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Unboardered Factors
©00

(Un-)bordered Factors

(Un-)bordered
@ word w bordered:

@ exists non-empty word v # w
e v is prefix and suffix of w

@ otherwise unbordered
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Unboardered Factors
©00

(Un-)bordered Factors

(Un-)bordered

@ word w bordered:

@ exists non-empty word v # w
e v is prefix and suffix of w

. unbordered factor | length
@ otherwise unbordered E 0
0 1
bordered factor border | length 1 1
00 0 2 01 2
11 1 2 10 2
010 0 3 011 3
101 1 3 110 3
1010 10 4 100 3
0110100110 | 0110 10 001 3
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Unboardered Factors
©00

(Un-)bordered Factors

(Un-)bordered

@ word w bordered:

@ exists non-empty word v # w
e v is prefix and suffix of w

o otherwise unbordered unborderedEfactor Iength

t[0..0] =0 1
bordered factor border | length tfl1..1]=1 1
t[5..6] =00 0 2 t[0..1] =01 2
t1..2] =11 1 2 t2..3] =10 2
t[3..5] =010 0 3 t[0..2] =011 3
t[2..4] =101 1 3 t[1..3] =110 3
t[2..5] = 1010 10 4 t[4..6] = 100 3
t[0..9] = 0110100110 | 0110 10 t[5..7] = 001 3

Thue—Morse Sequence
t = 01101001 100101101001011001101001. ..
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Unboardered Factors
0e0

Number of Unbordered Factors

Theorem (Go&-Henshall-Shallit 2013)

exists unbordered factor
of length n < (n)2 ¢ 1(01*0)*10*1
in Thue—Morse sequence
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Unboardered Factors
0e0

Number of Unbordered Factors

Theorem (Go&-Henshall-Shallit 2013)

exists unbordered factor
of length n < (n)2 ¢ 1(01*0)*10*1
in Thue—Morse sequence

@ number f(n) of unbordered factors of length n
in the Thue—Morse sequence

n o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
fm [T 2 2 4 2 4 6 0 4 4 4 4 12 0 4 4
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Unboardered Factors
0e0

Number of Unbordered Factors

Theorem (Go&-Henshall-Shallit 2013)

exists unbordered factor
of length n < (n)2 ¢ 1(01*0)*10*1
in Thue—Morse sequence

@ number f(n) of unbordered factors of length n
in the Thue—Morse sequence

n o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
fy [T 2 2 4 2 4 6 0 4 4 4 4 12 0 4 4

Theorem (Go&-Mousavi-Shallit 2013)

e inequality f(n) < n holds for all n > 4

e f(n) = n infinitely often
f(n) _

o limsup,~; =~
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Unboardered Factors
ooe

Recurrence Relations

@ number f(n) of unbordered factors of length n
in Thue—Morse sequence
@ recurrence relations

f(4n) = 2f(2n) (n>2)
f(4n+1) =f(2n+1) (n>0)
f(8n+2)=1f(2n+1)+f(4n+3) (n>1)
F(8n+3) = —f(2n + 1) + f(4n +2) (n>2)
F(8n+6) = —f(2n+1) + f(4n +2) + F(4n + 3) (n>2)
f(8n+7)=2f(2n+1) + f(4n+3) (n>3)

Theorem (Go&-Mousavi-Shallit 2013)

f(n) satisfies recurrence relations above
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Unboardered Factors
ooe

Recurrence Relations

@ number f(n) of unbordered factors of length n
in Thue—Morse sequence
@ recurrence relations

f(8n) = 2f(4n) (n>1)
f(8n+1)=f(4n+1) (n>0)
f(8n+2)=1f(4n+1)+f(4n+3) (n>1)
f(8n+3)=—f(4n+ 1)+ f(4n+2) (n>2)
f(8n+4) =2f(4n+2) (n>1)
f(8n+5) = f(4n+3) (n>0)
f(8n+6) =—f(4n+ 1)+ f(4n+2) + f(4n+ 3) (n>2)
f(8n+7) =2f(4n+ 1)+ f(4n+3) (n>3)
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Unboardered Factors
ooe

Recurrence Relations

@ number f(n) of unbordered factors of length n
in Thue—Morse sequence
@ recurrence relations

f(8n) = 2f(4n) (n>1)
f(8n+1)=f(4n+1) (n>0)
f(8n+2)=1f(4n+1)+f(4n+3) (n>1)
f(8n+3)=—f(4n+ 1)+ f(4n+2) (n>2)
f(8n+4) =2f(4n+2) (n>1)
f(8n+5) = f(4n+3) (n>0)
f(8n+6) =—f(4n+ 1)+ f(4n+2) + f(4n+ 3) (n>2)
f(8n+7) =2f(4n+ 1)+ f(4n+3) (n>3)

e f(n) is a 2-recursive sequence
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Recursive Sequences
000000

k-recursive Sequence

o integer k > 2

k-recursive Sequence x(n)

there exist such that

o integers M > m >0, £ < u, kMnp 4+ s) = Csix(kn+j
e o x( + s) égzj;u s, X( +J)

e constants ¢;j € C
holds for all n > ng and 0 < s < kM
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Recursive Sequences

000000

k-recursive Sequence

o integer k > 2

k-recursive Sequence x(n)

there exist such that
e integers M > m >0, £ < u, w(kMn 4+ s) = cex(k™n 4 i
e constants ¢;j € C ==

holds for all n > ng and 0 < s < kM

@ h(n)...largest power of 2 less than or equal to n
o h(2n) =2h(n), h(2n+1) =2h(n) for n > 1, h(1) =1
o k=2 M=1,m=0,0=0,u=1,ny=1
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Recursive Sequences

000000

k-recursive Sequence

o integer k > 2

k-recursive Sequence x(n)

there exist such that
e integers M > m >0, £ < u, KM _ (k™ .
o > max { /K™, 0} k)= 3 coytint)

1<j<u
holds for all n > ng and 0 < s < kM

e constants ¢;j € C

@ h(n)...largest power of 2 less than or equal to n
o h(2n) =2h(n), h(2n+1) =2h(n) for n > 1, h(1) =1
o k=2 M=1,m=0(=0,u=1n=1
@ binary sum of digits
o s(2n) =s(n), s(2n+1)=s(n)+1
e no direct fit because of constant sequence
e deal with inhomogeneities by increasing the exponents
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Recursive Sequences
000000

k-recursive Sequence

o integer k > 2

k-recursive Sequence x(n)

there exist such that
e integers M > m >0, £ < u, KM _ (k™ .
o > max { /K™, 0} k)= 3 coytint)

1<j<u
holds for all n > ng and 0 < s < kM

e constants ¢;j € C

@ h(n)...largest power of 2 less than or equal to n
o h(2n) =2h(n), h(2n+1) =2h(n) for n > 1, h(1) =1
o k=2, M=1,m=0,=0u=1,ny=1
@ binary sum of digits
o s(2n) =s(n), s(2n+1)=s(n)+1
e no direct fit because of constant sequence
e deal with inhomogeneities by increasing the exponents
@ number f(n) of unbordered factors of length n
in Thue—Morse sequence



Recursive Sequences
000000

k-regular Sequences

explicitly:

@ there exist sequences fi(n), ... f(n) such that
° foral|j20,0§r<kj

@ there exist ¢, ..., Cs

@ with .
f(kkn—+r)=cfi(n)+ -+ csfs(n)
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Recursive Sequences
000000

k-regular Sequences

k-regular Sequence f(n)

k-kernel {f(kin+r)|j>0,0<r <k}
is contained in
finitely generated module

explicitly:

@ there exist sequences fi(n), ... f(n) such that
° foral|j20,0§r<kj

@ there exist ¢, ..., Cs

@ with .
f(kkn—+r)=cfi(n)+ -+ csfs(n)
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Recursive Sequences
000000

k-linear Representation

binary sum of digits s(n):
@ recurrence relations

even numbers: s(2n) = s(n)
odd numbers:  s(2n+1) =s(n)+1
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Recursive Sequences
000000

k-linear Representation

binary sum of digits s(n):
@ recurrence relations

even numbers: s(2n) = s(n)
odd numbers:  s(2n+1) =s(n)+1

@ vector-valued sequence

set v(n) = (s(n),1)"

even  v(2n) = (5(1")) - <(1) 2) v(n)
odd v(2n+1)= <5(”)1+ 1> - <é i) v(n)

k-Recursive Sequences Daniel Krenn



Recursive Sequences
000000

k-linear Representation

binary sum of digits s(n):
@ recurrence relations

even numbers: s(2n) = s(n)
odd numbers:  s(2n+1) =s(n)+1

@ vector-valued sequence

set v(n) = (s(n),1)"

even  v(2n) = (5(1")) - <(1) 2) v(n)
odd v(2n+1)= <5(”)1+ 1> - <é i) v(n)
@ iterate ~» product of matrices
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Recursive Sequences
000000

k-linear Representation

k-regular Sequence f(n)

@ square matrices My, ..., My_1
binary sum of digits s(n): @ vectors u and w
@ recurrence relations @ k-linear representation
even numbers: s(2n) = s(n) f(n)= uT/\/I,,0 Mp, ... My, \w
odd numbers:  s(2n+1) = s(n) +1 with standard k-ary expansion
@ vector-valued sequence n=(ng_1...nmno)k
set v(n) = (s(n),1)"

even  v(2n) = (5(1")) - <(1) 2) v(n)
odd v(2n+1)= <5(”)1+ 1> - <é i) v(n)

@ iterate ~» product of matrices
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Recursive Sequences
000000

Some k-regular Sequences

@ h(n)...largest power of 2 less than or equal to n
o h(2n+r)=2h(n)forn>1j>00<r<2

@ binary sum of digits
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Recursive Sequences
000000

Some k-regular Sequences

@ h(n)...largest power of 2 less than or equal to n
o h(2n+r)=2h(n)forn>1j>00<r<2
@ binary sum of digits

@ k-recursive sequences:

Theorem (Heuberger—K-Lipnik 2022)

e k-recursive sequence x(n)

Then

@ x(n) is k-regular sequence

@ k-linear representation of x(n)
o vector-valued sequence v(n) in block form
o block matrices My, ..., M,_;
e computed by coefficients of k-recursive sequence
o explicit formulae for the rows available

4
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Recursive Sequences
000000

Unboardered Factors: Coefficient Matrices

@ number f(n) of unbordered factors of length n
in Thue—Morse sequence

f(8n) = 2f(4n)

f(8n+1)=f(4n+1)
f(8n+2)=f(4n+1) + f(4n+3)
f(8n+3)=—f(4n+ 1)+ f(4n+2)
f(8n+4) =2f(4n+2)
f(8n+5) = f(4n+3)
f(8n+6) = —f(4n+ 1)+ f(4n+2) + f(4n+ 3)
fF(8n+7) = 2f(4n+1) + f(4n+ 3)
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Recursive Sequences
000000

Unboardered Factors: Coefficient Matrices

@ number f(n) of unbordered factors of length n
in Thue—Morse sequence

o coefficient matrices By, Bi:

f(8n) = 2f(4n) 2 0 00
f(8n+1)=f(4n+1) 0 1 00
f(8n+2)=f(4n+ 1)+ f(4n+ 3) Bo = 0 1 01
f(8n+3)=—f(4n+ 1)+ f(4n+2) 0 -1 10
f(8n 4 4) = 2f(4n +2) =
F(8n+5) — F(4n +3) 0 0 20
f(8n+6) = —f(4n+ 1)+ f(4n+2) + f(4n+ 3) B; = 8 01 (1) 1
f(8n+7) =2f(4n+ 1)+ f(4n+3) 0 2 0 1

k-Recursive Sequences Daniel Krenn



Recursive Sequences

00000e

Unboardered Factors: Linear Representation

o coefficient matrices By, B
@ 2-linear representation of f(n):

p
f o (n s 2n) _ (oo Jo1
fo(n—2n+1) MO_(O Bo)
v = fo(nw— 4n)
fo(n»—>4n—|—1) JlO Jll
fo(n4n+2) M1=(0 Bl)
fo(n— 4n+3)

o Jyg, Ji1 entries 0, 1
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Recursive Sequences

00000e

Unboardered Factors: Linear Representation

o coefficient matrices By, B
@ 2-linear representation of f(n):

;
fo(n+ 2n) _ (Joo Jo
fo(n—2n+1) °= 1o Bo
v = fo(nw— 4n)
fo(n|—>4n—|—1) JlO Jll
fo(n— 4n+2) M1=(0 Bl)

fo(n— 4n+3)
o Jyg, Ji1 entries 0, 1
@ initial value compensation ~» 2-linear representation of f(n):

~ My Wy ~ M Wi
M = M =
r ( 0 J0> and My ( 0 4
e J, entries 0, 1
o W, entries from initial values
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Recursive Sequences
00000@

Unboardered Factors: Linear Representation

o coefficient matrices By, B
@ 2-linear representation of f(n):

;
fo(n+ 2n) _ (Joo Jo
fo(n—2n+1) MO_(O Bo)

v = fo(nw— 4n)
fo(n|—>4n—|—1) JlO Jll
fo(n— 4n+2) M1=(0 Bl)

fo(n— 4n+3)
o Jyg, Ji1 entries 0, 1
@ initial value compensation ~» 2-linear representation of f(n):

~ My Wy ~ M Wi
M = M =
r ( 0 J0> and My ( 0 4
e J, entries 0, 1
o W, entries from initial values

@ minimization algorithm: dimension 10 ~~ dimension 8



Asymptotics
©0000

Asymptotics of Partial Sums

o k-regular sequence f(n) o partial sums F(N) = 3"\ f(n)
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Unboardered Factors e Asymptotics
©0000

Asymptotics of Partial Sums

o k-regular sequence f(n) o partial sums F(N) =3 _, f(n)

Theorem (Heuberger—K—Prodinger 2018, Heuberger—K 2020)
FINy= > N 3" (logy N) ®x({log, N})

A€o (Mo+-++Mi_1) 0<l<m(X) | R =
A[>p + O(N®°(log N)™)

o 1-periodic (Hélder) continuous functions ® .
e functional equation

k—1 k—1
1 B v(n) 1 —s\ /r\*
(-t o)y =5 S S 2 () () Vv
e meromorphic continuation on the half plane Rs > log, R
o Fourier series ®x¢(u) = 3, xen exp(20miu)
mi\¢ 0
(log k)* Res( (F(0) + F(s)) (s — logy A — |20hgk) 2h7rl>

— log, A2
0 5 5 = OB AT gk

©Oxeh =

v
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Asymptotics
0®000

Binary Sum-of-Digits Function: Analysis

@ eigenvalues etc.
o C= Mo+ M = (31)
C has eigenvalue A = 2 with multiplicity 2
joint spectral radius 1
[M,, -+ M,,| = O(R") forany R > 1
@ ~~ analysis of summatory function:
o S(N) = N(log, N) ®21({log, N}) + N ®2({log, N})
e l-periodic continuous functions ®,; and $,
o ®y(u) = 3 via functional equation
@ Nno error term

LSOVl Summatory Binary Sum-of-Digits (Delange 1975)

S(N) = s(n) = 3Nlogy N + N da({log, N})
n<N

o explicit Fourier coefficients of ®2(u)
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Asymptotics
0000

Joint Spectral Radius

o finite set S of n x n matrices

@ || || any matrix norm

Joint Spectral Radius
p(S) = lim max{||Fy - F||Y/* | F; € S}
L—00
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Asymptotics

[e]e] Je]e}

Joint Spectral Radius

o finite set S of n x n matrices

@ || || any matrix norm

Joint Spectral Radius
p(S) = lim max{||Fy - F||Y/* | F; € S}
L—00

o campes—{(2 9).(3 1))

(S) <1 (maximal spectral norm)
( ) > 1 (joint eigenvalue 1)
S

~p(8)=1
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Asymptotics

[e]e] Je]e}

Joint Spectral Radius

o finite set S of n x n matrices

@ || || any matrix norm

Joint Spectral Radius
p(S) = lim max{||Fy - F||Y/* | F; € S}
L—00

o campes—{ (3 9). (4 1))

o p(S) <1 (maximal spectral norm)
e p(S) > 1 (joint eigenvalue 1)
o~ p(S)=1

@ approximation algorithms available
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Asymptotics
0000

Unboardered Factors: towards Asymptotics

Asymptotics of k-recursive Sequences

Only properties of coefficient matrices
needed from k-linear representation!

o coefficient matrices

2 0 00 0 0 20
0 1 0 0 0 0 0 1
Bo=1o 1 0 1 Bi=1o 11 1
0 -1 1 0 0 2 0 1
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Asymptotics
0000

Unboardered Factors: towards Asymptotics

Asymptotics of k-recursive Sequences

Only properties of coefficient matrices
needed from k-linear representation!

o coefficient matrices

2 0 0O 0 0 2 0
0 1 00 0 0 01
Bo=1o0 1 01 Bi=1lo -1 11
0 -1 1 0 0 2 01
@ spectrum

o(Bo+B1) = {1-V3,1,2,1+ V3}
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Asymptotics
0000

Unboardered Factors: towards Asymptotics

Asymptotics of k-recursive Sequences

Only properties of coefficient matrices
needed from k-linear representation!

o coefficient matrices

2 0 0O 0 0 2 0
0 1 00 0 0 01
Bo=1o0 1 01 Bi=1lo -1 11
0 -1 1 0 0 2 01
@ spectrum

o(Bo+B1) = {1-V3,1,2,1+ V3}

@ joint spectral radius of {By, By} is 2
@ has simple growth property
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Asymptotics
0000®

Unboardered Factors: Asymptotics

@ number f(n) of unbordered factors of length n in the
Thue—Morse sequence

Theorem (Heuberger—K-Lipnik 2022)

F(N) =Y f(n) = N*-®£({log, N}) + O(Nlog N) as N — oo
0<n<N
@ o k= logy(1+ v/3) = 1.44998431347650. ..
e 1-periodic continuous function ®f,
Hélder continuous with any exponent smaller than xk — 1

@ o explicit functional equation for Dirichlet series
+ analyticity properties, poles
o efficiently computable Fourier coefficients of ®f

1.10

1.05
r T T T 1
o 10 11 12 13
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Further Examples
€000000

Stern’s Diatomic Sequence

d(2n) = d(n)
d2n+1)=d(n)+d(n+1)

for all n > 0 and
d0)=0,d(1)=1

n |0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
dnyJo 1 1 2 1 3 2 1 4
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Further Examples
€000000

Stern’s Diatomic Sequence

e number of different
hyperbinary representations
(Northshield 2010)

e number of integers r € Ny such that
Stirling partition numbers {,'}
are even and non-zero
(Carlitz 1964)

Stern’s Diatomic Sequence e number of different representations

as a sum of

d(2n) = d(n) distinct Fibonacci numbers Fpy
d2n+1)=d(n)+d(n+1 (Bicknell-Johnson 2003)
( ) (n) ( ) e number of different alternating bit sets
for all n >0 and (Fnen 200  Hano
o relation to the lowers of Hanol
d(O) =0 d(l) — 14 (Hinz-KlavZar-Milutinovi¢-Parisse—Petr 2005)

n‘0123456789101112131415
d(n)‘0112132314352534
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Further Examples
0®00000

Stern’s Diatomic Sequence: Asymptotics

@ Stern’s diatomic sequence d(n)
@ 2-recursive, 2-regular

D(N) = "d(n) = N* - dp({log, N}) + O(N'€2%?) as N — oo
0<n<N

@ o k= log,3 = 1.5849625007211...

= %ﬁ = 1.6180339887498. . ., log, ¢ = 0.69424191363061 . ..
e l-periodic continuous function $p,
Holder continuous with any exponent smaller than x — log, ¢

@ o explicit functional equation for Dirichlet series
+ analyticity properties, poles
o efficiently computable Fourier coefficients of ®p

O.5250
Oo.5125
O.5000

O.asTs | . n
o 10 EES 1= 13
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Further Examples
0000000

Generalized Pascal’s Triangle

Binomial Coefficients of Words

binomial coefficient (¥) equals
number of different occurrences of v
as a scattered subword of u
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Further Examples
0000000

Generalized Pascal’s Triangle

Binomial Coefficients of Words

binomial coefficient (¥) equals
number of different occurrences of v
as a scattered subword of u

k 0o 1 2 3 4 5 6 7 8
n (n)2 (k)2 e 1 10 11 100 101 110 111 1000 || z(n)
0 € 1 0 O 0 0 0 0 0 0 1
1 1 1 1 o0 0 0 0 0 0 0 2
2 10 1 1 1 0 0 0 0 0 0 3
3 11 1 2 0 1 0 0 0 0 0 3
4 100 1 1 2 0 1 0 0 0 0 4
5 101 1 2 1 1 0 1 0 0 0 5
6 110 1 2 2 1 0 0 1 0 0 5
7 111 1 3 0 3 0 0 0 1 0 4
8 1000 1 1 3 0 3 0 0 0 1 5
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Further Examples
0000000

Generalized Pascal’s Triangle

Binomial Coefficients of Words

binomial coefficient (¥) equals “classical”
number of different occurrences of v binomial coefficient
ny _ (1"
as a scattered subword of u (k) = (1k)
k 0 1 2 3 4 5 6 7 8
n (n) (k) e 1 10 11 100 101 110 111 1000 || z(n)
2
0 € 1 0 O 0 0 0 0 0 0 1
1 1 1 1 0 0 0 0 0 0 0 2
2 10 1 1 1 0 0 0 0 0 0 3
3 11 1 2 0 1 0 0 0 0 0 3
4 100 1 1 2 0 1 0 0 0 0 4
5 101 1 2 1 1 0 1 0 0 0 5
6 110 1 2 2 1 0 0 1 0 0 5
7 111 1 3 0 3 0 0 0 1 0 4
8 1000 1 1 3 0 3 0 0 0 1 5
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Further Examples
000000

Non-zeros in Generalized Pascal’s Triangle

k-Recursive Sequences Daniel Krenn



Further Examples
0000000

Stern's Diatomic Sequence & Generalized Pascal’s Triangle

e Stern’s diatomic sequence d(n)

@ number z(n) of non-zero elements in nth row
of generalized Pascal's triangle (%2)

Theorem (Leroy—Rigo—Stipulanti 2017)

z(n)=d(2n+1) foralln>0
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Further Examples

[e]e]e]e] Je]e)

Stern's Diatomic Sequence & Generalized Pascal’s Triangle

e Stern’s diatomic sequence d(n)

@ number z(n) of non-zero elements in nth row
of generalized Pascal's triangle (%2)

Theorem (Leroy—Rigo—Stipulanti 2017)

z(n)=d(2n+1) foralln>0

Theorem (Leroy—Rigo—Stipulanti 2017)
recurrence relations
z(2n+1) = 3z(n) — z(2n)
z(4n) = —z(n) + 2z(2n)
z(4n+2) = 4z(n) — z(2n)
for all n > OJ
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Further Examples
0000080

Generalized Pascal’s Triangle: Asymptotic Analysis

o reformulate as 2-recursive sequence:

z(4n) = 32z(2n) — $z(2n+1)
z(4n+1) = 3z(2n) + 3z(2n + 1)
z(4n+2) = z(2n) + 3z(2n + 1)
z(4n+3) = —1z(2n) + 3z(2n + 1)

Daniel Krenn
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Further Examples
0000080

Generalized Pascal’s Triangle: Asymptotic Analysis

o reformulate as 2-recursive sequence & read off coefficient matrices:

z(4n) = 3z(2n) — $z(2n+1) By — 1 (5 —1)
2(4n+1) = 42(2n) + 12(2n+ 1) 3\4 1
z(4n+2) = z(2n) + 3z(2n + 1) B, — 1 ( 1 4)
z(4n+3) = —1z(2n) + 3z(2n + 1) 3\-15

@ 2-linear representation of dimension 3

Daniel Krenn
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Further Examples
0000080

Generalized Pascal’s Triangle: Asymptotic Analysis

o reformulate as 2-recursive sequence & read off coefficient matrices:

z(4n) = 3z(2n) — $z(2n+1) By — 1 (5 —1)
Z(4n+1) =42(2n) + 3220 +1)  _ 3\4 1
z(4n+2) = z(2n) + 3z(2n + 1) B, — 1 ( 1 4)
z(4n+3) = —1z(2n) + 3z(2n + 1) 3\-15

@ 2-linear representation of dimension 3
@ towards asymptotics: spectrum & joint spectral radius

@ investigating eigenstructure ~~ no error term

k-Recursive Sequences Daniel Krenn



Further Examples
0000080

Generalized Pascal’s Triangle: Asymptotic Analysis

o reformulate as 2-recursive sequence & read off coefficient matrices:

z(4n) = 3z(2n) — $z(2n+1) By — 1 (5 —1>
Z(4n+1) =42(2n) + 3220 +1)  _ 3\4 1
z(4n+2) = z(2n) + 3z(2n + 1) B, — 1 ( 1 4)
z(4n+3) = —1z(2n) + 3z(2n + 1) 3\-15

2-linear representation of dimension 3
towards asymptotics: spectrum & joint spectral radius
investigating eigenstructure ~» no error term

reconsider connection to Stern's diatomic sequence

(compute Fourier coefficients of fluctuation)

k-Recursive Sequences Daniel Krenn



Further Examples
0000000

Generalized Pascal's Triangle: Asymptotics

@ number z(n) of non-zero elements in nth row
of generalized Pascal’s triangle (gzgz)

Z(N) =Y _z(n) = N* - dz({logy N}) for N >1
0<n<N

o k=log,3

e &7 =2dp (with ®p from Stern’s diatomic sequence)

k-Recursive Sequences Daniel Krenn



Further Examples

000000e

Generalized Pascal's Triangle: Asymptotics

@ number z(n) of non-zero elements in nth row
of generalized Pascal’s triangle (gzgz)

Z(N) = 2(n) = N* - 0z({logy N}) for N> 1
0<n<N
o k=log,3

e &7 =2dp (with ®p from Stern’s diatomic sequence)

Corollary (Heuberger—K—Lipnik 2022)
e Stern’s diatomic sequence d(n)

S d(n) + d(N) = N* - dp({log, N})
0<n<N

k-Recursive Sequences Daniel Krenn
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