leq 1$ (maximal spectral norm)
- $\rho(S) \ge 1$ (joint eigenvalue 1)
- $\rightsquigarrow \rho(S) = 1$

k-Recursive Sequences

Joint Spectral Radius

- finite set S of $n \times n$ matrices
- || · || any matrix norm

Joint Spectral Radius

$$\rho(S) = \lim_{\ell \to \infty} \max\{\|F_1 \cdots F_\ell\|^{1/\ell} \mid F_i \in S\}$$

- example $S = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \right\}$
 - $\rho(S) \leq 1$ (maximal spectral norm)
 - $\rho(S) \ge 1$ (joint eigenvalue 1)
 - $\rightsquigarrow \rho(S) = 1$
- approximation algorithms available

k-Recursive Sequences

Unboardered Factors: towards Asymptotics

Asymptotics of k-recursive Sequences

Only properties of coefficient matrices needed from k-linear representation!

coefficient matrices

$$B_0 = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & -1 & 1 & 0 \end{pmatrix}$$

$$B_0 = egin{pmatrix} 2 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 1 & 0 & 1 \ 0 & -1 & 1 & 0 \end{pmatrix} \hspace{1cm} B_1 = egin{pmatrix} 0 & 0 & 2 & 0 \ 0 & 0 & 0 & 1 \ 0 & -1 & 1 & 1 \ 0 & 2 & 0 & 1 \end{pmatrix}$$

Unboardered Factors: towards Asymptotics

Asymptotics of k-recursive Sequences

Only properties of coefficient matrices needed from k-linear representation!

coefficient matrices

$$B_0 = egin{pmatrix} 2 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 1 & 0 & 1 \ 0 & -1 & 1 & 0 \end{pmatrix}$$

$$B_0 = egin{pmatrix} 2 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 1 & 0 & 1 \ 0 & -1 & 1 & 0 \end{pmatrix} \hspace{1cm} B_1 = egin{pmatrix} 0 & 0 & 2 & 0 \ 0 & 0 & 0 & 1 \ 0 & -1 & 1 & 1 \ 0 & 2 & 0 & 1 \end{pmatrix}$$

spectrum

$$\sigma(B_0 + B_1) = \left\{1 - \sqrt{3}, 1, 2, 1 + \sqrt{3}\right\}$$

Unboardered Factors: towards Asymptotics

Asymptotics of k-recursive Sequences

Only properties of coefficient matrices needed from k-linear representation!

coefficient matrices

$$B_0 = egin{pmatrix} 2 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 1 & 0 & 1 \ 0 & -1 & 1 & 0 \end{pmatrix}$$

$$B_0 = egin{pmatrix} 2 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 1 & 0 & 1 \ 0 & -1 & 1 & 0 \end{pmatrix} \hspace{1cm} B_1 = egin{pmatrix} 0 & 0 & 2 & 0 \ 0 & 0 & 0 & 1 \ 0 & -1 & 1 & 1 \ 0 & 2 & 0 & 1 \end{pmatrix}$$

spectrum

$$\sigma(B_0 + B_1) = \left\{1 - \sqrt{3}, 1, 2, 1 + \sqrt{3}\right\}$$

- joint spectral radius of $\{B_0, B_1\}$ is 2
- has simple growth property

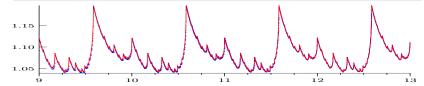
Unboardered Factors: Asymptotics

• number f(n) of unbordered factors of length n in the Thue–Morse sequence

Theorem (Heuberger-K-Lipnik 2022)

$$F(N) = \sum_{0 \le n < N} f(n) = N^{\kappa} \cdot \Phi_F(\{\log_2 N\}) + O(N \log N) \quad \text{as } N \to \infty$$

- $\kappa = \log_2(1+\sqrt{3}) = 1.44998431347650...$
 - 1-periodic continuous function Φ_F , Hölder continuous with any exponent smaller than $\kappa-1$
- explicit functional equation for Dirichlet series
 + analyticity properties, poles
 - efficiently computable Fourier coefficients of Φ_F



k-Recursive Sequences

Stern's Diatomic Sequence

Stern's Diatomic Sequence

$$d(2n) = d(n)$$

$$d(2n+1) = d(n) + d(n+1)$$

for all
$$n > 0$$
 and

$$d(0) = 0, \ d(1) = 1$$

n	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
d(n)	0	1	1	2	1	3	2	3	1	4	3	5	2	5	3	4

Stern's Diatomic Sequence

Stern's Diatomic Sequence

$$d(2n) = d(n)$$

$$d(2n+1) = d(n) + d(n+1)$$

for all
$$n \ge 0$$
 and $d(0) = 0$, $d(1) = 1$

- number of different hyperbinary representations (Northshield 2010)
- number of integers $r \in \mathbb{N}_0$ such that Stirling partition numbers $\binom{n}{2r}$ are even and non-zero (Carlitz 1964)
- number of different representations as a sum of distinct Fibonacci numbers F_{2k} (Bicknell-Johnson 2003)
- number of different alternating bit sets (Finch 2003)
- relation to the Towers of Hanoi (Hinz-Klavžar-Milutinović-Parisse-Petr 2005)

n	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
d(n)	0	1	1	2	1	3	2	3	1	4	3	5	2	5	3	4

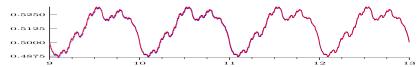
Stern's Diatomic Sequence: Asymptotics

- Stern's diatomic sequence d(n)
- 2-recursive, 2-regular

Asymptotics

$$D(N) = \sum_{0 \le n < N} d(n) = N^{\kappa} \cdot \Phi_D(\{\log_2 N\}) + O(N^{\log_2 \varphi})$$
 as $N \to \infty$

- $\kappa = \log_2 3 = 1.5849625007211...$
 - $\varphi = \frac{1+\sqrt{5}}{2} = 1.6180339887498..., \log_2 \varphi = 0.69424191363061...$
 - 1-periodic continuous function Φ_D , Hölder continuous with any exponent smaller than $\kappa - \log_2 \varphi$
- explicit functional equation for Dirichlet series
 + analyticity properties, poles
 - \bullet efficiently computable Fourier coefficients of Φ_D



Generalized Pascal's Triangle

Binomial Coefficients of Words

binomial coefficient $\binom{u}{v}$ equals number of different occurrences of v as a scattered subword of u

Generalized Pascal's Triangle

Binomial Coefficients of Words

binomial coefficient $\binom{u}{v}$ equals number of different occurrences of v as a scattered subword of u

	k	0	1	2	3	4	5	6	7	8	
n	$(k)_2$	ε	1	10	11	100	101	110	111	1000	z(n)
0	ε	1	0	0	0	0	0	0	0	0	1
1	1	1	1	0	0	0	0	0	0	0	2
2	10	1	1	1	0	0	0	0	0	0	3
3	11	1	2	0	1	0	0	0	0	0	3
4	100	1	1	2	0	1	0	0	0	0	4
5	101	1	2	1	1	0	1	0	0	0	5
6	110	1	2	2	1	0	0	1	0	0	5
7	111	1	3	0	3	0	0	0	1	0	4
8	1000	1	1	3	0	3	0	0	0	1	5

Generalized Pascal's Triangle

Binomial Coefficients of Words

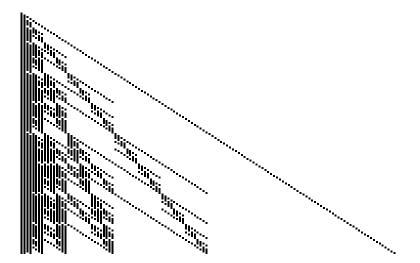
binomial coefficient $\binom{u}{v}$ equals number of different occurrences of v as a scattered subword of u

"classical" binomial coefficient $\binom{n}{k} = \binom{1^n}{1^k}$

	k	0	1	2	3	4	5	6	7	8	
n	$(k)_2$	ε	1	10	11	100	101	110	111	1000	z(n)
0	ε	1	0	0	0	0	0	0	0	0	1
1	1	1	1	0	0	0	0	0	0	0	2
2	10	1	1	1	0	0	0	0	0	0	3
3	11	1	2	0	1	0	0	0	0	0	3
4	100	1	1	2	0	1	0	0	0	0	4
5	101	1	2	1	1	0	1	0	0	0	5
6	110	1	2	2	1	0	0	1	0	0	5
7	111	1	3	0	3	0	0	0	1	0	4
8	1000	1	1	3	0	3	0	0	0	1	5

k-Recursive Sequences

Non-zeros in Generalized Pascal's Triangle



Stern's Diatomic Sequence & Generalized Pascal's Triangle

- Stern's diatomic sequence d(n)
- number z(n) of non-zero elements in nth row of generalized Pascal's triangle $\binom{(n)_2}{(k)_2}$

Theorem (Leroy-Rigo-Stipulanti 2017)

$$z(n) = d(2n+1)$$
 for all $n \ge 0$

Stern's Diatomic Sequence & Generalized Pascal's Triangle

- Stern's diatomic sequence d(n)
- number z(n) of non-zero elements in *n*th row of generalized Pascal's triangle $\binom{(n)_2}{(k)_2}$

Theorem (Leroy-Rigo-Stipulanti 2017)

$$z(n) = d(2n+1)$$
 for all $n \ge 0$

Theorem (Leroy-Rigo-Stipulanti 2017)

recurrence relations

$$z(2n+1)=3z(n)-z(2n)$$

$$z(4n) = -z(n) + 2z(2n)$$

$$z(4n+2) = 4z(n) - z(2n)$$

for all $n \ge 0$

reformulate as 2-recursive sequence:

$$z(4n) = \frac{5}{3}z(2n) - \frac{1}{3}z(2n+1)$$

$$z(4n+1) = \frac{4}{3}z(2n) + \frac{1}{3}z(2n+1)$$

$$z(4n+2) = \frac{1}{3}z(2n) + \frac{4}{3}z(2n+1)$$

$$z(4n+3) = -\frac{1}{3}z(2n) + \frac{5}{3}z(2n+1)$$

• reformulate as 2-recursive sequence & read off coefficient matrices:

$$z(4n) = \frac{5}{3}z(2n) - \frac{1}{3}z(2n+1)$$

$$z(4n+1) = \frac{4}{3}z(2n) + \frac{1}{3}z(2n+1)$$

$$z(4n+2) = \frac{1}{3}z(2n) + \frac{4}{3}z(2n+1)$$

$$z(4n+3) = -\frac{1}{3}z(2n) + \frac{5}{3}z(2n+1)$$

$$B_{1} = \frac{1}{3}\begin{pmatrix} 5 & -1\\ 4 & 1 \end{pmatrix}$$

$$B_{1} = \frac{1}{3}\begin{pmatrix} 1 & 4\\ -1 & 5 \end{pmatrix}$$

• 2-linear representation of dimension 3

• reformulate as 2-recursive sequence & read off coefficient matrices:

$$z(4n) = \frac{5}{3}z(2n) - \frac{1}{3}z(2n+1)$$

$$z(4n+1) = \frac{4}{3}z(2n) + \frac{1}{3}z(2n+1)$$

$$z(4n+2) = \frac{1}{3}z(2n) + \frac{4}{3}z(2n+1)$$

$$z(4n+3) = -\frac{1}{3}z(2n) + \frac{5}{3}z(2n+1)$$

$$B_{1} = \frac{1}{3}\begin{pmatrix} 5 & -1\\ 4 & 1 \end{pmatrix}$$

$$B_{1} = \frac{1}{3}\begin{pmatrix} 1 & 4\\ -1 & 5 \end{pmatrix}$$

- 2-linear representation of dimension 3
- towards asymptotics: spectrum & joint spectral radius
- investigating eigenstructure → no error term

• reformulate as 2-recursive sequence & read off coefficient matrices:

$$z(4n) = \frac{5}{3}z(2n) - \frac{1}{3}z(2n+1)$$

$$z(4n+1) = \frac{4}{3}z(2n) + \frac{1}{3}z(2n+1)$$

$$z(4n+2) = \frac{1}{3}z(2n) + \frac{4}{3}z(2n+1)$$

$$z(4n+3) = -\frac{1}{3}z(2n) + \frac{5}{3}z(2n+1)$$

$$B_{1} = \frac{1}{3}\begin{pmatrix} 5 & -1 \\ 4 & 1 \end{pmatrix}$$

$$B_{1} = \frac{1}{3}\begin{pmatrix} 1 & 4 \\ -1 & 5 \end{pmatrix}$$

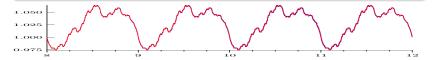
- 2-linear representation of dimension 3
- towards asymptotics: spectrum & joint spectral radius
- investigating eigenstructure → no error term
- reconsider connection to Stern's diatomic sequence
- (compute Fourier coefficients of fluctuation)

• number z(n) of non-zero elements in nth row of generalized Pascal's triangle $\binom{(n)_2}{(k)_2}$

Asymptotics

$$Z(N) = \sum_{0 \le n \le N} z(n) = N^{\kappa} \cdot \Phi_{Z}(\{\log_{2} N\}) \quad \text{for } N \ge 1$$

- $\kappa = \log_2 3$
- $\Phi_Z = 2\Phi_D$ (with Φ_D from Stern's diatomic sequence)

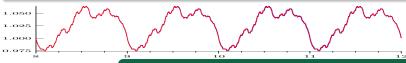


• number z(n) of non-zero elements in *n*th row of generalized Pascal's triangle $\binom{(n)_2}{(k)_2}$

Asymptotics

$$Z(N) = \sum_{0 \le n < N} z(n) = N^{\kappa} \cdot \Phi_Z(\{\log_2 N\}) \quad \text{for } N \ge 1$$

- $\kappa = \log_2 3$
- $\Phi_Z = 2\Phi_D$ (with Φ_D from Stern's diatomic sequence)



Corollary (Heuberger-K-Lipnik 2022)

• Stern's diatomic sequence d(n)

$$\sum_{0 \le n \le N} d(n) + \frac{1}{2}d(N) = N^{\kappa} \cdot \Phi_D(\{\log_2 N\})$$

k-Recursive Sequences